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Abstract: The determination of the evapotranspiration (ET) and its components in urban woodlands is
crucial to mitigate the urban heat island effect and improve sustainable urban development. However,
accurately estimating ET in urban areas is more difficult and challenging due to the heterogeneity
of the underlying surface and the impact of human activities. In this study, we compared the
performance of three types of classic two-source ET models on urban woodlands in Shenzhen, China.
The three ET models include a pure physical and process-based ET model (Shuttleworth–Wallace
model), a semi-empirical and physical process-based ET model (FAO dual-Kc model), and a purely
statistical and process-based ET model (deep neural network). The performance of the three models
was validated using an eddy correlation and stable hydrogen and oxygen isotope observations. The
verification results suggested that the Shuttleworth–Wallace model achieved the best performance in
the ET simulation at main urban area site (coefficient of determination (R2) of 0.75). The FAO-56 dual
Kc model performed best in the ET simulation at the suburb area site (R2 of 0.77). The deep neural
network could better capture the nonlinear relationship between ET and various environmental
variables and achieved the best simulation performance in both of the main urban and suburb sites
(R2 of 0.73 for the main urban and suburb sites, respectively). A correlation analysis showed that
the simulation of urban ET is most sensitive to temperature and least sensitive to wind speed. This
study further analyzed the causes for the varying performance of the three classic ET models from the
model mechanism. The results of the study are of great significance for urban temperature cooling
and sustainable urban development.

Keywords: urban evapotranspiration; Shuttleworth–Wallace; FAO dual-Kc; deep neural network;
urban woodland; two-source evapotranspiration model

1. Introduction

Evapotranspiration (ET) and latent heat flux play an important role in the terres-
trial hydrological cycle and in the balance of energy [1–4]. The estimation of ET and its
components (soil evaporation (E) and vegetation transpiration (T)) is important for an
understanding of the water and energy transport process in the soil–plant–atmosphere
continuum (SPAC) [5–9]. Approximately 55% of the world’s population lives in an urban
region, and this percentage will continue to increase in the future [10]. Urbanization leads
to serious urban heat island (UHI) effects, which significantly threaten human health and
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survival [11]. Mitigating UHI effects is crucial to improve human living environments and
achieve sustainable social development [12]. Chen indicated that ET in urban woodland
areas reduces ambient temperature by absorbing surface heat, which effectively alleviates
the UHI effect [13]. Therefore, an accurate estimation of ET, E, and T in an urban woodland
area is crucial for cooling urban temperature and achieving sustainable urban development.
Despite the important role of ET in the urban thermal environment, there has been little
research on ET in urban woodland area [13,14].

The difficulty in estimating urban ET and its components is mainly due to the following
reasons: (1) The urbanization process has increased the proportion of impervious surfaces
(such as building and traffic areas), resulting in the high heterogeneity of urban underlying
surfaces [15]. (2) Due to building construction and human activities, the urban surface
significantly changes the turbulent diffusion process of the atmosphere. (3) At present,
most of the flux observations of ET and its components are conducted in natural ecosystems
and farmland areas, and there have been relatively few ET observations conducted in urban
areas, especially in urban forest areas [13,14,16]. These reasons make the parameterization
and validation of urban ET relatively difficult and challenging.

Currently, several methods have been developed for ET and its components’ simula-
tion in natural forest land and farmland areas. According to the different model mecha-
nisms, these ET methods can be divided into three categories. The first type of ET model is a
pure physical and process-based model which develops the energy equilibrium mechanism
to partition ET into E and T [17,18]. The energy equilibrium model assumes that the soil
layer and the vegetation layer have mutually independent energy equilibrium processes.
The classic energy equilibrium models include the Shuttleworth–Wallace (S-W) model [19],
the coupled energy equilibrium and water equilibrium model [20], the Norman 1995 (N95)
model [21], and the water droplet evaporation–trajectory (Cupid-DPEVAP) model [22].
The second type of ET model adopts a pure statistical process to partition ET into E and
T [23,24]. According to the architecture mechanism of the different statistics models, these
statistical, process-based ET models can be classified as linear regression-based ET models,
nonlinear regression-based ET models, and machine learning-based ET models [25]. In
recent years, machine learning models have received widespread attention in the simula-
tion and partition of ET with the advancement of big data and computing power [26,27].
The machine learning approach achieves the separation of ET components by establishing
nonlinear relationships between various environmental variables with soil evaporation
and vegetation transpiration. Representative machine learning ET models include neu-
ral network models [28,29], decision tree models [30,31], and support vector regression
models [32]. The third type of dual-source ET model is based on semi-empirical and
physical conceptualization. A classic semi-empirical and physical process-based ET model
is the FAO dual vegetation coefficient (Kc) model [33]. The FAO dual-Kc method uses a
vegetation coefficient to characterize the constraints of vegetation, soil, and meteorological
variables on vegetation transpiration. The soil evaporation in the FAO dual-Kc model is
estimated based on the soil coefficient [34]. Overall, these three classical evapotranspiration
models are widely used for estimating ET and its components across various ecosystems
and agricultural areas.

Previous studies have made significant efforts to compare the performance of al-
ternative two-source ET models across various underlying surfaces. For example, Chen
compared the performance of the N95 model, trapezoidal feature space model, and Penman–
Monteith–Mu (PM-MU) model in ET partition and reported that the trapezoidal feature
space model outperformed other two types of ET models across China FLUXNET sites [35].
Hu evaluated the physics ET model, machine learning ET model, and hybrid physics and
machine learning ET model for ET simulation based on a FLUXNET2015 dataset and sug-
gested that the machine learning ET model provided the most accurate ET simulation across
the global flux sites [36]. Jiang compared the Priestley–Taylor Jet Propulsion Laboratory
(PT-JPL) model, S-W model, and FAO dual-Kc model in ET partition and demonstrated
that the accuracy of the S-W model in the ET simulation was slightly better than the PT-JPL
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model and FAO dual-Kc model in a humid kiwifruit orchard land [37]. Although the
abovementioned studies evaluated the performance of different dual-source ET models,
these studies mainly focused on natural ecosystems and agricultural areas. However, the
performance differences between alternative dual-source ET models in urban areas remain
unclear. This greatly hinders the utilization of ET and its components to alleviate urban
heat island effects, thereby posing a threat to urban sustainable development. On the
other hand, previous studies have mainly used eddy correlation (EC) observation data
to verify the total ET. The verification of ET components is still very scarce due to a lack
of observations of stable isotope-based ET components. Consequently, there has been
insufficient evaluation of the performance of the various two-source ET models related to
ET separation.

To address the research gaps mentioned above, the main objectives of this study are
listed as below: (1) to conduct field measurements based on EC and stable hydrogen and
oxygen isotopes in urban forest areas to achieve long-term dynamic changes of ET and
its components; (2) to apply a pure and physical process-based ET model (S-W model), a
semi-empirical and semi-physical process-based ET model (FAO dual-Kc model), and a
pure statistical process-based ET model (deep neural network) to simulate the daily ET and
its components; (3) to intercompare the performance of the three classic evapotranspiration
models in ET and their components’ estimations based on in situ measurements; (4) to
analyze the causes of the varying performance of the three types of two-source ET models
under different surface conditions from the model mechanism. The ultimate purpose of
this paper is to provide a scientific basis for temperature cooling and for the mitigation
of the urban heat island effect through E and T in urban woodland areas, thus achieving
green and sustainable urban development.

2. Materials and Methods
2.1. Study Area

The present study was conducted in Shenzhen, China. Shenzhen is in the southern
coastal area of mainland China (113◦43′–114◦38′ E and 22◦24′–22◦52′ N). The total area of
Shenzhen is 1998 km2, with an average elevation of 70–120 m. The terrain of the Shenzhen
is higher in the southeast region and lower in the northwest region. The average annual
temperature in Shenzhen is 24 ◦C. The average annual precipitation is approximately
1933 mm, and the average annual relative humidity is 72%. The tropical evergreen monsoon
rainforest and the subtropical monsoon evergreen broad-leaved forest are the dominant
vegetation species across Shenzhen. The fractional vegetation coverage is approximately
45% in built-up areas, and the fractional forest coverage rate is approximately 40% in
Shenzhen. Figure 1 presents the locations of Shenzhen city and two eddy covariance
(EC) stations.

2.2. In Situ Measurements
2.2.1. ET Flux Measurements

The flux data that were collected from the two eddy correlation (EC) stations in
Shenzhen were used for the three types of two-source ET model verifications. The first is
the Yangmeikeng station. The surrounding environment of the Yangmeikeng station mainly
consists of forests and oceans (114◦35′ E, 22◦32′ N). The tower height of the Yangmeikeng
station is 15 m. The Yangmeikeng station belongs to the China Flux Network “http://
www.chinaflux.org/ (accessed on 1 January 2003)”. The second is the Tianxinshan station.
The surrounding environment of the Tianxinshan station mainly consists of forests and
impermeable land (114◦35′ E, 22◦32′ N). The tower height of the Tianxinshan station is
20 m. Both the Yangmeikeng and Tianxinshan stations used open-circuit EC systems to
observe surface water, heat, and CO2 fluxes. The EC150 (Campbell Scientific Inc., Logan,
UT, USA) infrared CO2 and H2O gas analyzers were applied to measure CO2 concentration
and water vapor density, and CSAT3A (Campbell Scientific Inc., Logan, UT, USA) was used
to measure three-dimensional wind speed. Real-time observation data were recorded in the
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data collector CR3000 (Campbell Scientific Inc., Logan, UT, USA). The original observation
frequency of the EC system was 10 Hz, and the calculation frequency of the water vapor
and CO2 flux was every 30 min. The data quality control was further performed on the
calculated half-hour ET flux data [38,39]. A bicoordinate rotation was used to correct
the flux data for humidity, high frequency, and low frequency spectroscopy. In addition,
negative values of ET that were observed at nighttime, as well as abnormal ET values
(e.g., −9999), were excluded from the in situ ET dataset. The turbulence similarity test
and turbulence development adequacy test were implemented to the calculated half-hour
ET flux data. Further, a gap-filling technique was adopted to the missed ET flux data to
generate a continuous time series of the observed ET. Finally, the daily ET was obtained
by accumulating the ET flux data of the 48 thirty-minute intervals. The ET data measured
during the whole year of 2020 were used in the analysis of the three types of two-source
ET models.
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2.2.2. Stable Isotope Observation

The vegetation, soil, and atmosphere were sampled and analyzed at the two EC sta-
tions. The sampling frequency for the vegetation, soil, and atmospheric isotope samples
were once every 5–15 days. Five healthy growing trees were selected around the two sites
and the stems, branches, and leaves were collected. The soil was sampled from a natural
soil surface (5 cm depth), and five duplicate soil samples were collected. The atmospheric
samples around the two stations were collected at different heights (ground surface, canopy
height, and boundary layer height). Finally, the hydrogen and oxygen isotope compositions
of the vegetation, soil, and air samples were analyzed using a hydrogen and oxygen isotope
analyzer (Licor, TIWA-912). Three isotope end-members included the isotopic composition
of vegetation, soil, and atmosphere samples, which were estimated using stable isotope as-



Sustainability 2023, 15, 9826 5 of 18

sumptions [40], C-G models [13], and Keeling plot curves [41], respectively. The vegetation
transpiration fraction (T/ET) was estimated using isotope mass conservation theory.

2.2.3. Environmental Variables Observations

The in situ observations of various meteorological factors were conducted at the
Yangmeikeng and Tianxinshan stations. Long-term meteorological data were recorded at
the two stations, including information relating to air temperature (Ta), wind speed (u),
radiation (Ra), rainfall and relative humidity (RH). The original observation frequency of
the various meteorological elements was 30 min. The half-hour meteorological factors were
further averaged to obtain the daily meteorological value. The daily surface soil water
content (SWC) and leaf area index (LAI) were obtained around the two study sites using
the ERA-5 land reanalysis dataset [42].

2.3. Shuttleworth–Wallace Model

The Shuttleworth–Wallace (S-W) model is a pure and physical process-based ET model
which assumes that the total evapotranspiration includes evapotranspiration from the soil
surface and vegetation canopy [19]. The S-W model also considers the coupling effect
of water vapor and energy between the soil and vegetation layers. The mathematical
expressions of the S-W model are given as follows:

ET = CcT + CsE (1)

Rns = Rn exp(−CLAI) (2)

Rnv = Rn − Rns (3)

ETs =
∆Rn +

ρcpVPD−∆racRns
raa+rac

∆ + γ(1 + rsc
raa+rac

)
(4)

ETc =
∆Rn +

ρcpVPD−∆rasRnv
raa+ras

∆ + γ(1 + rss
raa+ras

)
(5)

E =
∆Rns +

ρcpVPD
ras

∆ + γ(1 + rss
ras
)

(6)

T =
∆Rnv +

ρcpVPD
rac

∆ + γ(1 + rsc
rac
)

(7)

where ET is the ET simulated using the S-W model (MJ/(m2·d)); E represents the soil
evaporation simulated using the S-W model (MJ/(m2·d)); T represents the vegetation
transpiration simulated using the S-W model (MJ/(m2·d)); ETc represents the ET under
closure canopy conditions (MJ/(m2·d)); ETs represents the ET under bare soil conditions
(MJ/(m2·d)); C represents the extinction coefficient; Cc represents the proportional coeffi-
cient corresponding to ETc; Cs represents the proportional coefficient corresponding to ETs.
Cc and Cs are determined using Equations (8) and (9). Rs, Rc, and Rb represent intermediate
variables, which were estimated using Equations (10)–(12); rsc represents the canopy resis-
tance (m/s); rac and ras represent the resistance of the canopy and soil boundary layer (m/s),
respectively; raa represents the aerodynamic resistance (m/s); rss represents the surface
resistance (m/s). The calculations of the several resistance parameters refer to Shuttleworth
and Wallace [19]. Rns represents the net radiation flux of the soil surface (MJ/(m2·d)) and
Rnv represents the net radiation flux of the vegetation canopy (MJ/(m2·d)).
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Cc =
1

1 + RcRb
Rs(Rc+Rb)

(8)

Cs =
1

1 + RsRb
Rc(Rs+Rb)

(9)

Ra = (∆ + γ)raa (10)

Rs = (∆ + γ)ras + γrss (11)

Rc = (∆ + γ)rac + γrsc (12)

2.4. FAO Dual-Kc Model

The FAO dual-Kc method is a semi-empirical and semi-physical process-based ET
approach which can distinguish between E and T [43,44]. The FAO dual-Kc method can also
evaluate the effects of rainfall, irrigation, and mulching on soil moisture. The FAO dual-Kc
method divides the evaporation coefficient (Kc) into two parts: the vegetation canopy
coefficient (Kcb) and the soil surface coefficient (Ke). The vegetation canopy coefficient
(Kcb) is used to describe the constraints of various environmental variables on vegetation
transpiration. The soil surface coefficient (Ke), which reflects the impact of short-term
increases in soil evaporation intensity caused by surface soil wetting after precipitation or
irrigation events, is used to estimate soil evaporation. The specific computation of the FAO
dual-Kc model is shown as follows:

ET = KcbET0 + KeET0 (13)

where ET0 represents the reference vegetation transpiration, calculated using the Penman
formula [45]. When the soil surface is dry, less water can be used to evaporate; therefore,
the intensity of evaporation is also small.

Ke = KrKcamx − KrKcb ≤ feKcmax (14)

where Kr represents the coefficient of the evaporation reduction in surface soil evaporation
(unitless); Kcmax represents the maximum Kc; fe represents the percentage of soil surface
that evaporates in the total soil area (%). When there is no available evaporated water on
the soil surface, Ke is the smallest and could be equal to 0. When the soil surface is fully
moist, Kr is equal to 1. When the soil surface is fully dry, Kr is equal to 0. The calculation
formula for Kcmax is shown as follows:

Kcmax = max
({

1.2 +
[
0.04(u− 2)− 0.04(RH − 45) ∗ 50.03

]}
, {Kcb + 0.05}

)
(15)

Figure 2 presents a schematic diagram of the structure of three types of dual-source
ET models.
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2.5. Deep Neural Networks

The deep neural network (DNN) is one of the most influential neural network struc-
tures in deep learning [46,47]. DNN has good processing ability for complex and highly
nonlinear problems and can learn a large number of mapping relationships between inputs
and outputs. DNN is a mathematical model that imitates the structure of the intercon-
nected neurons of the human brain, including the input layer, hidden layer, and output
layer. Each layer in the DNN contains a number of artificial neurons, and the neurons
between the different layers are randomly connected. The DNN can simulate nonlinear
feature relationships, maximize the mining of target information from limited data, and
can be used in the estimation of ET. The strong nonlinear learning ability of DNN makes
it very suitable for simulating urban ET due to the complex turbulent exchange process
in urban areas. The parameter tuning process of deep neural networks includes forward
propagation and backward propagation processes to optimize the performance of the
model. For the DNN operation, we first normalized the mean and standard deviation of all
input variables to accelerate the training speed. Then, the various hyperparameters of the
DNN architecture were adjusted, including increasing or decreasing the number of hidden
layers and the number of neurons in each layer. The different activation functions were
used to optimize the performance of the deep neural network. A series of optimization
strategies were adopted to improve the model’s training efficiency and accuracy, such as
the random gradient descent method, batch normalization, and learning rate adjustments.
Subsequently, a six-layer deep neural network model that can accurately estimate the ET of
two urban EC sites was produced. The model structure includes an input layer, four hidden
layers (32 neurons per layer), and an output layer (including one neuron that generates
target estimates). In the neural network, the linear rectification function ReLu was used
as the activation function, and the early stop method was used to avoid an overfitting
problem in the training process. In this study, the training input dataset for the DNN model
includes various meteorological, vegetation, and soil variables, including Ta, Ra, u, RH,
SWC, and LAI. The training objective of the DNN model measured the T/ET using the
stable hydrogen and oxygen isotope method.

2.6. Model Operation and Evaluation

Two of the three classic evapotranspiration models were simulated and validated on a
daily scale. The different input datasets and observed ET were randomly mixed based on
different observation times and sites. For the Shuttleworth–Wallace model and the FAO
dual-kc model, 75% of the dataset was used for model calibration, and the remaining 25%
was used for model validation. To ensure fairness in the model comparison, 75% of the
dataset was used for DNN model training, and the remaining 25% was used for DNN
model validation. TensorFlow in Python 3.11 was used to implement DNN model training
and validation. In addition, four statistical parameters were used to evaluate the three
types of the two-source models’ performance, including root mean square error (RMSE),
determination coefficient (R2), bias, and mean absolute percentage error (MAPE).

3. Results and Analysis
3.1. Meteorological and Flux Footprint Variations over the Two Stations

As shown in Figure 3, the observed ET and various environmental variables (Tamax,
LAI, u, RH, and ET) exhibited significant differences between the two EC stations. For both
EC stations, Ta, LAI, and ET reached their maximum values in September and October and
their minimum values in March and April. The average Ta, LAI, and ET values in September
and October were 26.3 ◦C and 25.7 ◦C, 6.37 m2/m2 and 5.38 m2/m2, and 3.78 mm/day and
3.29 mm/day for the Yangmeikeng and Tianxinshan stations, respectively. The average Ta,
LAI, and ET values in March and April were only 19.7 ◦C and 19.8 ◦C, 4.13 m2/m2 and
3.26 m2/m2, and 1.95 mm/day and 1.76 mm/day for the Yangmeikeng and Tianxinshan
stations, respectively. Moreover, the LAI, u, and ET values recorded by the Yangmeikeng
station were higher than that of the Tianxinshan station, while Ta at the Yangmeikeng station
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was slightly lower than for the Tianxinshan station. The Tianxinshan station recorded a
higher level of Ta because the it is the main urban area while the Yangmeikeng station is in
a suburban coastal area. The lower in situ ET in the Tianxinshan station could be attributed
to the lower vegetation coverage and LAI compared to the Yangmeikeng station.
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Figure 3. (a,b) Time series of wind speed and wind direction around the two EC stations in the year
2020; (c–f) Time series of normalized in situ daily LAI, Ta, RH, and ET around the two EC stations in
2020 (YMK represents the Yangmeikeng station; TXS represents the Tianxinshan station).

Due to the presence of buildings and transportation areas, it is necessary to conduct a
footprint analysis of the flux sources for the urban EC observations. This can effectively
improve the spatial matching between the measured ET and simulated ET. Figure 4 shows
the distribution of flux footprint contours for the two stations during the selected two test
days. According to Figure 4, 90% of the flux footprint contours varied widely across the
different test days, depending on the wind direction and wind speed (the distribution of
wind speed for the two EC sites can be found in Figure 3). In addition, the flux footprints of
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the two stations exhibited a regular elliptical spatial pattern and presented an exponential
growth in footprint contour from 60% to 90%. The land cover at the Yangmeikeng station is
mainly composed of forests and bare soil, particularly for 90% of the contours throughout
the experiment year. During the spring, summer, and autumn seasons, the land cover at
the Tianxinshan station consisted primarily of forests and bare soil. However, in the winter
season, a significant proportion of impermeable areas and water bodies was observed
within the 90% contours. The larger proportion of impermeable areas within 90% of
the contours in the Tianxinshan station explained its lower in situ ET compared to the
Yangmeikeng station.
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3.2. Performance Evaluation of Three Classic Evapotranspiration Models

The scatter verification plot of the in situ ET and simulated ET using the three classic
evapotranspiration models is shown in Figure 5. Figure 6 presents the temporal series of
in situ ET and simulated ET over the two EC stations. The specific statistical parameters
for the three models can be found in Table 1. Generally, the deep neural network, which
represents the pure statistically based ET approach, could better capture the dynamics
of urban ET and achieved the best simulation results over the two EC stations. The R2

was 0.73, RMSE was 0.74 mm/day, bias was 0.26 mm/day, and MAPE was 4.66% for the
DNN model over the two EC stations. The DNN model underestimated ET under higher
LAI conditions (e.g., LAI > 4.9 m2/m2) but overestimated ET under lower LAI conditions
(e.g., LAI < 4.0 m2/m2). The S-W model, which represented the pure and physical process-
based ET approach, ranked second over the two EC stations. The R2 was 0.71, RMSE was
0.75 mm/day, bias was 0.27 mm/day, and MAPE was 4.93% for the S-W model over the
two EC stations. Unlike with DNN model, the S-W model overestimated ET under higher
LAI conditions (e.g., LAI > 4.9 m2/m2) but underestimated ET under lower LAI conditions
(e.g., LAI < 4.2 m2/m2). Unfortunately, the FAO dual-Kc model, which represents the
semi-empirical and semi-physical process-based ET approach, performed the worst among
the three models. The R2 was 0.69, RMSE was 0.81 mm/day, bias was 0.29 mm/day, and
MAPE was 5.71% for the FAO dual-Kc model over the two EC stations. The FAO dual-Kc
model overestimated ET in both higher and lower LAI conditions.
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Wallace model, respectively).
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Table 1. Statistics of ET simulation performance using three types of dual-source models at two
EC stations (the statistics represent the model performance during the verification period (25%
verification dataset)).

Total Yangmeikeng Station Tianxinshan Station
DNN FAO-Dual Kc S-W DNN FAO-Dual Kc S-W DNN FAO-Dual Kc S-W

R2 0.73 0.69 0.71 0.74 0.77 0.74 0.7 0.68 0.75
RMSE (mm/day) 0.74 0.81 0.75 0.72 0.66 0.73 0.76 0.82 0.59

MAPE (%) 4.66 5.71 4.93 4.17 3.66 4.23 5.08 7.21 4.06
bias (mm/day) 0.26 0.29 0.27 0.24 0.22 0.25 0.27 0.31 0.23

Nevertheless, it is interesting to see that the FAO dual-Kc model performed best in
the ET simulation for the suburb site (Yangmeikeng site). The R2 was 0.77, RMSE was
0.66 mm/day, bias was 0.22 mm/day, and MAPE was 3.66% for the FAO dual-Kc model
at the Yangmeikeng station. The accuracy of the S-W and DNN models in ET estimation
was similar at the Yangmeikeng station (R2 was 0.74 for the S-W and DNN models at the
Yangmeikeng station). Moreover, the S-W model performed best in the ET simulation at
the main urban site (Tianxinshan site). The R2 was 0.75, RMSE was 0.59 mm/day, bias was
0.23 mm/day, and MAPE was 4.06% for the S-W model at the Tianxinshan station. The
FAO dual-Kc model produced the result with the lowest accuracy in the ET simulation for
the main urban area. The R2 was 0.68, RMSE was 0.82 mm/day, bias was 0.31 mm/day,
and MAPE was 7.21% for the FAO dual-Kc model at the Tianxinshan station. Overall,
although the DNN model had the strongest ability during the urban evapotranspiration
simulations, the three classic evapotranspiration models exhibited varying degrees of
model performance under different urban underlying surface types.

The accuracy of the results from the T/ET simulation produced by the three classic
evapotranspiration models was further verified using the stable water isotope-based T/ET
measurements. The distributions of four statistical parameters for the T/ET simulation
using three classic evapotranspiration models at the two EC stations is shown in Figure 7.
Generally, the three classic evapotranspiration models exhibited a similar accuracy order in
the T/ET simulation, which was also consistent with the ET simulation across the two sites.
Specifically, the DNN model performed best among the three classic evapotranspiration
models for the T/ET simulation, with an RMSE of 0.17 and MAPE of 3.46% (see Figure 7
and Table 2). Moreover, the performance of the S-W model was slightly better than the FAO
dual-Kc model, which ranked second among the three models (RMSE of 0.19 and MAPE of
4.45% for the T/ET simulation). Similar with the ET simulation, the FAO dual-Kc model
still provided the worst model performance for the T/ET simulation, with an RMSE of 0.25
and MAPE of 4.94% (see Figure 7 and Table 2).

An intercomparison of the three models’ performance in the T/ET simulation at the
Yangmeikeng and Tianxinshan stations also exhibited a large difference. The FAO dual-Kc
model performed best in the T/ET simulation for the suburb site (Yangmeikeng station),
followed by the S-W model and then the DNN model. However, the S-W model performed
best in the T/ET simulation at the main urban site (Tianxinshan station), followed by the
DNN model and finally the FAO dual-Kc model. The specific statistical parameters of the
three models for the T/ET simulations can be found in Table 2.

Table 2. Statistics of T/ET simulation performance using three types of dual-source models at two
EC stations (the statistics represent the models’ performance during the verification period (25%
verification dataset)).

Total Yangmeikeng Station Tianxinshan Station
DNN FAO-Dual Kc S-W DNN FAO-Dual Kc S-W DNN FAO-Dual Kc S-W

R2 0.81 0.75 0.78 0.83 0.87 0.84 0.77 0.66 0.78
RMSE 0.17 0.25 0.19 0.16 0.09 0.14 0.23 0.28 0.18

MAPE (%) 3.46 4.94 4.44 3.36 3.17 3.22 4.51 6.12 3.72
bias 0.1 0.15 0.12 0.09 0.05 0.07 0.13 0.19 0.11
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Figure 7. Distributions of four statistical parameters for T/ET simulation using three classic evapo-
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3.3. Sensitivity of Three Types of Two-Source ET Models to Input Variables

The standard deviation perturbations of 10% to 90% in the steps of 10% were applied
to the different input variables of the three types of dual-source ET models. The average
R2 between the predicted ET with the input variables’ disturbance and the predicted ET
without input variables’ disturbance were determined. Figure 8 shows the sensitivity of
the three types of dual-source ET models to different input variables. For the DNN model,
the Ta and Ra were the most important environmental variables in estimating urban ET,
with an average R2 of 0.947 and 0.951 for Ta and Ra, respectively. The RH (0.962), LAI
(0.984), SWC (0.985), and u (0.993) exhibited the lowest sensitivity in the DNN model in
the simulated ET. For the FAO dual-Kc model, the LAI and Ta were the most important
environmental variables in estimating urban ET (average R2 of 0.961 and 0.956 for LAI and
Ta, respectively), while u (0.988) was the least sensitive environmental variable in the FAO
dual-Kc model. For the S-W model, the Ta and RH were the most important environmental
factors in estimating urban ET (average R2 of 0.944 and 0.947 for Ta and RH, respectively),
while u (0.991) was the least sensitive environmental factor in the S-W model. Overall, Ta
was the most important factor in estimating urban ET, while u had the smallest contribution
to the urban ET estimation among the three types of two-source ET models (R2 = 0.99~1.00).
This indicated that the subsequent research could exclude u from the input dataset in the
urban ET simulation, which can simplify the model framework.
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4. Discussion
4.1. Characteristics of Three Types of Two-Source ET Models

Due to the heterogeneity of the turbulence conditions and the complexity of underly-
ing surfaces in urban areas, it is relatively difficult to simulate urban ET and its components
compared with a natural ecosystem and farmland areas [13,14]. The above validation re-
sults indicated that the DNN performed best at the two urban EC stations. The advantages
of the DNN could be attributed to the following aspects. Firstly, DNN has the strongest
nonlinear fitting ability due to the use of multiple hidden layers. This characteristic of the
DNN model ensures that it can better learn the nonlinear relationship between various
input variables and the target variable [46,47]. Secondly, the DNN model can effectively
integrate various meteorological, soil, and vegetation variables into the input dataset. Pino-
Vargas successfully predicted potential ET based on the Feedforward Neural Network
(FNN) method and various meteorological factors over an arid land [48]. Therefore, the
simulated ET and its components are subject to the combined constraints of various envi-
ronmental variables. Thirdly, the DNN model does not require a determination of empirical
parameters or physics assumptions. Consequently, uncertainties and errors caused by the
empirical parameters and physics assumptions are significantly reduced. However, the
uncertainty of the DNN model mainly stems from its conceptualization. For example, the
data-driven model requires a large amount of the dataset to be input [49]. In this study,
we trained and validated the DNN model using observation data from two EC sites in
2020. As a result, a total of 732 daily samples were used for DNN model training and
validation. The relatively small sample size significantly increased the error of the DNN
model. In addition, the overfitting problem of the DNN model has not been effectively
solved. During the model training process, the early stop method was applied to avoid an
overfitting problem. However, we still found the occurrence of the overfitting phenomenon
during the model verification period, which indicated that the overfitting problem was
existent in the model’s operation. Finally, the DNN model has a significant error for ET and
its components’ predictions under extreme events because it is unconstrained by physics
mechanisms. It was found that the DNN model failed in capturing the ET variation in
weather that included extreme drought and extreme high temperatures. This is because
the prediction of ET using DNN is based on a pure data fitting mechanism that is not
constrained by a surface energy balancing process.

The accuracy of the Shuttleworth–Wallace model in the urban ET estimation was
slightly inferior to the DNN model. A significant advantage of the Shuttleworth–Wallace
model is that it has a detailed physics process description [13,19]. Therefore, the accu-
racy of the Shuttleworth–Wallace model was significantly higher than the DNN model
under extreme ET scenarios (e.g., extreme drought or high temperature). The above re-
sults also proved that the Shuttleworth–Wallace model provided the highest accuracy in
the EC site located in the main urban area (Tianxinshan station). Due to the UHI effect
and human activities, the frequency of extreme high temperatures and droughts in the
main urban areas is much higher than in the suburban areas, which explained the high
accuracy of the Shuttleworth–Wallace model in main urban area. The second advantage
of the Shuttleworth–Wallace model is that it considers the coupling effect of vapor and
energy exchanges between the soil surface and vegetation canopy. This characteristic of the
Shuttleworth–Wallace model means that it has the ability to finely depict the water and energy
transfer processes in urban areas compared to the FAO dual-Kc model. Nevertheless, the uncer-
tainty of the Shuttleworth–Wallace model cannot be ignored. The first uncertainty regarding
the Shuttleworth–Wallace model lies in the determination of the several impedance variables
in the model’s framework. Chen suggested that an inaccurate estimation of impedance
variables could lead to significant errors in the Shuttleworth–Wallace model, which occupy
more than 70% of the model’s uncertainty [13]. However, the determinations of impedance
variables require complex thermodynamic and kinetic rough length estimations, which
significantly increase the uncertainty of the Shuttleworth–Wallace model. In addition, the
determinations of some empirical parameters can also increase the model’s uncertainty. For
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example, the use of the Jarvis model to estimate vegetation stomatal impedance involved
many empirical parameters [50]. The second uncertainty of the Shuttleworth–Wallace
model is that it ignores the influence of artificial heat flux on the energy equilibration for
urban areas. The Shuttleworth–Wallace model essentially adopts the energy equilibration
theory of soil and vegetation layers to estimate E and T. However, when applying the
Shuttleworth–Wallace model in urban areas, the anthropogenic heat flux generated by
human respiratory, automotive, and industrial emissions also contributes to the surface
energy equilibration, which is ignored by the Shuttleworth–Wallace model. The neglect
of the artificial heat flux leads to an underestimation of ET in the Shuttleworth–Wallace
model under lower LAI conditions.

The performance of the FAO dual-Kc model was worst among the three types of
two-source ET models for urban ET simulation. The advantage of the FAO dual-Kc model
is that it requires minimal input variable numbers. Moreover, the FAO dual-Kc model is the
easiest to operate among the three classic evapotranspiration models. However, the greatest
uncertainty regarding the FAO dual-Kc model comes from its estimation of the vegetation
coefficient (Kcb) and soil coefficient (Ke). For the present study, the two coefficients (Kcb and
Ke) were set based on the recommendations from the model’s developer [33]. However,
previous studies have also shown that Kcb and Ke varied with different meteorological
conditions, soil type, and vegetation growth stage [44]. Therefore, simply setting Kcb and
Ke as constants significantly increases the uncertainty of the FAO dual-Kc model. To this
end, future research could combine the DNN model with various vegetation, soil, and
meteorological variables to predict the dynamic changes of Kcb and Ke under different
seasons, possibly improving the performance of the FAO dual-Kc model.

4.2. Selection of Three Classic Evapotranspiration Models

The selection of three classic evapotranspiration models in the urban forest ET simula-
tion is based on the type and quantity of the input datasets available. Firstly, when there is a
large number and multiple types of meteorological, soil, and vegetation datasets available,
it is recommended to apply the DNN model to simulate urban ET and its components. This
is because the accuracy of the DNN model will improve as the number of input datasets
increases. However, it should be noted that significant ET errors will occur when using the
DNN model for an urban ET simulation during extreme climate events. Secondly, when
there are multiple types of meteorological, soil, and vegetation datasets available but the
number of observation data is relatively smaller, the S-W model is recommended to simu-
late urban ET and its components. This is because the S-W model is relatively insensitive to
the number of input datasets and is more sensitive to the types of input variables. Thirdly,
when there are fewer types of input variables available, it is recommended to apply the
FAO dual-Kc model to simulate urban ET and its components. As mentioned earlier, the
FAO dual-Kc model requires the least variety of input variables and is easy to operate.
Therefore, the FAO dual-Kc model is very suitable for some developing countries that lack
extensive field observations.

4.3. Uncertainty in the Model Comparison Analysis

The uncertainty of model comparison analysis mainly comes from errors in the in-
put datasets. For example, the eddy correlation method can lead to significant errors in
conditions where the atmosphere turbulent exchange is weak. In addition, there is also
significant uncertainty in the observed ET flux when using the eddy correlation method due
to the heterogeneity of flux sources/sinks in urban surfaces. On the other hand, significant
errors in T/ET observations based on the stable hydrogen and oxygen isotopes cannot be
ignored. When estimating vegetation and soil isotope compositions, we only selected five
representative vegetation and soil samples at two sites. There is also significant uncertainty
when using steady-state isotope assumptions and Keeling plot curve methods to estimate
vegetation and atmospheric isotope compositions [40,41]. Similar errors also existed in the
ERA-5-based SWC and LAI observations [42]. These errors in in situ ET, T/ET, and model
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input variables will accumulate in the validations and evaluations of the three types of
two-source models, thus leading to unreliable model comparison results. Therefore, future
research is expected to use multiple input datasets to evaluate the performance of three
classic evapotranspiration models, which will yield more reliable model evaluation results.

5. Conclusions

This study compared the performance of three classic evapotranspiration models in
urban forest areas. The three classic evapotranspiration models include the S-W model
(representing a pure and physical process-based ET model), FAO dual-Kc model (represent-
ing a semi-empirical and semi-physical process-based ET model), and deep neural network
(represent a pure statistical process-based ET model). The field observations based on EC
and stable hydrogen and oxygen isotopes were conducted at two EC stations in Shenzhen,
a coastal city in southern China. The observed ET and T/ET were used to evaluate the
performance of the three classic evapotranspiration models and the characteristics of dif-
ferent evapotranspiration models were revealed. The main conclusions of this study are
summarized as follows:

(1) The flux footprint observed using the urban EC towers varied widely across different
test days. Therefore, the simulation of urban ET should consider the impact of flux
footprint on the measured ET. In addition, due to the higher LAI, the observed ET of
the Yangmeikeng site was higher than that of the Tianxinshan site;

(2) For the simulation of urban ET and T/ET at both main urban and suburban EC
stations, the DNN model performed best, followed by the S-W model, and the FAO
dual-Kc model. For the ET simulation, the R2 and RMSE were 0.73 and 0.74 mm/day,
0.71 and 0.75 mm/day, and 0.69 and 0.81 mm/day for the DNN, S-W, and FAO
dual-Kc models, respectively. For the T/ET simulation, the R2 and RMSE were
0.81 and 0.17, 0.78 and 0.19, and 0.75 and 0.25 for the DNN, S-W, and FAO dual-Kc
models, respectively;

(3) For the three classic evapotranspiration models, Ta was the most important input
variable and was extremely sensitive to the simulated urban ET. On the contrary, u
was the least sensitive to simulating ET; hence, the u can be excluded from the input
dataset in subsequent urban ET studies;

(4) The error of the DNN model mainly comes from the simulation of extreme ET. The
error of the S-W model lies in the determination of impedance parameters, and the
uncertainty of the FAO dual-Kc model is the determination of vegetation coefficients;

(5) When there is a large number and multiple types of meteorological, soil, and vegeta-
tion datasets available, the DNN model is recommended. When there are multiple
types of meteorological, soil, and vegetation datasets available but the number of
observation data is relatively smaller, the S-W model is recommended. When there
are fewer types of input variables available, the FAO dual-Kc model is recommended
to simulate urban ET and its components.

Author Contributions: H.C.: Model development, Writing—original draft, Writing—review and
editing; Z.Z.: Data curation, Formal analysis, Validation, Visualization, Software; H.L. (Han Li): Data
curation; Y.W.: Conceptualization, Formal analysis; J.H.: Conceptualization, Methodology, Funding
acquisition, Supervision, Writing—review and editing; H.L. (Hong Liang): Data curation; W.W.: Data
curation. All authors have read and agreed to the published version of the manuscript.

Funding: The authors acknowledge the financial support from the National Key Research and
Development Program under the grant number No.-2022YFF1301101, Shenzhen Ecological and
Environmental Monitoring Center Station Program under the grant number 20230601, Guang-
dong Province Shenzhen Science and Technology Innovation Project under the grant number
JCYJ20210324120807021, National Natural Science Foundation of China under the grant number
42101033, National Key R&D Program of China under the grant number 2021YFC3200400 and China
Postdoctoral Science Foundation under the grant number 2021M691672.

Institutional Review Board Statement: This study does not involve humans or animals.



Sustainability 2023, 15, 9826 17 of 18

Informed Consent Statement: This study does not involve humans.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author. The data are not publicly available due to Institutional Confidentiality Policy.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Bosch, J.M.; Hewlett, J.D. A review of catchment experiments to determine the effect of vegetation changes on water yield and

evapotranspiration. J. Hydrol. 1982, 55, 3–23. [CrossRef]
2. Shukla, J.; Mintz, Y. Influence of land-surface evapotranspiration on the earth’s climate. Science 1982, 215, 1498–1501. [CrossRef]

[PubMed]
3. Küçüktopcu, E.; Cemek, E.; Cemek, B.; Simsek, H. Hybrid Statistical and Machine Learning Methods for Daily Evapotranspiration

Modeling. Sustainability 2023, 15, 5689. [CrossRef]
4. Sheng, H.P.; Fadzil, L.M.; Manickam, S.; Al-Shareeda, M.A. Vector Autoregression Model-Based Forecasting of Reference

Evapotranspiration in Malaysia. Sustainability 2023, 15, 3675.
5. Sutanto, S.J.; Wenninger, J.; Coendersgerrits, A.; Uhlenbrook, S. Partitioning of evaporation into transpiration, soil evaporation

and interception: A combination of hydrometric measurements and stable isotope analyses. Hydrol. Earth Syst. Sci. Discuss. 2012,
9, 3657–3690.

6. Qiu, G.Y.; Li, C.; Yan, C. Characteristics of soil evaporation, plant transpiration and water budget of Nitraria dune in the arid
Northwest China. Agric. For. Meteorol. 2015, 203, 107–117. [CrossRef]

7. Hussain, S.; Mubeen, M.; Nasim, W.; Fahad, S.; Ali, M.; Ehsan, M.A.; Raza, A. Investigation of Irrigation Water Requirement and
Evapotranspiration for Water Resource Management in Southern Punjab, Pakistan. Sustainability 2023, 15, 1768. [CrossRef]

8. Rai, P.; Kumar, P.; Al-Ansari, N.; Malik, A. Evaluation of Machine Learning versus Empirical Models for Monthly Reference
Evapotranspiration Estimation in Uttar Pradesh and Uttarakhand States, India. Sustainability 2022, 14, 5771. [CrossRef]
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