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Abstract: Fluctuant irradiance conditions constitute a challenge in front of a proper battery charging
process, when originated from a PhotoVoltaic Array (PVA). The behavior of the PVA under such
conditions (i.e., reflected by a disturbed PV characteristic curve) increases the complexity of the
total available power’s extraction process. This inconvenient fact yields eventually to a decreased
overall efficiency of PV systems, especially with the presence of imprecise power-electronics involved
circuits. Accordingly, the purpose of this paper is to design a complete battery solar charger, with
Maximum Power Point Tracking ability, emerged from a PVA of 1.918 kWp, arranged in Series-
Parallel topology. The targeted battery is of Lithium-Ion (Li-I) type, with 24 VDC operating voltage
and 150 Ah rated current. The design began by configuring an interleaved synchronous DC-DC
converter to produce a desired voltage level, with low inductor ripple current and low output ripple
voltage. The DC-DC converter is in turns condemned by a modified Perturb and Observe (P&O)
algorithm, to ensure efficient maximum power tracking. Progressively, the design encountered a
layout of the bi-directional DC-DC converter to ensure safe current charging values for the battery.
Under the same manner, the role of the bi-directional converter was to plug the battery out of the
system, in case when the Depth of Discharge (DoD) is below 25%, thus sustaining the life span of
the battery. The entire setup of the proposed sub-systems then leads to the relatively fastest, safest,
and most reliable battery charging process. Results show an effectiveness (in terms of PV power
tracking) ranging from 87% to 100% under four swiftly changing irradiance conditions. Moreover,
this paper suggested the design’s future industrialization process, leading to an effective PV solar
charger prototype.

Keywords: MPPT; DC-DC converter; perturb and observe algorithm; shading; irradiance; control

1. Introduction

The massive growth of PhotoVoltaic (PV) systems’ installations is globally witnessed,
where their utilization is evident across various applications [1–3]. Among different forms
of renewable energy supplies, the PV systems are mainly popularized to be adapted as
resilient electrical power provisions, due to their silent performance, static architecture,
non-detrimental nature, and for the abundancy of solar irradiance [4,5]. The improved
maintenance techniques for PV systems [6–19], and the amelioration of the PV cells’ raw
materials [20–27], have yielded in an elevated overall efficiency, hence approbated their
approval to be considered as next-generation electrical power providers. For example, in
order to remove the toxic air pollutants (CO2, greenhouse gas emissions, etc.) resulting from

Sustainability 2023, 15, 9839. https://doi.org/10.3390/su15129839 https://www.mdpi.com/journal/sustainability

https://doi.org/10.3390/su15129839
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com
https://orcid.org/0000-0003-4667-9664
https://orcid.org/0000-0002-9101-9238
https://orcid.org/0000-0001-6140-7371
https://orcid.org/0000-0002-9760-9757
https://orcid.org/0000-0002-3735-3331
https://doi.org/10.3390/su15129839
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com/article/10.3390/su15129839?type=check_update&version=1


Sustainability 2023, 15, 9839 2 of 31

the excessive burning of oil, gas and diesel for energy generation purposes, PV systems can
well contribute, heading relatively towards a carbonless future [28–36].

Having various forms and structural designs, off-grid PV systems are receiving the
highest interest [37–41], as they present an elevated flexibility in front of low solar irradiance
scenarios, as well as possessing the ability to supply loads during nights. In terms of
reliability, off-grid PV systems can fit in commercial, industrial, and residential power
systems [42,43], hence having a greater applicability in different fields of application.
Nevertheless, such systems lower electricity bills and consist of a backup power supply for
grid failures/blackouts by:

• Reducing the need for diesel and fuel to generate electricity
• Decreasing the urge for the continuous generators’ maintenance and monitoring

routines
• Making less technical labor routines

However, these systems rely mainly on Energy Storage Systems (ESS) [44–51]. The
excess energy generated by the PV panels (i.e., during peak sunlight) is stored by a battery
bank, for example. The continuous power supply demanded by critical loads can be hence
ensured by the utilization of that stored energy. In terms of energy usage optimization, the
ESS also contribute to load balancing and equity. Moreover, since grid outages/malfunction
generally occur in electrical systems, the ESS feature in off-grid PV systems provide ac-
cordingly a backup supply, thus relatively smoothing out the fluctuations between the
energy supply and demand. This reliance on ESS on the other hand, provokes consecutive
problems, thus arising the need for:

• Maximum solar power extractor to benefit from the total available power
• Power conditioning units for a safe voltage/current equalization
• Monitoring systems to continuously check the charging states, battery’s feeding volt-

age, charging current, etc.

Accordingly, DC-DC converters (i.e., solid-state switch-controlled electronic hardware
that are used to either boost or buck the desired output voltage, according to the feeding
input levels) are designed to be controlled by Maximum Power Point Tracking (MPPT)
algorithms [52–57] to compensate the highly non-linear behavior of the PV cells [58–62],
thus extracting the maximum available power from the PV arrays. Classified as isolated and
non-isolated layouts [63–72], the overall efficiency of such converters and performance are
related to their designs’ complexity. For instance, non-isolated DC-DC converters showed
better efficiency versus isolated ones, but still exhibit erroneous behaviors such as power
loss and rippled currents. Generally, and according to the work conducted in [63–72], it
can be concluded that isolated DC-DC converters offer higher efficiency when compared to
non-isolated converters due to the reduced power losses, while ensuring galvanic isolation,
thus offering an improved electrical safety (i.e., against ground loops, etc.). Due to their
isolation barrier, isolated DC-DC converters exhibit low ripple current, hence reducing
the electromagnetic interference noise. On the other hand, however, isolated DC-DC
converters are more complex in their designs, with larger sizes and heavier weights due to
the presence of the isolation transformers. From another side, and after an investigation of
the work in [63–72], it can be deducted that non-isolated DC-DC converters require fewer
components for their realization and are more suitable for space-constrained applications
when compared to isolated converters. Despite these advantages, the non-isolated DC-DC
converters are less efficient when compared to the isolated converters and are prone to
exhibit high-frequency harmonic oscillations. With that being said, the choice of a DC-
DC converter for off-grid PV systems is a challenging task, which needs consideration
according to many operational factors.

The MPPT algorithms on the other hand (i.e., composing the software which produces
case-dedicated duty values, that in turn control the behavior of the solid-state switches in
the DC-DC converters), are characterized for operation under uniform irradiance [73–82]
or under partial shading conditions [83–99]. Such algorithms fluctuate in their complexity
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levels and accuracy, ranging from simple (i.e., Perturb and Observe (P&O)) to complex
(i.e., artificial-intelligence-based algorithms). The relation between the MPPT algorithm’s
complexity and its level of accuracy is reversal, where the simpler the algorithm is, the
worser its efficiency becomes when compared with higher-leveled algorithms As for the
MPPT algorithm used under homogeneous irradiance conditions in [73–82], they can be
perceived as simple in application, have low computational requirements, and possess a
fast response criterion. On the opposite side, such algorithms perform poorly under partial
shading conditions, where they may exhibit an oscillatory behavior around the maximum
power point, leading thus to a “false” peak in the PV’s characteristic curve, and are generally
vulnerable to local power maximums traps. On the other hand, the other MPPT algorithms
that are used under partial shading conditions in [83–99], have a better improved efficiency
than the ones in [73–82], where they can accurately identify the global power peak under
complex and non-linear shading conditions. Still, such algorithms are way more complex to
implement, where the artificial-intelligence-based [86] need training with a representative
dataset, thus relying on accurate models and training data. Accordingly, and as it is the
case with the choice of the DC-DC converters, the choice of the MPPT algorithm to be
implemented in a PV-based solar charger, is also not a straightforward approach.

Charge controllers from another side, regulate the power flow from/into the ESS,
by means of DC-DC converters (e.g., bi-directional, uni-directional, etc.) [100–103]. Such
converters can be controlled using a Proportional Gain (PG) controller, reference volt-
age/current control scheme, closed-loop control, and others [104,105]. The uni-directional
charge controllers in [100–103] have a simple design and are generally more cost-effective
than the bi-directional converters, and offer a standard protection for the PV panels, since
they allow the power flow in one direction (i.e., the route from the ESS to the PV panels
is opened, hence the panels would never be subjected to any current from the ESS). On
the other hand, uni-directional charge controllers have more limited functionality when
compared to bi-directional converters, where they do not support the power flow from
multiple PV sources. The bi-directional charge controllers, on the other hand, are more
flexible in usage, enable more energy management than uni-directional controllers, and
better facilitate the grid-integration with the PV systems. Despite their advantages, the
bi-directional charge controllers are more complex in design, thus yielding to a reduced
cost efficiency when compared to the uni-directional controllers and require advanced
algorithms to ensure a stable operation. The controlling scheme in [104,105] is by itself
another area of study, where for example the PG controller offers a good stability with
appropriately tuned gains but can unfortunately show poor performance such as presence
of overshoot, instability, current leakage, and others, [106] under improper gain tuning.
Under the same approach of the DC-DC converter choice, as well as the MPPT algorithm,
the charge controllers, on the other hand, require a careful selection process, when intended
to be employed in off-grid PV systems.

Based on what has been precedent, and by taking into consideration the challenges for
choosing a DC-DC converter to be controlled by an appropriate MPPT algorithm which
dictates the operation of the charge controller, the aim of this paper is to design a novel
solar battery charger, beginning by the design of an interleaved synchronous non-isolated
DC-DC converter. According to the surveyed DC-DC converters, and after analysis of the
pros and cons of each, in order to mitigate ripple current and minimize the equipment need
and size of the converter, the interleaved synchronous non-isolated converter is chosen. The
modification of the P&O algorithm presented in this work rearranged the proportionality
between the algorithm’s complexity and accuracy level, where a simple algorithm (far from
artificial intelligence and machine-language-based methods) showed better accuracy than
conventional P&O, and hence offered an intermediate trade-off.

• The bi-directional DC-DC converter used to control the charging/discharging pro-
cesses of the battery is designed and controlled via PV array specifications (voltage,
current, power, etc.)-based algorithm. At the final destination, the reference current
(Ire f ) is developed and interfered with a Proportional Integral (PI) controller to safely
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charge the 24 V, 150 Ah Lithium-Ion (Li-I) battery with the maximum available current,
resulting from different shading patterns. Accordingly, this paper’s contribution can
be summed up in the following points: improved design of a DC-DC converter: in-
terleaved synchronous non-isolated converter, providing good efficiency, at the same
time presenting low ripple currents.

• Modified MPPT algorithm: simply by adding an operational timer on the workflow
process of a conventional P&O algorithm, the “real” power peak is more precisely
identified, hence achieving a more power extractability option from the PVA.

• Enhanced bi-directional charge controller: not only does it ensures maximum safe
charging current values for the ESS, but also plugs the battery out of the system
according to a threshold SoC, yielding eventually in prolonging its lifecycle (when
applied as a prototype).

The overall systematic design is a combination of multiple sub-systems, beginning
with the PV Array (PVA) that is arranged in a 3 × 3 Series Parallel (SP) topology, with a
maximum power of 1.918 kWp. The designed PVA is then succeeded with an interleaved
DC-DC converter (controlled by modified P&O algorithm) which in turn is interfered with
a bi-directional DC-DC converter (controlled by a reference current generator). The output
target is to maximally charge the Li-I battery in the safest, fastest, and most accurate form.

The rest of this paper is composed as follows: Section 2 presents the overall working
methodology behind the work in this paper, Section 3 reveals the PVA arrangement and
different shading patterns used during the Matlab simulation of this design, Section 4
shows the designing steps for the interleaved DC-DC converter, Section 5 explains how the
P&O was modified. Section 6 interprets the design structure of the bi-directional converter,
which is controlled by current suppression scheme shown in Section 7, where in Section 8
the entire design, grouping physical structures (converters) with control and measurement
modules (algorithm, scoping, etc.) is shown, and being subjected to four distinct irradiation
patterns, Section 9 discusses the obtained results and offers future work plans for the design,
and finally in Section 10 global conclusions are derived.

2. Working Methodology

In order to completely realize the work suggested in this paper, that is to design a
complete solar charger, originated from the PVA, the design of each sub-component (e.g., DC-
DC converter, bi-directional converter, etc.) is thoroughly investigated. Each of the electronic
components are designed according to a mathematical model, yielding for the calculation of
the required elements, such as resistors, capacitors, inductors, and others. The modification of
the P&O algorithm, on the other hand, was based on a computational assessment in which
the conventional P&O cannot dedicate accurate duty ratios in order to maximumly extract the
available power from the PVA under different shading scenarios. The working methodology
behind this work can be summarized according to the following points:

1. While attempting to mimic some extremely fluctuating solar irradiance conditions,
the designed solar irradiance patterns in the Simulink environment varied from
100 W/m2 to 1000 W/m2 with different time lapses. For example, one of the solar
irradiance patterns can have its irradiance step-wise of 100 W/m2 decreased from
1000 W/m2 to 100 W/m2 during non-static time frames: a condition of 1000 W/m2

irradiance can last, for example, x seconds, then 900 W/m2 for y seconds and so on,
until the minimum of 100 W/m2 for example is reached. Different irradiance cycles
exist for each of the designed irradiance patterns. This shall serve to emulate extreme
solar irradiance fluctuating conditions (i.e., in real applications, such scenarios will be
due to extreme cloud passage, swiftly moving physical obstacles, etc.)

2. According to the surveyed DC-DC converters from the work in the references [63–72],
the mathematical model of the suggested interleaved synchronous DC-DC converter
is justified after responding to the following questions:

a. Based on what must the converter’s switching frequency be?
b. How to calculate the duty ratio?
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c. What are the values of the capacitance/inductance for the converter’s capaci-
tor/inductor, respectively?

3. Concerning the MPPT algorithm (i.e., P&O) modification, and in order to stay away
from further programming complexities, the work in this paper simply suggests
analyzing the PV power curve using discretized samples by means of a code-based
on-delay timer. The modified P&O can hence better “acknowledge” the power status
of the PVA, thus more accurately assign duty ratios.

4. For an efficient implementation of the suggested bi-directional converter, its electrical
parameters must be also modelled mathematically, for an optimum selectivity of in-
ductance, capacitance, and resistance that are to be employed in its circuit architecture.
Moreover, the bi-directional converter must take also into consideration the maximum
allowed charging current, as well as the minimum permissible depth of discharge.

By taking all of the previous steps into consideration, a complete version of the solar
charger is hence produced, in a cascaded topology, beginning by the PVA as main input,
then successively toward the DC-DC converter (controlled by the modified P&O algorithm),
then the bi-directional converter (controlled by a current control scheme), then eventually
to the battery’s terminals.

3. Set Up of PVA and Creation of Irradiation Patterns

The PVA with the power rating of 1.918 kWp, consisting of the input of this design,
is sub-composed of multiple PV modules, each of a smaller power rating. Using the
Series-Parallel (SP) interconnection scheme, the PVA is accordingly built. This type of
PV Reconfiguration (PVR) is adapted among many others, such as parallel, series, Total
Cross Tied (TCT), Honey Comb (HC), skyscraper puzzle, Sudoku, etc. [107–116] due to
its superiority in terms of elevated efficiency and less need of extra interconnecting wires.
The SP scheme is hence found optimum and would present an advantageous point for
the future industrialization of the design, in regards to the system’s cost efficiency. The
electrical characteristics for each PV module composing the PVA are shown in Table 1.
According to the parameters shown in Table 1, the PVA characteristic curves, such as
Current-Voltage (I-V) and Power-Voltage (P-V) are plotted in Figure 1.

Table 1. Electrical characteristics of each PV module.

Module Data Value Model Parameters Value

Maximum power 213.15 [W] Light generated
current 7.8654 [A]

Open circuit voltage 36.3 [V] Diode saturation
current 2.9273 × 10−10 [A]

Short circuit current 7.84 [A] Diode ideality factor 0.98119
Voltage at maximum

power Vmpp
29 [V] Shunt resistance 313.0553 [Ω]

Current at maximum power Impp7.35 [A] Series resistance 0.39381 [Ω ]

It can be noticed from Figure 1 that the maximum power affordable by the PVA at
the Standard Test Conditions (STC) under an irradiance of 1000 W/m2 and temperature
of 25 ◦C is 1.918 kWp. The PVA, however, can encounter different shading scenarios,
inhibiting it thus from achieving its maximum power capacity. This is mainly due to
non-static shadow reflectors, such as moving clouds, birds, and other obstacles as shown in
Figure 2.

In order to study the negative impacts of the probable rapidly fluctuating irradiance
inducers as in Figure 2, a time-based irradiance signal generator is derived in this work,
within a time frame of 10 s. The sensitivity of irradiance is set for 100 W/m2 with a
maximum time lapse of 1 s, as shown in Table 2, for different Solar Irradiation Patterns
(SIPs). The logic behind the four shading patterns creation in Table 2 is derived after several
assumptions, stating that at a defined time t, the incident irradiation hitting the PVA surface
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is of a constant value x, resulting from clouds/birds’ passage. For each irradiance value
from 100 W/m2 to 1000 W/m2, as well as for each SIP, indicated is the time of irradiance-
subjection. For example, in Table 2, the SIP2 has no time window during which the PVA is
subjected to an irradiance of 100 W/m2 where this same condition also applies for SIP3. For
SIP4 from another side, the PVA is subjected to an irradiance of 1000 W/m2, for example,
only at t = 5 s and t = 10 s. This corresponds to the logic for all SIPs in Table 2. According to
the values driven in Table 2, the graphical representation for different shading patterns,
SIP1, SIP2, SIP3, and SIP4 is presented in Figure 3.

Figure 1. Characteristic curves for the SP PV array, (a) I–V curve, (b) P–V curve.

Figure 2. Causes of timely fluctuating shading scenarios.
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Table 2. The data used for the irradiance curves generation.

Irradiance
[W/m2]

1000 t = 0 s
t = 6.5 s

t = 1 s
t = 2 s
t = 4 s

t = 7.7 s

t = 2 s
t = 7.2 s
t = 9 s

t = 5 s
t = 10 s

900

t = 0.7 s
t = 2.7 s
t = 6 s

t = 8.2 s

t = 0.7 s
t = 2.7 s
t = 3.7 s
t = 8 s

t = 1.7 s
t = 2.2 s
t = 7.2 s

t = 9 s

800

t = 2 s
t = 5 s

t = 8.2 s
t = 10 s

t = 1 s
t = 2 s
t = 6 s
t = 8 s

t = 1.5 s
t = 2.4 s
t = 7 s

t = 9.4 s

t = 8 s

700

t = 1 s
t = 2 s
t = 3 s
t = 7 s

t = 0.5 s
t = 2.7 s
t = 3.4 s
t = 8.7 s

t = 1.2 s
t = 2.7 s
t = 5.2 s
t = 6.7 s

t = 3 s

600
t = 1.2 s
t = 4.4 s
t = 9.4 s

t = 1.2 s
t = 5.4 s
t = 8.4 s
t = 9.4 s

t = 1 s
t = 1.2 s
t = 3 s
t = 5 s

t = 9.7 s

t = 1 s

500

t = 1 s
t = 3 s
t = 5 s
t = 7 s

t = 8.7 s

t = 0 s
t = 3 s

t = 4.2 s
t = 5.2 s

t = 0.75 s
t = 1 s

t = 3.26 s
t = 3.49 s
t = 4.74 s

t = 0 s

400
t = 3.7 s
t = 4.4 s
t = 9.4 s

t = 8.7 s
t = 9.4 s

t = 0.5 s
t = 0.75 s
t = 3.49 s
t = 3.73 s
t = 4.46 s

t = 2 s

300 t = 3.6 s
t = 9 s

t = 9 s
t = 5.21 s

t = 0.29 s
t = 0.5 s
t = 3.73 s

t = 4 s

t = 4 s

200 t = 4.3 s
t = 5.4 s -

t = 0 s
t = 0.29 s

t = 4 s
t = 4.24 s

t = 6 s

100 t = 4 s
t = 9 s - - t = 7 s

Solar
Irradiation

Patterns
SIP1 SIP2 SIP3 SIP4
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Figure 3. The four rapidly fluctuating distinct irradiation patterns.

4. Design of the DC-DC Converter

As intended to pull down the PVA output voltage, near the ESS voltage whilst main-
taining the conservation of input/output power equalities, an interleaved synchronous
buck converter is adapted in this work. First and foremost, the synchronous circuit form
for the converter is an improved modification referring to the conventional buck con-
verter [117]: the replacement of the diode with another solid-state switch (e.g., Metal Oxide
Semi-conductor Field Effect Transistor (MOSFET), Insulated Gate Bipolar Transistor (IGBT),
etc.) will negate any voltage drops across the diode, hence lowering losses and elevating
the converter’s efficiency. The synchronous buck converter is shown in Figure 4.

Figure 4. Synchronous DC-DC buck converter.

The Pulse Width Modulation (PWM) label shown in Figure 4 is obtained from the
MPPT algorithm. The logic “NOT” gate, which is used in generating the gate signal to
Q2, is there to ensure that both Q1 and Q2 are never conducting at the same time, thus
eliminating any possibility of a bolted electrical short-circuit. Concerning its working
routines, the circuit in Figure 4 operates under two modes:
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1. Q1 is closed, Q2 is open: in this phase, the current flows in a clockwise direction,
charging both inductor L and capacitor C.

2. Q1 is open, Q2 is closed: the energy stored in L is released, where current flows from
the inductor itself. Under a certain threshold of inductor discharging, the capacitor
becomes the main source of the current, until the next cycle begins.

The interleaved design used in this work takes two circuits of Figure 4 and connects
them in parallel. The input and output capacitors are shared for the doubled circuit, as
shown in Figure 5. The ripple current for the interleaved circuit is halved since each
interleaved phase shares the total current.

Figure 5. Interleaved Synchronous DC-DC buck converter.

The DC-DC converter circuit topology is to be based on an interleaved synchronous
design, presenting an increased power handling capability (current and power are divided
between the multiple converter phases). From the same perspective, the interleaved
design provides also presents an improved efficiency by reducing the solid-state switches
conduction losses (by distributing the load across multiple phases), as well as adapting a
better transient response (the presence of multiple phases in the circuit architecture allows
a better load sharing). The following parameters must be calculated in order to complete
the design:

• Switching frequency fs
• Duty ratio D
• Inductance L
• Capacitance C

The choice of fs, for it to be followed by the PWM generation is solely based on the
switching losses of the MOSFETs, where a higher fs yields to smaller inductor and capacitor
sizes, but in turn increases the switching losses as shown in Equations (1)–(3) for the high
side MOSFETs [118–120].

PLoss[H] = PConduction[H] + PSwitching[H] (1)

PConduction[H] = I2
OUT × RDS × D (2)

PSwitching[H] =

(
tRH + tFH

2

)
× Vin × IOUT × fs (3)
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Such that PLoss[H] denotes the total power losses on the high side MOSFETs, as a sum
of conduction losses PConduction[H] and switching losses PSwitching[H]. The term D represents
the duty ratio generated by the MPPT algorithm, tRH , tFH the turn on/off (rise/fall) times,
respectively, RDS the drain to source MOSFET’s resistance, Vin the input voltage to the
converter originated from the PVA, IOUT the output current, and fs the switching frequency.
Similarly, for the low side MOSFETs, the switching frequency related power losses are
shown in Equations (4)–(6) [118–120].

PLoss[L] = PConduction[L] + PSwitching[L] (4)

PConduction[L] = I2
OUT × RDS × (1 − D) (5)

PSwitching[L] =

(
tRL + tFL

2

)
× VbodyDiode × IOUT × fs (6)

where VbodyDiode represents the internal body diode forward drop voltage. As seen from
Equations (1)–(6) the switching frequency is directly proportional to the MOSFETs’ switch-
ing losses. Accordingly, a trade-off between L, C sizes and elevated losses, yields to an
fs choice of 15 kHz, for this design. The duty ratio D on the other hand, presented in
Equation (7) must take into consideration that the output voltage is always equal to 26 V, as
an effective and a safe feeding voltage level to the ESS of 24 VDC operating voltage.

D =
Vout × eff

Vin
(7)

where Vout, Vin represent the required output voltage and PV input voltage, respectively,
with e f f representing the converter’s efficiency. Assuming a 100% efficiency (for simu-
lation purposes only), and a Vin of 87 V (according to Figure 1), the duty ratio must be
for instance equal to 0.298. This value is continuously increased/decreased according
to the MPPT algorithm variations. Both L and C values can be calculated according to
Equations (8) and (9) [121,122].

L =
Vout × (Vin − Vout)

∆IL × fs × Vin
(8)

C =
∆IL

8 × fs × ∆Vout
(9)

Such that ∆Vout represents the ripple voltage, and ∆IL the inductor ripple current
expressed in Equation (10) [122].

∆IL = (20% to 40%)× Iout(max) (10)

According to Equations (7)–(10), and by taking into consideration the chosen value of
fs with a desired ripple voltage of 10 mV, the required parameters for the converter design
are shown in Table 3.

Table 3. DC-DC converter parameters values.

Parameter Value
fs 15 kHz

D 29.8%
L 14.97 × 10−4 H

C 2.3641 × 10−4 F
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5. Configuration of the MPPT Algorithm

A conventional P&O algorithm could lead to an erroneous behavior under swiftly
varying irradiance conditions [117]. Specifically, for the shading patterns created in Figure 3,
the shading intensity varies within a 0.1 s to 0.5 s time lapses. Accordingly, the power
difference between ideal and actual power curves (dP), as well as the voltage difference
between PV and input voltage curves (dV), could possibly lead to a “false” zero as shown
in Figure 6. Therefore, an inaccurate duty ratio D is generated by the MPPT algorithm,
provoking a decrease in the system’s efficiency, since the total available power from the
PVA cannot be then extracted. The small valued power differences in the time frame (4s; 6s)
for example, are not taken into consideration in the conventional P&O algorithm.

Figure 6. Misleading power differences in a conventional P&O algorithm.

The modification of P&O algorithm intended in this design is to achieve a “true”
zero difference between dP quantities, hence attending a real maximum within the P-V
characteristic curve. This process is achieved by setting a timer during the flow of the MPPT
algorithm, which estimates the power differences using discrete samples and returning
averaged values of dP to be investigated. Below are the process’ steps:

1. Continuously check whether dP is equal or not to zero, by establishing a timer at each
time interval: if the sampled values of dP within the interval have a mean value of
zero, then the entire power difference is equal to zero in that timing frame as shown
in Figure 7.

2. Set the above sampling method at each new time interval.
3. All mean values resulting from all intervals must be equal to zero.
4. If the condition in the previous step is not satisfied, then modify the duty ratio respectively.

This sampling method could decrease the performance efficiency of the algorithm
by requiring more time for execution. This in turn can be compensated by a conditional
statement at each checkpoint of dP. According to the I-V and P-V curves shown in Figure 1,
the power difference can be checked after the voltage is equal to 80 V, since the maximum
peak lies to its right. The complete modified P&O flowchart is expanded in Figure 8.
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Figure 7. Sampling of power differences in a time frame.

Figure 8. Modified P&O flowchart.
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6. Modeling of the Bi-Directional Converter

So far, the design compromising the DC-DC converter, accompanied by the modified
MPPT algorithm, offers a maximum power extraction from the PVA under different fluc-
tuating SIPs. Regardless of the solar irradiance’s intensity, the modified P&O algorithm
ensures accurate as well as dynamic duty ratios generations in order to equivalently set the
action of the DC-DC converter (i.e., the conducting/non-conducting states of the solid-state
switches). However, it still cannot be confronted with the ESS, due to the following reasons:

• Inability to maintain safe current charging levels for the ESS under high irradiance
conditions. The charging current delivered by the PVA might exceed the nominal
current charging rate, related to the ESS as indicated in Table 4.

• When the charging currents are not balanced, the ESS gets overcharged, hence, its
lifecycle would be reduced consecutively.

• Under discharging states (i.e., at nights or during low irradiance conditions) the battery
can exceed the recommended Depth of Discharge (DoD), also causing an increase in
its aging rate, and quicker deterioration.

Table 4. Characteristics of the Li-I battery.

Battery Parameter Value
Rated voltage 24 V
Rated capacity 150 Ah
Cut-off voltage 18 V

Fully charged voltage 27.9357 V
Nominal charging current 58 A

According to Table 4, when the charging current provided by the PVA exceeds 58 A, the
battery’s internal electrodes become flooded, thus risking deterioration and posing hazards
to the surrounding environment (i.e., risk of burnouts, explosions, etc.). Consequently, the
designed bi-directional DC-DC converter offers current charging safety for the battery, with
respect to the data in Table 4. From a first point of view, the battery’s charging current
should never exceed 58 A, where the DoD must never be below 25%. This converter is
designed using two MOSFET switches, one for the charging process, the other for the
discharge, with an LC circuit, where a dummy resistive load is added to interpret the DoD,
as shown in Figure 9. Additionally, a controlled switch to plug in/out the battery in case of
with respect to DoD is added.

Figure 9. The bi-directional DC-DC converter design.
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Regardless of the tactic used to control the circuit in Figure 9, which will be pre-
sented in-depth in Section 7, the inductor L and the capacitor C are selected based on
Equations (11)–(12), respectively [123].

L =
D ×

(
Vint_synch_conv − Vbatt_charge

)
fS × ∆IL

(11)

C =
(1 − D)× Vbatt_charge

f2
S × 8 × L × ∆Vout

(12)

Such that D represents the duty ratio of PWM generation for the MOSFETs, fS the
switching frequency, ∆IL the desired inductor ripple current, Vint_synch_conv the actual
voltage outputted from the interleaved synchronous DC-DC converter designed in Section 3,
Vbatt_charge the needed voltage level to feed the battery. On the other hand, ∆Vout denotes
the output ripple voltage. Subsequently, the items composing this bi-directional converter
are revealed in Table 5.

Table 5. Parametric values for the bi-directional converter design.

Item Value

L 2.5 mH

C 3300 µF

R 200 Ω

7. Current Suppression and DoD Control Schemes

The circuit of Figure 9 possesses two switches controlled via PWM generation. The
rule is to always keep the two switches phase sequenced as both should never be mutually
on or off, as indicated in Figure 10. The high side MOSFET conducts as long as there is
sufficient power to charge the battery (i.e., presence of solar irradiance). The inductor
L in Figure 9 acts as a current suppressor, while continuously changing its impedance,
according to the different PWM states, with respect to Equation (13).

Z =
√

R2 + X2
L (13)

Figure 10. Power flow in/out the battery, (a) charging case (b) discharging case.

With Z denoting the impedance of the inductor, R its Equivalent Series Resistance
(ESR) and XL its reactive inductance. Assuming a perfect inductor (i.e., ESR = 0), the current
passing through is shown in Equation (14).

IL =
VL

XL
=

VL

2πfL
(14)
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With VL representing the voltage across the inductor, f the switching frequency and
L the inductance. Accordingly, the continuous change of XL with respect to f acts as a
current limiter, while extracting its maximum safe quantity.

The battery charging current IBAT_CHARGE must never exceed 58 A as a maximum
value according to Table 4. For instance, at 1000 W/m2 the maximum value of the current
that is extractable from the PVA is valued at 58 A, where at 500 W/m2, its value becomes
33 A. With that being said, a reference current Ire f , which is mainly dependent on the
solar irradiance levels, must be considered as a reference for high/low sides MOSFETs
PWM generation. To ensure that IBAT_CHARGE is as closest as possible to Ire f , these two
quantities are differentiated, where the resulting error signal (if any) will later be fed into a
Proportional Integral (PI) controller as shown in Figure 11.

Figure 11. Battery charging current control.

The PWM signals for the MOSFETs in Figure 9 are hence directly controlled by the
PI output, with the latent aiming to have the lowest error between IBAT_CHARGE and Ire f .
On the other hand, in order to monitor the DoD and make sure that the battery would be
automatically plugged out of the entire circuit when DoD ≤ 25%, a controlled switch is
added, as seen in Figure 9 that works as follows:

• As long as DoD >25%, a high logic is set on its gate signal, hence forcing it to be closed
(i.e., in a conduction state)

• The above process workflow is halted when the DoD that is acknowledged from
battery SoC, drops below 25%.

Both current suppression and DoD control schemes will eventually charge the battery
with maximum safe current level, while not permitting the battery to discharge below 25%
under low irradiance scenarios and during nights.

8. Overall Layout with Results

The overall circuit, which is composed of multiple designs investigated from Section 2
to Section 6, is shown in Figure 12. In this circuit, the SIPs are to be manually chosen, from
the irradiance signal builder. For each SIP, exist different simulation results in terms of the
battery charging current, SoC, the feeding voltage, and the overall efficiency. The PVA is
set under 25 ◦C for all SIPs, having its ideal voltage and current referred to as V_PV and
I_PV, respectively, where V_IN represents its actual output voltage. The entire circuit of
Figure 12 is subsequently arranged with respect to each of its sub-components: the signal
builder with the PVA representing the input, to the DC-DC converter, the bi-directional
converter, all the way along the battery’s terminals. As for the control schemes, the MPPT
algorithm is written within a Matlab script, having V_PV, I_PV, V_IN, and P_IDEAL as
inputs, such that after the modified P&O flowchart execution, a “duty” is outputted, where
it controls the solid-state switches of the interleaved DC-DC converter. The bi-directional
converter, on the other hand, is operated with the current control scheme, by means of the
final output of the PI controller.
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Figure 12. The solar charger overall design, (a) interleaved synchronous DC-DC converter, (b) MPPT
algorithm, (c) bi-directional DC-DC converter, (d) current suppression and DoD control schemes.

The “Measurements” subsystem block, included in Figure 12, involves scopes circuitry,
mean efficiency calculations, and power conversion as revealed in Figure 13: for example,
the P_PV is calculated based on a scalar multiplication of I_PV and V_PV. The efficiency is
scoped from another part, based on the numerical assessment between P_IDEAL and P_PV.
For each of the SIPs, the measurements subsystem block of Figure 13 outputs different
graphs covering the alignment between the P_IDEAL as well as P_PV and other battery
related electrical characteristics/processes.

Figure 13. Measurements block subsystem.
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8.1. Results for SIP1

The design shown in Figure 12 will be successively exposed to all different irradiance
patterns. For this case, the application of SIP1 as designed in Figure 3 would reflect the
response of the entire circuit, by showing the closeness between the actual and the ideal
power curves as shown in Figure 14. On the other hand, the battery charging process,
including the charging current, state of charge, and battery voltage are shown in Figure 15.
Lastly, Figure 16 reveals the mean efficiency for the design. The analysis of these results for
all SIPs is to be investigated in Section 8.

Figure 14. The alignment between the ideal and actual PV power curves (kWp) for SIP1.

Figure 15. Battery’s related curves under SIP1: (a) the battery voltage, (b) the battery charging current,
and (c) the battery state of charge.
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Figure 16. Mean efficiency (%) of the design under SIP1.

8.2. Results for SIP2

While switching the irradiance patterns to SIP2, the same circuit as in Figure 12,
reflects different performance reactions, where the closeness between the actual and the
ideal power curves is shown in Figure 17. The battery charging process, including the state
of charge, the charging current, and the battery voltage, are expanded in Figure 18. The
design mean efficiency particularly under SIP2 is shown in Figure 19.

Figure 17. The alignment between the ideal and actual PV power curves (kWp) for SIP2.
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Figure 18. Battery’s related curves under SIP2: (a) the battery voltage, (b) the battery charging current,
and (c) the battery state of charge.

Figure 19. Mean efficiency (%) of the design under SIP2.

8.3. Results for SIP3

After switching the irradiance patterns to SIP3, Figure 20 shows the relevant closeness
between the new actual and the ideal power curves. The battery charging process, including
the state of charge, the charging current, and the battery voltage, are revealed in Figure 21.
The design mean efficiency for SIP3 is shown in Figure 22.
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Figure 20. The alignment between the ideal and actual PV power curves (kWp) for SIP3.

Figure 21. Battery’s related curves under SIP3: (a) the battery voltage, (b) the battery charging current,
and (c) the battery state of charge.
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Figure 22. Mean efficiency (%) of the design under SIP3.

8.4. Results for SIP4

The SIP4 is applied to the same circuit design, where Figure 23 shows the alignment
between the actual and the ideal power curves. Under the same conditions, Figure 24
encapsulates everything concerning the battery charging process, where finally in Figure 25,
revealed is the mean efficiency for the design under SIP4 conditions.

Figure 23. The alignment between the ideal and actual PV power curves (kWp) for SIP4.
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Figure 24. Battery’s related curves under SIP4: (a) the battery voltage, (b) the battery charging current,
and (c) the battery state of charge.

Figure 25. Mean efficiency (%) of the design under SIP4.

8.5. Results for Zero Irradiance (during Nights, etc.)

Instead of applying an actual time varying SIP, the design in this case is encountered
with a zero irradiance, reflecting hence as null power output. The objective behind this
exposure is to investigate the battery’s charging process shown in Figure 26 and to detect
whether the battery would be plugged off the circuit in case of a marginal state of discharge
(i.e., DoD ≤ 25%).
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Figure 26. The battery’s discharge current (a) and state of charge (b) under zero irradiance.

9. Discussion and Future Work

The overview of the different results for the investigated SIPs were satisfactory in general.
Despite that the design has followed a regulation loop control, its response, however, did
not constantly show an efficiency of 100%: this can be justified by the fact that the irradiance
patterns are extremely fast (i.e., in order of 0.5 s), where the modified P&O algorithm cannot
momentarily cope with. In other words, the obtained ideality factor was less than one, due to
the computational speed of the proposed MPPT algorithm with respect to the SIP fluctuating
speed. Beginning with SIP1, the mean efficiency ranged from 87% to 99.9%. This pattern in
particular was the most complex, having the most rapidly fluctuating irradiance conditions
with a time lapse of 0.5 s per variation. For SIP2, the mean efficiency ranged between 90%
to 99.9%, where this pattern was less complex than the previous. In the case of SIP3, an
increase in the mean efficiency is witnessed, where it ranged from 92% to 100%, such that the
maximum efficiency scored from 93% to 100% for SIP4.

For each of the irradiance patterns, the SoC was continuously increasing, with modified
slopes according to Figure 15, Figure 18, and Figure 21. The curve defining piece-wise
slopes were directly based on the irradiance levels, where an increase in irradiance is
reflected by a sharper upward directed line segment. As for the charging current, from
the same figures, it can be noticed that its largest possible amount, supported by the
PVA under specific irradiance values, is safely injected to the battery. The battery feeding
voltage, also for all irradiance patterns, fluctuated between 25.9 V and 26.05 V, just as it was
initially designed to be an output from the DC-DC interleaved synchronous buck converter.
Accordingly, the battery under all irradiance circumstances would have the optimum safest
feeding voltage (i.e., around 26 V) to be fed from.
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For the case where there is not any irradiance (Figure 26, zero irradiance), the bi-
directional DC-DC converter plugs out the battery when its SoC reaches 25%. The current
value seen in Figure 26 is positive (according to the passive sign convention), meaning that
no charging to the battery is occurring, but instead, current is being drawn from the battery.
Within the same figure, where at T = 4.2 s, the SoC is equal to 25%. Successively to the
right of this point, the SoC stabilizes at 0%, since the battery gets plugged out of the system
for protective purposes (e.g., decelerate its aging process, saving its internal electrodes
from excessive discharge, etc.). By taking into consideration what has been precedent, the
contribution of this paper can be pointed out as follows:

1. The design has considered extreme irradiance fluctuations, with a time variance of
0.5 s, and irradiance intensity random variations from 100 W/m2 to 1000 W/m2.
Such irradiance fluctuations generally do not take place under real environmental
conditions, regardless of the location of the PV systems’ installation. Since the design
has shown a good overall efficiency under such unrealistic irradiance conditions,
it can be said that it should work as good or even better under actual irradiance
conditions, when prototyped.

2. The synergistic cooperation between the modified P&O algorithm as well as the
improved DC-DC converter resulted in minimal current/voltage ripples, thus, the
voltage feeding/current injection to the battery are greatly smoothed.

3. The implemented low-threshold detection ability of the battery’s SoC, and hence
its conditional removal out of the system, protects its electrode from the effects of
over-discharging, thus sustaining its expected lifecycle.

Moreover, the full set of sub-designs shown in Figure 12, can be industrialized into a
real prototype, serving arrays of 1.918 kWp. The simplicity of algorithm implementation
and power electronic converters, such as the DC-DC interleaved synchronous converter,
and the bi-directional DC-DC converter offers the following advantages:

• Weight reduction of the gadgets: the smaller sizes of capacitors, inductors, etc. decreases
the size of the entire system, making it more flexible for size-constraint applications.

• Financial reliability: the decreased complexities in the algorithms’ establishments
for different control sections of the design (i.e., MPPT control, current suppression,
etc.), as well as the minimized components size, makes the overall design cost ef-
fective, and able to be manufactured without the need of special machinery and big
industrial plants.

• Flexibility for improvement: while only modifying the power electronics items, the
system could fit for larger PVA applications.

• Ability of hybridization: a set of this system could fit into multiple 3 × 3 PVA compos-
ing a PV farm, where the output of each is mutually injected to a DC grid as shown in
Figure 27.

The industrialization of this design can be obtained and arranged in a Polyvinyl
Chloride (PVC) enclosure, to improve its Ingress Protection (IP) rating, thus making it
resilient in front of severe weather fluctuations as presented in Figure 28. The following list
of items comprises its main backbone:

• Arduino: as a central processing unit, used to execute arithmetical procedures (cal-
culation of power, etc.) as well as for the implementation of the modified MPPT
algorithm.

• Liquid Crystal Display (LCD): this shall replace the scopes used during the simulation
in Matlab/Simulink, thus offering a vivid physical display.

• Voltage/current sensors: used to captivate the real current/voltage quantities from
the PVA. These sensors’ data are then to be subjected to Analog to Digital Converters
(ADC) to be inputted as discrete samples into the processor.

• Power electronic converters: implemented in Printed Circuit Boards (PCBs) in order
to reduce space and facilitate connections.
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• PVC enclosure: to cover the electronic boards of the design, making it waterproof and
shock absorbent.

Figure 27. Expandability of the designed solar MPPT charger.

Figure 28. General overview of the suggested future design prototype.

10. Conclusions

This paper aimed to design an effective solar battery charger to be used in off-grid,
standalone PV systems. After the setup of the 1.918 kWp PVA in SP configuration, an
investigation is led for several SIPs, with fluctuating irradiances of 100 W/m2 in 0.5 s time
lapses. The novelty of the designed interleaved synchronous DC-DC converter granted
smaller sizes of the needed inductors and capacitors, thus increasing the cost efficiency
of the system. Low inductor ripple currents (20% of inductor current) with small output
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voltage ripples (0.01 V) are obtained after the analysis of the output curves, furthering
the design’s simulation. The output of this converter hence produced a stubborn output
voltage of 26 V, optimum to feed the 24 V, 150 Ah Li-I battery. For the sake of monitoring
the battery charging current, a bi-directional DC-DC converter was successively used and
controlled by Ire f method via a PI controller.

This in turn had led to a maximum safe charging current. At this stage, the V-I quanti-
ties are ensured to be at most optimum values, regardless of the irradiance fluctuations. In
progress, a DoD control tactic was designed to ensure that the battery would never drain
below 25% of complete charge, therefore sustaining its maximum life cycle. The mean
efficiency of the MPPT ranged from a minimum of 87% to a maximum of 100%. In addition,
this design has shown a flexibility in installation to adapt smaller/larger PV networks
with a simple modification of the power electronics units. On the other side, and from
a critical point of view, it can be said that the PVA of 1.918 kWp is too large to charge
a battery of 150 Ah, but this was accounted for simulation purposes only. For instance,
the designed DC-DC interleaved synchronous converter serves only to step down (i.e.,
Buck) the PVA’s output voltage at a conventional range to feed the battery. Accordingly,
this converter does not possess the ability to step up (i.e., Boost) the PVA’s output voltage
when it is below the recommended battery’s voltage range. A better design would hence
adopt both DC conversion techniques (i.e., Buck-Boost). The current design also did not
encounter any partial shading conditions cases where it has only worked for uniform
shading: the irradiance patterns, and despite their swift variations, are commonly objected
to the entire PVA. In most real-world solar charging applications, designs are more often
interfered with partial shading conditions, where the solar irradiance intensity over the
PVA is inhomogeneous (i.e., some regions of the PVA receive more irradiance than others,
and vice versa). This in turn lead to a more non-linearly disturbed P-V characteristic curve,
in which the modified P&O would not function optimally. Another limitation of this work
is that the PVA is always set under a working temperature of 25 ◦C, which is rarely the case
for real-world PV applications: the temperature variations have also negative impacts on
the P-V characteristic curve, where the modified P&O cannot also cope with.

As a final overview, this design has dealt with the process of Li-I battery charging,
beginning with severe irradiance levels, to finally offering safe charging values at the
fastest possible rate, while protecting the battery from accelerated ageing by a dedicated
plug-out function. As for the future work, this model is encouraged to be manufactured
and implemented in real-world PV applications, to furtherly analyze and investigate its
real outcomes, when compared with the results obtained in this paper.
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Nomenclature

Abbreviations
ADC Analog to Digital Conversion
DC Direct Current
DoD Depth of Discharge
ESS Energy Storage System
HC Honey Comb
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IGBT Insulated Gate Bipolar Transistor
IP Ingress Protection
LCD Liquid Crystal Display
Li-I Lithium-Ion
MOSFET Metal Oxide Semi-conductor Field Effect Transistor
MPPT Maximum Power Point Tracking
P&O Perturb and Observe
PG Proportional Gain
PCB Printed Circuit Board
PI Proportional Integral
PV Photo Voltaic
PVA PV Array
PVC Polyvinyl Chloride
PVR PV Reconfiguration
PWM Pulse Width Modulation
SIP Solar Irradiance Pattern
SoC State of Charge
SP Series Parallel
STC Standard Test Conditions
TCT Total Cross Tied
Units
A Ampere
s Second
V Volt
W Watt
W/m2 Irradiance, Watts per meter squared
Symbols
CO2 Carbon dioxide
IBAT_CHARGE Battery charging current
Ire f Reference current
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