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Abstract: This paper presents four optimization outcomes for a diesel generator (DG), photovoltaic
(PV), and battery hybrid generating radial system, to reduce the network losses and achieve optimum
generated power with minimum costs. The effectiveness of the four utilized meta-heuristic algorithms
in this paper (firefly algorithm, particle swarm optimization, genetic algorithm, and surrogate
optimization) was compared, considering factors such as Cost of Energy (COE), the Loss of Power
Supply Probability (LPSP), and the coefficient of determination (R2). The multi-objective function
approach was adopted to find the optimal DG allocation sizing and location using the four utilized
algorithms separately to achieve the optimal solution. The forward-backward sweep method (FBSM)
was employed in this research to compute the network’s power flow. Based on the computed
outcomes of the algorithms, the inclusion of an additional 300 kW DG in bus 2 was concluded to be
an effective strategy for optimizing the system, resulting in maximizing the generated power with
minimum network losses and costs. Results reveal that DG allocation using the firefly algorithm
outperforms the other three algorithms, reducing the burden on the main DG and batteries by 30.48%
and 19.24%, respectively. This research presents an optimization of an existing electricity network
case study located on Tomia Island, Southeast Sulawesi, Indonesia.

Keywords: power system optimization; PV; batteries; diesel generator (DG); firefly algorithm (FA);
genetic algorithm (GA); particle swarm optimization (PSO); radial network; minimizing cost and
losses; forward-backward sweep method (FBSM)

1. Introduction

The importance of utilizing renewable energy as a reliable and sustainable source of
electricity cannot be denied in light of the significant environmental challenges associated
with traditional fossil-fuel-based generation methods [1]. Hybrid generation systems,
which leverage multiple renewable resources, have emerged as a promising solution to
mitigate the impact of climate change and decrease carbon dioxide emissions levels [2].

For over three decades, renewable energy resources have been gaining increasing
attention globally following scientific warnings of the dire consequences of global warming
on our planet, which affects all inhabitants [3]. Consequently, significant investments and
research funding have been directed toward the development of reliable and sustainable
renewable energy sources to replace traditional generation methods. Many countries
are now prioritizing locally available renewable resources to meet their electricity needs
and support the global goal of generating clean energy. Research efforts are ongoing
towards developing novel methods for optimizing systems to maximize benefits. As part
of this pursuit, electricity companies are increasingly incorporating renewable energy
resources into their operations. Optimization algorithms have been successfully considered
as a reliable and versatile tool that is widely used by researchers to provide optimum
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solutions for optimizing electricity networks. Electrical engineering researchers have
effectively employed many algorithms to develop techniques for optimizing electrical
networks [4–6]. For instance, the improved sunflower optimization algorithm was utilized
to optimize a distribution network considering the minimum losses and costs through
capacitor allocation [7]. A capacity ratio calculation method was presented in [8] to optimize
a standalone hybrid wind/PV system. Energy management strategies and their integrations
in power systems were presented in [9,10], which provided in-depth investigations into
selecting energy management systems (EMSs) for microgrids and their integrations based
on their energy efficiency, robustness, storage, and generation capability using different
optimization approaches. In the context of renewable-energy-based distribution generation
units, Adel A. Abou El-Ela [11] conducted an economic and environmental study on the
IEEE 33 bus system and a 141 bus large-scale system using equilibrium optimization
techniques.

Various meta-heuristic algorithms have been effectively utilized to optimize power
networks, with a particular focus on minimizing costs and losses through the allocation of
DGs, in addition to them being employed to determine the optimal size and location of,
and computing the optimal generated power from, the DG in each bus while maintaining
the minimum network losses [12]. L.F. Grisales-Norena [13] is worth mentioning as an
example of using GA and the fuzzy-based approach towards finding the optimal operation
and bus location of batteries and capacitor banks and comparing them. Nahar A. and
Johnson A. made an analysis study using five meta-heuristic algorithms to optimize a
Hybrid Renewable Energy Network, consisting of a PV system, wind turbine, and a
biomass generator in Saudi Arabia [14]. Previous publications presented some optimization
techniques for the power network on Tomia Island. For instance, in [15] the FA was used
to optimize the existing system (DG/PV/Battery) by separately minimizing the costs and
losses, and in [16] FA and GA were utilized to minimize only the costs in the same existing
system (DG/PV/Battery); the two aforementioned articles optimized the system without
performing optimization analyses to generate the optimum power from each source and
also without considering related performance indicators. In [17], GA and PSO were applied
to optimize a proposed system (wind turbine/PV/battery) that incorporated a wind turbine
instead of the existing DG, taking into account wind speed fluctuations. In this research,
the main contributions were:

• Presenting optimization scenarios using FA, GA, PSO, and surrogate optimization algo-
rithms to optimize the proposed DG allocation integration scenario (DG/PV/Battery/Add.
DG) of the network on Tomia Island, as a scalable methodology applicable for ra-
dial systems.

• Performing a multi-objective function optimization technique to minimize the losses
and costs of the system, considering the Pareto optimality approach.

• Generating the optimum power output from each source employing FA, GA, PSO, and
surrogate optimization algorithms considering the Loss of Power Supply (LPSP) and
the coefficient of determination (R2) performance indicators, which provided insights
into the performance and reliability of the optimized system.

Problem Statement

The problem addressed in this research pertains to the optimization of the hybrid
electricity network on the isolated island of Tomia, located within Wakatobi National
Park in the southeastern region of Sulawesi, Indonesia. Wakatobi comprises four islands,
namely Wangi-Wangi, Binongko, Tomia, which is the subject of this case study, and, finally,
Kaledupa. Wakatobi is a UNESCO provisional world heritage site, and the population on
this island is 94,846 people. The main objective was to provide a solution to improve the
performance of the existing electricity network, while considering the unique challenges
presented by the island’s isolated location [18].

Tomia, an isolated island in Wakatobi National Park in Indonesia, was unable to be
connected to the nearby national grid. To address this issue, a radial power network was
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established, and a 1.4 megawatt Mitsubishi DG served as the primary source of energy,
which operated for a few hours every night. However, this was insufficient and could not
satisfy the demanded load. Due to Indonesia’s tropical climate, solar energy can provide
a reliable and consistent solution to the island’s electricity supply. As a result, four PV
stations were connected to the radial network, which resulted in the establishment of a
hybrid network that provides electricity availability 24 h a day.

The electricity network under investigation in this study is a 20 kV radial system
comprising 21 buses. Each bus is equipped with a 20 kV/400 V distribution transformer to
supply the load, as illustrated in Figure 1. The primary source of electricity is a 1400 kW
Mitsubishi DG connected to the network. The network has also been supplemented with
four photovoltaic (PV) farms and battery systems located in four different locations, namely
Lamangau (224 kWp), Kahianga (308 kWp), Dete (112 kWp), and Kulati (140 kWp).
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The FBSM was used as a power flow calculation method to determine the active and
reactive powers, and sensitivity analysis was considered for the optimum DG location and
size [19,20]. In addition, optimization algorithms were utilized to generate the optimum
output power from each source at each hour. The obtained results can be used to optimize
the system and satisfy the whole island’s demanded power over the entire day [21].

This study provides an optimal solution, considering our investigations and com-
parisons of the achievements of FA, GA, PSO, and surrogate optimization techniques for
optimizing radial power networks while minimizing costs and losses.
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2. Methodologies

This section outlines the methodologies employed to achieve the best results using
the four algorithms mentioned earlier. Each algorithm has its unique performance and
operating procedures, based on its underlying natural or formulated standards.

We maximized the exploitation of solar radiation to decrease the load on the existing
DG and reduce the burden by making it cover 30–35% of the total demanded power.

This approach reduced the overall costs and minimized CO2 emissions on Tomia
island while contributing to the conservation of Wakatobi National Park [22,23].

The designed objective function of this research is the cost function, with the primary
goal of operating the system at the lowest possible cost and level of network losses. The
inter-bus distances and cable types used in the electricity network of Tomia are described,
as shown in Figure 1. The primary DG was connected to the slack bus, which was essential
to determine power flow calculations [20]. Distances between each two buses were used to
determine the actual resistance (R) values and reactance (X) values to be included in the
power flow and losses calculations.

The cable type used in this network is an All-Aluminum-Alloy-Conductor (AAAC)
with a cross-sectional area of 35 mm2. The values of the AC resistance and the inductive
resistance are 1.05 ohm/km and 0.295 ohm/km, respectively, which were used to measure
the R and X values for all line sections.

2.1. Solar Radiation Analysis

The power generated from solar radiation was calculated using the instantaneous
power formula as follows [15,24].

Ppv (t) = ηg Nm Am Gtil (t) (1)

The generated instantaneous power in watts is represented by Ppv (t). The solar cell
numbers that were set in Tomia PV farms are denoted by Nm, while ηg represents the PV
panel efficiency. The surface area (m2) of a single PV panel is denoted by Am, and Gtill
(t) represents the actual value of the hourly global solar irradiance calculated on a tilted
surface. Liu and Jordan’s statistical method was used to calculate Gtill (t) [25]. This method
is a reliable means of calculating solar radiation values per hour based on Tomia’s daily
solar radiation data [26].

Estimating the extra-terrestrial daily insulation is a crucial aspect of this study. To
accomplish this, we utilized the following formula to calculate the value of H0, representing
the extraterrestrial daily insulation that can be reached and sensed on a horizontal surface:

H0 = 24 × Ion (cosL cosδ cosωs + ωs sinL sinδ)/π (2)

The sunset hour angle parameter, ωs, is an essential factor in calculating the solar
irradiance, where δ is the solar declination (◦). The calculation of ωs is based on the
following formula:

cos ωs = −tanL tanδ. (3)

While L is the latitude in degrees (◦), Ion, which has a unit of (Btu/hr-sqft), represents
the values of the solar intensity at the normal incidence outside the atmosphere of the
planet. The following formula is considered to calculate this parameter:

Ion = r Isc (4)

In this context, the parameter r denotes the solar radiation intensity ratio, whereas Isc
represents the solar constant, which refers to an essential physical parameter that denotes
the quantity of solar radiation received per unit area beyond the Earth’s atmosphere at the
Earth’s mean distance from the Sun. rd is calculated using:

rd = (π × (cosω − cosωs))/(24 × (sinωs − (ωs cosωs))) (5)
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In which ω represents the hour angle, h is the solar angle, and hour is the local time
and equals:

ω = (hour − 12 h) × (15◦/h) (6)

The ratio of the average intensity of diffuse radiation to the extraterrestrial radiation
intensity kd is dimensionless and varied between (0.125 and 0.179); the monthly average
daily diffuse radiation received on a horizontal surface D′ equaled and the hourly average
solar radiation Idh can be calculated using:

D′ = kd Ho (7)

Idh = Gtil (t) = rd D′ (8)

2.2. Diesel Generator (DG)

The DG is an important component in the electricity generation networks and consists
of a diesel engine coupled with an electrical generator.

It is a highly reliable and efficient option, especially in isolated standalone systems.
The DG operates by utilizing fuel to produce electricity. The cost of fuel consumed (fuel
cost (FC)) can be computed using the following non-linear quadratic function [27]:

FC (fuel cost) = Cf ΣN
t=1 (aPDG(j)

2 + bPDG(j) + c) (9)

While a, b, and c represent the coefficients of the fuel costs, PDG(j) is the DG-generated
power at the jth interval, and Cf is the actual price of 1L of fuel; the system’s parameters
and components rates are shown in Table 1.

Table 1. System parameters and components rates.

Apparatuses Parameter Value Unit

PV Initial cost 600 USD/kW
O and M cost 0.01 USD/kW

Lifetime 25 Years
CO2 emissions 0.023 kg/kWh

Battery Initial cost 285 USD/kW
Lifetime 5 Years

Efficiency 85 %
CO2 emissions 0.027 kg/kWh

DG Initial cost 1050 USD/kW
O and M cost 0.038 USD/kW

Lifetime 240,000 Hours
CO2 emissions 0.89 kg/kWh

Converter Initial cost 520 USD/kW
Lifetime 25 Years

Others Interest rate 10 %
Project lifetime 20 Years

2.3. Battery Modeling and Cost Function

Battery banks are working in tandem with PV panels when the electricity system
operates without a DG. Battery banks start charging when the network’s generation power
exceeds the load demand. The next formula is considered in obtaining the battery bank
energy [28].

Ebatt(t) = Ebatt(t− 1) ∗ (1− δ) ∗
[(

Epv(t) + EDG
)
− (Eload(t)/ηinv)

]
∗ ηbatt (10)

Pbatt(t) =
{

Pbatt(t− 1) ∗ (1− δ)− Pg(t) ∗ ηbatt; Pg(t) < 0
Pbatt(t− 1) ∗ (1− δ)− Pg(t); Pg(t) < 0

}
(11)
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While Ebatt(t) and Ebatt(t− 1) are charge values obtained at times t and t − 1, respec-
tively, ηinv is the inverter efficiency, δ is the hourly self-charge rate, ηbatt is the battery’s
charge efficiency, Eload is the load demand, and Pg(t) is the extra energy or can be described
as the battery lack energy.

2.4. Power Flow Calculations Using FBSM

The FBSM was utilized to perform power flow calculations for radial networks [29].
This approach was developed to address the differential-algebraic system that arises from
the maximum principle that defines the solution. And to calculate the losses, the resistance
(R) values and reactance (X) values are required for each line, as mentioned above. Power
flows in a radial system can be computed using a simplified set of floating equations, which
allow for the calculation of voltage and current magnitudes, as well as active and reactive
powers, using the following formulas [16].

Pk+1 = Pk − Ploss,k − Plk+1 (12)

Qk+1 = Qk − Qloss,k − Qlk+1 (13)

Plk+1 and Qlk+1 represent the real values of the load power at bus k + 1 and the reactive
load power at bus k + 1, respectively; Pk and Qk represent the active and the reactive power
values going out from bus k towards bus k + 1; Pk+1 and Qk+1 represent the active and
reactive powers values at bus k + 1, respectively. The power loss between bus k and bus
k + 1 was calculated using [30].

Ploss(k,k+1) = Rk × (Pk
2 + Qk

2)/Vk
2 (14)

Qloss(k,k+1) = Xk × (Pk
2 + Qk

2)/Vk
2 (15)

Total losses are the summation of all losses in all lines; the FBSM follows two styles of
operation, the Backward Sweep and Forward Sweep operation scenarios.

The Backward Sweep operation is designed to compute the current magnitudes or
power values at each bus and is aligned with the voltage values. This process commences
at the last bus and progresses towards the first bus, with the slack bus as the starting point.
In this regard, the voltage during the backward propagation is considered as a constant
to determine the required values. Notably, power values are transmitted in a retrograde
manner along the feeder through the reverse path.

The Forward Sweep operation computes the voltage drop at each node while con-
sidering the current and power flow updates. This starts from the first bus and moves
towards the last bus. The feeder in this case is radial and not a ring, hence requiring the
implementation of forward and backward propagations together to obtain optimal power
flow values. As the forward propagation takes place, the power at each feeder section
remains constant based on the value obtained from the backward process. The Backward
Sweep process is responsible for calculating the current magnitudes or power values at
each bus, which correspond to the voltage values; the process starts from the last bus and
moves towards the first bus, which is the slack bus, while the power values are being
updated in backward propagation.

2.5. Minimizing the Network Losses

The most widely used methods to reduce network losses are: (1) Capacitor placement,
which is suitable to be used for high-voltage networks and to improve the network’s
stability in addition to performing power factor correction. (2) The feeder reconfiguration
method is recommended as a loss minimization technique for low-voltage networks, and
initiates by implementing the load transfer switching scenario, which leads to minimizing
the losses. (3) DG allocation for medium-voltage networks, which is suitable for the
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network in this research [31,32]. DG allocation is a standard method for medium-voltage
networks that considers the power losses analysis criteria, which can decrease the burdens
and power demands on the network and provide voltage support [33].

2.6. Loss of Power Supply Probability (LPSP)

The LPSP metric is a performance indicator that indicates performance reliability. It
serves to identify instances where the generated power falls short and cannot meet the
required load. The LPSP value ranges between 0 and 1, where LPSP = 0 implies that the
system is fully capable of meeting the load profile. Conversely, LPSP = 1 indicates the
system’s incapability to cover the required load.

LPSP is considered a valuable tool for assessing the performance and reliability of
hybrid systems. The LPSP value should not exceed 5%. The LPSP equation is found
in [34,35].

LPSP = ΣT
t=1 (El(t) − Eg(t))/ΣT

t=1 El(t) (16)

where El is the value of the required load in kWh, and Eg is the value of the generated
power in kWh.

3. Optimization Algorithms

Meta-heuristic algorithms are better than deterministic algorithms due to their capa-
bility to optimize intricate constraints and multi-objective functions. They are known for
their robustness, flexibility, and adaptability, and they can explore a larger search space and
can potentially escape local optima by employing stochastic search strategies. In this sec-
tion, the methodologies and the concept of the operation of the four selected optimization
algorithms will be discussed.

3.1. Firefly Algorithm (FA)

Xin-She Yang is the creator of the FA inspired by the collective behavior of fireflies [36].
The FA is one of the meta-heuristic techniques that have garnered attention on the way
to solving optimization problems. The FA is an innovation based on the communication
channels and movement patterns observed among firefly swarms in their search for nearby
food, which was deemed the optimal solution.

Fireflies’ flashing lights serve as a communication tool, and when a firefly finds food,
it becomes brighter and attracts other fireflies, regardless of their gender, as fireflies are
unisex. This algorithm employs three essential parameters: attractiveness, movement, and
distance between fireflies.

Attractiveness, βr, represents the attraction between the fireflies, which indicates the
influence occurring as a result of each firefly’s brightness, and the firefly light intensity
indicates that a firefly reached the optimum solution, which is calculated using:

βr = β0 * exp (−γ * rij
m), with m ≥ 1 (17)

where γ represents the absorption coefficient value, which identifies the amount of absorbed
light and varies between 0 and 1. β0 indicates the attraction that occurs at a distance, r = 0,
among the fireflies, and the distance between the brighter one and any other firefly is
represented by the parameter r.

Any two fireflies in the swarm, i and j, are separated by a distance, rij; this distance is
commonly identified as the Cartesian distance, and measured using:

rij = || xi − xj || = Sqrt(Σd
k=1 (xi,k − xj,k)2) (18)

xi and xj are the locations of any two fireflies in the swarm, d represents the dimension,
xi,k is the ith firefly’s component spatial coordinates, and xj,k represents the jth firefly’s
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spatial location [37]. The movement xi, due to the attraction effect that occurred among any
two fireflies, is:

xi = xi + β0 * exp (−γ * rij
2) * (xj − xi) + α * (rand − 0.5) (19)

As shown in the previous formula, the firefly movement equation comprises three key
components. The first part, xi, signifies the present firefly’s location when the distance r
equals zero. The second part quantifies the attractiveness degree among the brighter firefly
and the others in the swarm. The third part integrates randomization into the movement in
case a firefly has yet to reach the optimal solution or become brighter. Here, rand represents
an arbitrary number within the range of [0, 1]. A crucial input to the algorithm is the
randomization parameter α, which also varies between [0, 1]. Additionally, β0, which
initially equals 1.0, represents the attractiveness initial level (Algorithm 1).

Algorithm 1 The FA pseudo-code used in this research.

Begin

1. Network limits and boundaries
2. Objective function f(x) = cost function.
3. Setting the population and generating the initial number of fireflies’ populations xi (I = 1, 2,

. . . n)
4. Defining light intensity (Ii) at the location of xi, light absorption, and randomization

parameters
5. while (t < maximum iteration)

for i = 1: n for all n fireflies
for j = 1: n for all n fireflies

if (Ij > Ii)
Firefly I will move towards the firefly j in the d dimension.

end if
Attractiveness amount changes within distance r based on (−λ * r).
New solution evaluation and updating the new light intensity.

end for j
end for i

Finding the current best and selecting the optimum solution
Posting the optimum generated power per hour per each power source

end while
6. Optimum results and designed visualizations outcomes

End process

3.2. Genetic Algorithm (GA)

In 1975, John Holland developed the GA as a nature-inspired optimization tech-
nique [38]. Based on his understanding of natural selection in genetics, Holland defined
the three key genetic operators of the algorithm, namely natural selection, mutation, and
crossover. A fundamental concept underlying GA is the coding of variables as binary
strings. In each iteration of generating new solutions, the algorithm utilizes previous
solutions that best fit the problem, creating a stochastic information exchange structure to
search for the optimum solution [39]. Selection is the qualifying process to select the fit,
surviving genes by employing and reduplicating them, whereas unfit genes cannot stay
longer and die.

The gene selection types include roulette wheel, stochastic remainder considering
replacement and without replacement, the part sum selection procedure, deterministic, and
finally, n-member tournament. The widest selection type is the roulette wheel selection;
individuals in this type select their fitness based on the probability selection, and two fit
individuals are randomly chosen for the production and progeny step. One hundred slots
are considered in this type of selection. Each individual has a selection probability. This
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percentage is the measurement tool for each individual’s number of slots in the wheel; each
individual can get copies according to their corresponding probabilities.

Crossover is a genetic operator used in evolutionary algorithms to combine two or
more parent solutions to create a new offspring. This step, involving selecting a random
character from each parent solution and exchanging them with each other at a randomly
selected position, also known as the crossover point, thereby creates a new solution. Some
methods commonly used to initiate crossover procedures are single or multiple points,
variable by variable, and uniform crossovers. The technique used chiefly for a binary-
coded chromosome is a single- or multiple-point crossover method. The possibility for the
crossover to have occurred is (70–80%), as the crossover does not commonly happen, and
the fit individuals copied directly to produce a new population.

Mutation is a crucial step that examines all newly added individuals, which are either
copied from the previous ones or generated through the crossover. This step is considered
as a confirmation that newly developed individuals are not similar, which will help add
new information or retrieve any data lost in the new population. If an allele is chosen for
mutation, this allele can be replaced with a new value or can change its value in small
amounts (Algorithm 2).

Algorithm 2 The GA pseudo-code used in this research.

Begin

1. Network limits and boundaries
2. Objective function f(x) = cost function.
3. Setting the initial population number Ppop, and generating the initial population

populations, α as population size, β as elitism rate, δ as iterations number, crossover
probability, and γ for mutation rate.

4. while generation < maximum generation
Fitness population evaluation
for i = 1: δ

Elitism selection and selecting the best individuals
end for i
for i from elites to α as population size

for j from 1 to crossover number
select two randomly solutions and generate the best solution by-

-one-point crossover, then save.
end for j

end for i
for k from 1 to crossover number

mutate all the bits of the best solutions considering the rate of mutation
rate γ.

if the solution is unfeasible
update it with a feasible one and repair the current solution.
end if
updating the current solution.

end for k
update Ppop the current population

end while
5. Returning the best solution as the optimum generated power per hour per each power source.
6. Optimum results and designed visualizations outcomes.

End process

3.3. Particle Swarm Optimization (PSO)

PSO is a commonly employed and effective algorithm for resolving optimization
problems. The algorithm was introduced by Eberhart and Kennedy in 1995, who were
inspired by the collective movements of birds, swarms, and fish as they search for the best
food sources and regions [40]. The interaction between individuals within a population has
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been mathematically modeled to create an effective method for finding the optimal solution.
The algorithm iteratively searches for the optimal solution by adjusting the positions of
individuals, known as particles, and updating their velocity based on the best-known
solution in the swarm. The algorithm’s performance relies on the parameter selection,
including the number of particles, maximum velocity, and inertia weight. Each particle is a
point in D-dimensional space and may represent the optimal solution. The position and
velocity are calculated using:

xi (t) = xi,1 (t), . . . . . . , xi,d (t), . . . . . . , xi,D (t) (20)

vi (t) = vi,1 (t), . . . . . . , vi,d (t), . . . . . . , vi,D (t) (21)

The adjustment of velocity and particle location are expressed as:

xi,d (t + 1) = xi,d (t) + vi,d (t + 1) (22)

vi,d (t + 1) = w * vi,d (t) + c1 * rand () (pi,d (t) − xi,d (t)) + c2 * Rand () (gi,d (t) − xi,d (t)) (23)

where rand() and Rand() are random main parameters varying from [0, 1], and w represents
the value of inertia weight; c1 and c2 are position and velocity parameters based on the
previous experiences [41].

The algorithm incorporates two learning factors, c1 and c2, which determine the
influence of a particle’s personal best position (pi) and the best position among all particles
(gi), respectively. The cognitive parameter, c1, represents the particle’s previous experience,
while c2 indicates the effect of historical particle experience in the swarm. A high value of
c2 compared to c1 implies that the particle is more attracted to the best position, (gi), among
the population, rather than its own best position (pi), and vice versa if c1 is greater than c2.
These factors are defined mathematically to determine the extent of the influence of pi and
gi on the optimization process (Algorithm 3).

Algorithm 3 The PSO pseudo-code used in this research

Begin

1. Network limits and boundaries
2. Objective function f(x) = cost function.
3. Uniformly distribution initialization of particle’s position, pbest, gbest.,
4. Setting algorithm parameters N, xi, xu, c1, c2, imax, and f
5. Initializing velocities vi, and the best particles positions x* and g*
6. Chose randomly the values of the two parameters r1 and r2
7. for t = 1: maximum generation

for i = 1: population size
select two random numbers of r1, r2, and vo

if Pi(t) < pbest (i,t)
update the particle’s velocity vi

end if
if Pi(t < gbest (i,t)

update the new position xi.
end if

update x* and g*
end for i
i = i + 1;
end for t

8. Returning the best solution as the optimum generated power per hour per each power source.
9. Optimum results and designed visualizations outcomes.

End process
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3.4. Surrogate Optimization

One of the meta-model-based optimization methods is surrogate optimization, which
falls under the umbrella of evolutionary computational techniques [42]. It has been used
by researchers to solve single and multi-objective optimization problems in the past two
decades, in addition to solving constrained fitness functions. The evolution control strat-
egy is widely used as a management strategy model. Fitness evolutions, local searches,
mutations, and crossovers are parts of the surrogate operation scenarios, which are re-
sponsible for filtering the fit and unfit populations, and contain non-optimum solutions or
unrelated ones [43]. The re-evolution process is managing the population clustering and
classifying the populations into fuzzy or crisp clusters. After running this pre-selection
process, the best individuals among the population will be selected for the re-evolution;
this influences the approximate error average, which identifies the model quality. The eval-
uation of surrogate quality is based on rank correlation and continuous partial correlation
(Algorithm 4).

Algorithm 4 The pseudo-code of the surrogate optimization algorithm used in this research

Begin

1. Network limits and boundaries
2. Objective function f(x) = cost function.
3. Initialization of experimental design, considering the values of the constant functions.
4. Starting the optimization process, iteration starts till reaching a feasible point.
5. Evaluating the response surface parameters and the corresponding values.
6. Generate and calculate the candidate points.
7. Remove the sampled points and regenerate new points until finding an unsampled ones.
8. Select the best candidate point and use it to perform the simulation.
9. Repeat until reaching the lowest objective function value.
10. Return the best point found as the optimum generated power per hour per each power source.
11. Optimum results and designed visualizations outcomes.

End process

4. Results Using FA, GA, PSO, and Surrogate Optimization

In this section, a suite of optimization algorithms was employed to seek out the oper-
ation scenario that produces the optimum maximum output power from each electricity
source, while simultaneously minimizing network losses and overall costs. The results,
differences, evaluations, and advantages of each algorithm are presented in detail.

It is important to note that each algorithm employs a unique approach to searching
and optimization, which must be carefully considered when selecting the algorithm and
setting its parameters and constraints. The hourly solar radiation calculation followed the
application of the Liu and Jordan statistical method illustrated in Figures 2 and 3.

4.1. Problem Formulation and Objective Functions

For the optimization procedure, a multi-objective optimization approach using the
Pareto optimal solution was used in this research due to its capability and reliability at
solving non-linear equations and performing better convergence with high accuracy, in
addition to directing our exploration towards achieving an effective, non-inferior, and per-
missible Pareto front, by demonstrating the non-dominated vectors [44–46]. Two objective
functions were considered in this research by combining them to analyze the consistency
of the optimal DG sizing and location. Considering the minimum losses and costs of the
proposed system, extensive simulations and optimizations were performed to determine
the trade-off between power losses and operational costs.
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While
→
g and

→
h are the inequality and equality constraints’ sets, respectively, X iden-

tifies the feasible set of the decision vectors. In our proposed system, the first objective
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function is the sum of the cost functions of the four power sources utilized in this research,
considering the Operational and Maintenance (O and M) costs, initial or investment costs,
and the lifetime factor [44,47,48]:

1. F1: Total system costs:

Cost Objective function (x) = a*Cost Fn. (main DG) + b*Cost Fn. (PV)
+ c*Cost Fn. (Batteries) + d*Cost Fn. (Add. DG).

(28)

2. F2: Total active power loss:

PTotal
loss = ∑N

j=1 Ploss(j) (29)

N is the number of the network’s branches; the cost of each power source is represented
by coefficients a, b, c, and d, while x refers to the total cost of the power generated in
the network. All computational steps and mathematical calculations occurred utilizing
MATLAB software. FA was the algorithm that needed a more extended time of from 10 to
20 min to perform a single search. And the shortest one was the surrogate. The optimization
procedures can be seen in the flow chart in Figure 4.

The algorithms were run using a Core i5 Windows laptop to optimize the proposed
study; we noticed that the running time decreased from 30 to 40 percent when we used
a Core i7 Windows laptop. The disparities and advantages of each algorithm employed
are demonstrated, as stated earlier. The algorithm parameters and constraints were set up
while adhering to the same limits’ boundaries and equality and inequality constraints for
all algorithms, as described in Table 2.

Table 2. Constraints and limits used in FA, PSO, GA, and surrogate optimization.

Algorithm/s
Constraints and Limits

Equality Constraints Inequality Constraints

FA, GA, PSO, and Surrogate PPV (i) = 0.70 × PVout (i)

420 W ≤ PDG ≤ 650 W
−378 W ≤ PBatt ≤ 378 W

100 W ≤ PAdd.DG ≤ 500 W
PDG + PPV + PBatt + PAdd.DG

≤1.1 * Pload (i)

4.2. Total Optimum Generated Power, Minimum Costs and Network Losses

To minimize network losses, an additional DG was added to the system. The loss value,
the optimum value of this additional DG, and the optimum bus location were determined,
as illustrated in Figure 5 and Table 3. A Pareto optimality plot for the proposed system to
search for the minimum losses and costs is shown in Figure 6. GA, PSO, and surrogate
optimization resulted in nearly identical loss analyses, and the size of the additional DGs
were almost the same. The FA yielded the lowest loss value. In contrast, the FA took
significantly longer, with an operating time of 451.85 s per iteration.
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Table 3. Outcomes and differences using the 4 algorithms.

Adding Additional DG Average Running
Elapsed Time

(Second)

Cost of
Energy–COE
(USD/kWh)

Performance
Indicators

Minimum
Losses (W)

Suggested Add.
DG Value (kW) Bus No. LPSP R2

FA 66 103 3 451.8576 0.143943267 0 1
GA 68 301.56 2 228.0435 0.135448724 0 1
PSO 68 307.78 2 41.07405 0.198306291 0.416 0.5752

Surrogate 73 302 2 22.18451 0.161075886 0.02234 1
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The results depicted in Figure 7 demonstrate the optimum total generated power
by the four algorithms, which satisfy the load requirements and adhere to the system’s
constraints, except for the unrealistic outcomes produced by the PSO algorithm, which
had a significant impact on generating the highest overall computed cost, with a value
of 0.1983 USD/kWh. As explained in Figure 8 and determined in Table 3, this highest
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cost was expected, due to the illogical power generated from the four sources by PSO
and its failure to comply with the system’s constraints, and as a result of the nature of
the PSO in performing with tight constraints, as can be seen in Figure 9c. In contrast, the
hourly generated power using the FA, GA, and surrogate optimization algorithm was
constrained, satisfying the load. With these three algorithms, LPSP and R2 values were
within acceptable ranges, which directly impacted system costs, as shown in Figure 8,
where the minimum COE was generated by the GA at 0.13544 USD/kWh, followed by the
FA at 0.1439 USD/kWh.
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4.3. Optimum Generated Power Analyses of the Four Algorithms

Notably, and based on the system constraints, the total generated power for all power
sources cannot exceed more than 10% above the total demanded. The system’s constraints
were the same for the four algorithms. The variances observed in the optimal generated
power for the FA and GA and PSO and surrogate algorithms are displayed in Figure 9a,
Figure 9b, Figure 9c, and Figure 9d, respectively.

The most idealistic generated power was computed from the FA, GA, and surrogate
algorithm. PSO-generated power was illogical, as described above and seen in Figure 9c,
due to its concept of searching for the optimum solution as a swarm moving together
to search for the optimum solution, which is different from the FA, GA, and surrogate
algorithm, which depend on individuals searching for the optimum solution. The results
indicated that each algorithm suggested a DG size and optimum bus location to minimize
network losses. FA suggested a DG size of 103 watts, while the GA and PSO and surrogate
algorithms suggested DG sizes of 301.56 watts, 307.78 watts, and 302 watts, respectively.
That is why, in order to optimize the system, a 300-watt additional DG can be inserted
at bus no. 2. The optimum generated power values from each source using the FA, GA,
PSO, and Surrogate optimization algorithms separately are presented in Appendix A and
Table A1.

To overcome the stochastic performance of the four algorithms, as they are meta-
heuristic algorithms, multiple runs of each algorithm and performed comprehensive com-
parisons and analyses were performed, and the total optimum generated power was almost
the same at each run, as seen in an example showing this point in Appendix B and pre-
sented in Figures A1 and A2. The algorithms were run using a Core i5 Windows laptop to
optimize the proposed study, and we noticed that the running time decreased from 30 to
40 percent when we used a Core i7 Windows laptop.

The disparities and advantages of each algorithm employed are demonstrated, as
stated earlier. The algorithm parameters and constraints were set up while adhering to
the same limits’ boundaries and equality and inequality constraints for all algorithms, as
described in Table 2. Figure 10 shows the optimum generated power from each source
using the four algorithms separately in optimizing the existing system on Tomia Island
(DG/PV/Batteries), as seen in some of those results already published in our previous
publications [15,16]. This represents the main scope of this paper, which seeks to optimize
power generation by producing the optimum generated power for the proposed system of
performing DG allocation (DG/PV/Batteries/Add.DG). The FA performed the best among
the other algorithms by reducing the burden on the main DG by 30.48%. On the other hand,
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the GA and PSO and surrogate optimization reduced the burden on the main DG by 8.10%,
3.21%, and 1.17%, respectively, which are slightly lower achievements.
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Figure 9c shows that the generated power from the PSO did not perform well; this was
a result of the tight DG constraints used in the PSO algorithm. When the boundaries were
tight, the search space became more constrained, limiting the exploration capabilities of the
PSO algorithm. This led to premature convergence, where the algorithm settles on subopti-
mal solutions without fully exploring the available search space [49]. That was why we
re-performed the PSO algorithm by expanding the DG boundaries (300 W ≤ PDG ≤ 900 W);
then, PSO performed better, as shown in Figure 11. The LPSP was 0.00023, and R2 was
equal to 1.
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Overall, the results demonstrate that the four algorithms are effective optimization
algorithms for minimizing network losses and costs on Tomia Island, when considering
the nature of each algorithm in finding the optimum minima.
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5. Conclusions and Future Works

This paper presented a research study to optimize a proposed operating scenario
by performing DG allocation for the hybrid DG/PV/Battery/Add.DG radial network on
Tomia Island using four optimization algorithms, namely the firefly, genetic, PSO, and
surrogate optimization algorithms, considering minimizing the losses and costs using a
multi-objective function technique. Real data were used, and differences with the existing
DG/PV/Battery system were presented based on our previous publications regarding
optimizing this existing system. The outcomes of optimizing the proposed system presented
in this study showed that PSO generated higher power than the required load in some
hours of the day; that was a result of the tight DG constraints, resulting in an LPSP value
that exceeded the 5% limit and a low coefficient of determination R2, which equals 0.5128.
On the other hand, PSO performed better when we increased the constraints’ space. Pareto
optimization was performed to optimize this multi-objective function for the loss and cost
operation.

In conclusion, and based on the results, the GA performed the best by generating the
minimum COE, with a value of 0.13544 USD/kWh, followed by the FA with a value of
0.1439 USD/kWh; the difference was slight and cannot be used to determine the superiority
of one algorithm against the other. Thus, inserting a 300-watt additional DG at bus no. 2
can optimize the system while minimizing losses and satisfying the load, leading to cost
savings.

In some outcomes, it can be seen that each algorithm performed better when consider-
ing the nature of each algorithm to find the minimum optima. Differences are discussed
above, as well as suggestions for better performance for PSO, generating optimum power,
and minimizing the total loss costs. All algorithms were run under the same boundary
limits and system constraints.

Since Tomia Island is a part of Wakatobi National Park, a future study will eliminate
the 1.4 MW DG and perform analyses using a wind turbine with the same rated power to
decrease the CO2 emissions in this national park, and will consider the wind fluctuations
in the rainy and dry seasons.
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Nomenclatures and Abbreviations

FA Firefly algorithm
GA Genetic algorithm
PSO Particle swarm optimization
DG Diesel generator
PV Photovoltaic cell
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COE Cost of Energy (USD/kWh)
LPSP Loss of Power Supply Probability
FBSM Forward-backward sweep method
R2 Coefficient of determination
O&M Operational and maintenance
FC Fuel cost
Cost Fn. Cost function
W Watt
Ppv (t) The generated instantaneous power at time t in watts
Nm Solar cell numbers that had been set on Tomia Island
ηg PV panel efficiency
Am The surface area (m2) of a single PV panel
Gtill (t) The actual value of the hourly global solar irradiance calculated on a tilted surface
Ho The daily insulation that can be reached and sensed on a horizontal surface
ωs Sunset hour angle parameter
L The latitude in degrees (◦)
Ion The values of the solar intensity at the normal incidence outside the

atmosphere of the planet (Btu/hr-sqft)
Isc The solar constant
ω The true solar time
Cf The actual price of a 1 L of fuel
βr Firefly attractiveness parameter
β0 The attraction occurs at a distance r = 0 among the fireflies
rij, the distance between two fireflies i and j
xi The firefly’s movement due to the attraction effect occurring among any two fireflies
Ii The light intensity of firefly i
rand() PSO’s random main parameter
c1,c2 PSO’s position and velocity parameters
pi PSO’s particle best position
gi PSO’s best position among all particles
Rk Resistance at bus k
Xk Reactance at bus k
Pk Active power at bus k
Qk Reactive power at bus k
Ploss(k,k+1) Active power losses in the line between bus k and k + 1
Qloss(k,k+1) Reactive power losses in the line between bus k and k + 1
PDG Diesel generator (DG)-generated power in watts
PBatt Battery generated power in watts
PAdd.DG Additional DG-generated power in watts
Pload The load power
h hour

Appendix A

In this appendix, find the values of the optimum total generated power generated by
each source per hour using the four algorithms presented in this study; the differences are
shown in Table A1. The system boundaries and constraints were the same for all algorithms
to satisfy the demanded load.
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Table A1. The total generated power from the four power sources per hour using each algorithm.

Hour
Load
(Watt)

Firefly Algorithm (FA) Genetic Algorithm (GA) Particle Swarm
Optimization (PSO)

Surrogate Optimization
Algorithm

Total
Generated

Power
(Watt)

Cost
(USD/kWh)

Total
Generated

Power
(Watt)

Cost
(USD/kWh)

Total
Generated

Power
(Watt)

Cost
(USD/kWh)

Total
Generated

Power
(Watt)

Cost
(USD/kWh)

0 661.1 727.209978 0.1550 727.209008 0.1291 727.21 0.1148 627.21 0.1553
1 621.5 683.649864 0.1478 683.649057 0.1199 683.654143 0.1038 583.65 0.1437
2 625.9 688.48988 0.1297 688.489008 0.1146 688.49 0.1045 588.49 0.1450
3 635.8 699.380146 0.1392 699.379003 0.1238 699.38 0.1074 599.38 0.1479
4 719.4 791.33997 0.1573 791.33902 0.1472 791.34 0.1319 691.34 0.1723
5 633.6 696.960456 0.1282 696.959542 0.1116 1083.36422 0.2180 596.96 0.1342
6 850 934.998014 0.1344 935.001934 0.1497 1240.12921 0.2358 835 0.1738
7 880 968.003067 0.1366 967.999007 0.1352 1379.76377 0.2518 868 0.1613
8 828 910.798192 0.1288 910.799011 0.1039 1495.21420 0.2650 810.8 0.1285
9 808 888.801155 0.1071 888.799 0.0881 1576.11588 0.2742 788.8 0.1160

10 805 885.50056 0.1032 885.499001 0.0818 1617.71834 0.2789 785.5 0.1130
11 872 959.198576 0.1169 959.199011 0.0989 1617.28648 0.2789 859.2 0.1258
12 880 968.001444 0.1032 967.999025 0.1084 1574.82030 0.2740 868 0.1316
13 894 983.401981 0.1436 983.399 0.1242 1493.34281 0.2647 883.4 0.1481
14 858.9 944.790611 0.1293 944.789 0.1321 1378.18029 0.2516 844.79 0.1554
15 831.5 914.651151 0.1332 914.649053 0.1422 1237.10619 0.2355 814.65 0.1688
16 770 846.999986 0.1643 846.99901 0.1492 1080.19725 0.2176 747 0.1747
17 855.8 941.381065 0.1845 941.379005 0.1834 998 0.2082 841.38 0.2123
18 887.7 976.469895 0.1903 976.469014 0.1905 998 0.2082 876.47 0.2216
19 853.6 938.960196 0.1944 938.959002 0.1859 938.96 0.1712 838.96 0.2116
20 822.8 905.079953 0.1873 905.079001 0.1791 905.08 0.1622 805.08 0.2026
21 770 847.000032 0.1615 846.999 0.1643 847 0.1467 747 0.1872
22 721.6 793.760106 0.1348 793.759124 0.1502 793.76 0.1325 693.76 0.1730
23 685.3 753.830701 0.1412 753.829 0.1376 753.83 0.1219 653.83 0.1623

Appendix B

The total generated power for 5 runs using PSO for both performances, the first with
the same system DG boundaries (420 W ≤ PDG ≤ 650 W), and the second after expanding
the DG boundaries to give a space for the algorithm to search for the optimal solution
(300 W ≤ PDG ≤ 900 W).
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