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Abstract: Photovoltaics have uncertain characteristics. If a high proportion of photovoltaics are
connected to the distribution network, the voltage will exceed the limit. In order to solve this
problem, a voltage regulation method of a distribution network considering energy storage partition
configuration is proposed. Taking the minimum total voltage deviation, the minimum total cost, the
minimum total power loss, and the minimum energy storage device installation ratio as the objective
function, and considering various conditions, such as voltage deviation constraint and energy storage
constraint, a mathematical model of voltage regulation is established. Firstly, a high proportion of
photovoltaics are connected to the distribution network, and the voltage deviation curve is obtained.
The optimal k value is determined by the elbow rule. The voltage deviation curve of each node
is clustered by the k-means algorithm so as to determine the energy storage device partition. The
energy storage device is connected to various clustering centers, and then the weighting factor of each
objective function is determined by the fuzzy comprehensive evaluation method. For comparison
and analysis, (k + 1) schemes are determined through the partition configuration of (k + 1) energy
storage devices. Then, the model is solved by particle swarm optimization, and the unit output result
and the minimum objective function value are obtained. Finally, an example of IEEE33 is used to
verify the effectiveness of the proposed model.

Keywords: high proportion photovoltaic; voltage regulation; k-means clustering; energy storage
partition; particle swarm optimization algorithm

1. Introduction

Nowadays, the shortage of traditional energy is increasing, and the demand for energy
is increasing. With this problem, the proportion of photovoltaic units (PV) connected to the
grid is increasing [1–3], and the mismatch of source and load will also affect the voltage
of the distribution network. For example, it is easy to have reverse power transmission
during the peak period of PV output, which leads to the voltage exceeding the upper limit.
The energy storing device (ESD) has the ability to suppress power fluctuation, which can
effectively alleviate the mismatch between source and load [4]. Therefore, the voltage
regulation technology of a distribution network compatible with PVs and ESDs came into
being [5,6]. How to effectively plan a large number of PVs, other distributed power sources,
and energy storage in the distribution network to reduce voltage deviation, cost, and power
loss has become an urgent problem that needs a solution.

In recent years, many scholars and research institutions at home and abroad have
studied the voltage regulation of distribution networks with PVs and have achieved results.
Reference [7] analyzed the voltage and reactive power/active power regulation of pho-
tovoltaic access points and then put forward a reactive power/active power coordinated
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control method, which alleviated the voltage over-limit problem of a distribution network
with distributed PVs; however, the economic cost was not considered in the model. Refer-
ence [8] put forward a double-layer optimization model in which the sensitivity analysis
of dynamic comprehensive reactive power and voltage correction was considered. It was
proved by examples that the model could reduce the peak–valley difference of load and
improve the system voltage level. Reference [9] took the minimum voltage deviation
and fluctuation as the objective function and combined traditional reactive power control
equipment with PV multi-operation state regulation ability and put forward a voltage
coordination control method. It was verified by a 21-node 10 kV actual system that this
method could better improve the voltage regulation ability of a distribution network with
PVs and improve the voltage safety level; however, energy storage and other distributed
power sources were not considered in this paper. Reference [10] proposed a two-stage
distributed robust opportunity using a constrained rolling time domain voltage control
method, which was proved to be effective by an example of an unbalanced IEEE-123 sys-
tem, but the energy storage device was also not considered in this paper. Reference [11]
took the minimum investment cost as the objective function, established a distribution
system voltage optimization model based on second-order cone programming, and used
the MOSEK solver to solve the model. It was proved by the IEEE33 example that the model
could effectively alleviate the voltage problem, but the change of branch network loss was
not considered in the model. The voltage regulation of distribution network with a high
proportion of PV still needs further study.

Aiming at the problem of distributed network voltage regulation (DNVR) in distribu-
tion networks with a high proportion of PVs, a DNVR model considering the ESD and high
proportion of PVs is proposed, and nodes are clustered based on a k-means algorithm so
that the ESD can be configured in different zones. Then, the particle swarm optimization
(PSO) algorithm is used to solve the model. Finally, IEEE33 is used to illustrate the method
proposed in this paper, which can improve voltage stability and operation economy on the
basis of ensuring the safe operation of a distribution network. The main contributions of
this work are summarized as follows:

(1) Based on the k-means clustering method, the voltage deviation curves of each node in
a day are clustered and analyzed, and the nodes are divided into several categories to
determine the distribution network partition. The ESDs are connected to the cluster
centers of each district, thus realizing the voltage partition adjustment;

(2) The solution method based on PSO can effectively solve the proposed voltage regula-
tion model;

(3) Based on the proposed voltage regulation method of a distribution network consider-
ing energy storage configuration, the IEEE33 example is analyzed, and the objective
function values are effectively reduced, thus improving the stability and economy of
the distribution network.

2. Partition Configuration of Energy Storage Based on K-Means Clustering

A high proportion of PVs connected to the grid leads to problems, such as voltage
over the limit and power fluctuation. Therefore, the ESD is connected to the distribution
network to realize voltage regulation. How to configure the ESD is the key. In this paper,
the voltage deviation curve of each node is clustered by the k-means algorithm to realize
the partition configuration of ESDs.

2.1. Definition of High Proportion

When a high proportion of PVs are connected to the distribution network, it will
change the topology of the network and also have a certain impact on the power flow, thus
changing the voltage distribution [12]. In this paper, the proportional definition of the PV
grid connection is as follows:

λ =
∑ PPV

PL,max
× 100% (1)
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where PPV is the total active power of PV connected to the system, kW; PL,max is the peak
load active power of the system, kW.

2.2. K-Means Clustering

In this paper, the k-means clustering algorithm is selected as the clustering method. It
has the following advantages:

(1) Simple principle, easy realization and fast convergence;
(2) Good clustering effect;
(3) Strong interpretability and intuition;
(4) There is only one parameter, k.

The k-means clustering algorithm can divide the data of unknown tags into different
groups according to their characteristics [13,14]; each group of data is also called a “cluster”,
and the center point of each cluster is called a “centroid”. Its basic principal process is
as follows:

(1) Randomly selecting k sample points as initial clustering centers;
(2) Calculating the distance between each cluster center and other sample points by using

Euclidean distance and classifying each sample point into the nearest class;
(3) Finding a new cluster center of each class, and taking it as the center to calculate the

average value of each class by Equation (2);

Mk =
1

Nk

Nk

∑
i=1

Dki (2)

where Mk is the center of class k; Dki is the ith data in the kth class; Nk is the number
of samples in each category.

(4) Repeating (2) and (3) until the clustering center does not change.

2.3. Elbow Rule to Determine the k Value

The selection of a k value is very important. This paper adopts the elbow rule to realize
the selection of the k value. With the increase of cluster number k, the sum of squared errors
(SSE) will also change, and the elbow rule is used to determine the optimal cluster number
through the change trend of SSE [15]. SSE refers to the sum of squares of the distances
from each data point to the center of its cluster, and its calculation formula is shown in
Equation (3):

SSE = ∑k
i=1 ∑p∈Ci

|p−mi|
2

(3)

where k indicates the number of clusters; Ci represents the ith cluster; p represents the
sample point in Ci; mi represents the average value of all data in the ith cluster.

When the cluster number k is small, SSE will gradually decrease; however, when the
cluster number k continues to increase, the decline speed of SSE will gradually slow down
until it finally becomes stable. At this time, the change trend of SSE presents a shape similar
to an elbow, and the k value corresponding to the elbow is the best k value.

2.4. Partition Configuration of ESD

By calculating the power flow after a high proportion of PV nodes is connected to the
grid, the voltage deviation results of each node are obtained. Then, the voltage deviation
curve of each node’s k-means clustering are obtained. The nodes can be divided into k
categories so that the distribution system can be divided into k zones and the cluster center
of each zone is selected to install the ESD so as to realize the ESD partition configuration.

3. Distribution Network Voltage Regulation Model with High Proportion of PV

In order to make the effect of DNVR better, we should consider not only the total
voltage deviation of nodes but also the total power loss of branches, economic cost and
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ESD installation ratio. Because there are a large number of PVs in the model, its output
is uncertain, and the load output fluctuates [16,17]. It may change the power flow of the
distribution network, and problems such as voltage exceeding limit and power fluctuation
may occur, thus threatening the security of the power grid. Voltage regulation is an
important link to effectively ensure the safe and stable operation of the power grid.

3.1. Objective Function

Micro turbines (MT) and a large number of PVs are connected to the DNVR model,
and a distributed ESD is connected to stabilize the fluctuation [18]. In this paper, the regu-
lation objective function is established from four aspects: reducing total voltage deviation,
reducing total power loss, reducing economic cost and reducing the ESD installation ratio
so as to realize DNVR with a high proportion of PVs, thus improving the economy and
stability of the distribution network.

Objective function F1: the total voltage deviation of nodes Udev_total is the lowest [19,20]:

F1 = min
T

∑
t=1

Nnode

∑
i=1

∣∣∣∣Ui,t −UN

UN

∣∣∣∣ (4)

where Nnode is the number of independent nodes; T is the number of time periods; Ui,t is
the voltage amplitude of node i at time t, kV.

(1) Objective function F2: the economic cost CE_total is the lowest: CE_total consists of
ESD call cost CESD, power generation cost of PVs CPV,m, power generation cost of
MTs CMT,ge, electricity purchase cost Ce,buy [21] and environmental treatment cost
Cpt, namely

CE_total = CESD + CPV,ge + CMT,ge + Ce,buy + Cpt + Cnl (5)

¬ ESD call cost CESD
CESD = µESDPESD,c + µESDPESD,dc (6)

where µESD refers to the call cost of ESD unit power, yuan/kW.
 Power generation cost of PVs: PVs are clean energy, so there is no fuel cost, so
CPV,ge only consists of the operation and maintenance cost of PVs CPV,om.

CPV,ge = CPV,om =
T

∑
t=1

cPV,omPPV(t) (7)

where cPV,om is the unit operation and maintenance cost of PV, yuan/kW; PPV(t) is
the PV output at time t, kW.
® Power generation cost of MTs: CMT,ge consists of fuel cost and operation and main-
tenance cost CMT,om (see Equation (8)). Among them, CMT, f u is related to factors such
as natural gas price and power supply efficiency of the unit [22], and its calculation
formula is shown in Equation (9). The calculation formula of CMT,om is shown in
Equation (10).

CMT,ge = CMT, f u + CMT,om (8)

CMT, f u =
T

∑
t=1

(3600/4.1868)× cgas

Qgasη
· PMT,i(t) (9)

CMT,om =
T

∑
t=1

NMT

∑
i=1

cMT,omPMT,i(t) (10)

where cgas is the price of natural gas, yuan/m3; Qgas is the power generation for
natural gas, kcal/m3; η is the power supply efficiency for the unit, %; PMT(t) is the
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MT output at time t, kW; cMT,om is the unit operation and maintenance cost of MTs,
yuan/kW.
¯ Electricity purchase cost Ce,buy

Ce,buy =
T

∑
t=1

(
pph(t) · Pee(t)

)
(11)

where pph(t) is the electricity price purchased from the superior power grid at time t,
yuan/kW; Pee(t) is the exchange power for the electric energy at time t, kW.
° Environmental treatment cost Cpt: CO2 and NOx emissions come from MTs [23].
The calculation formula of Cpt is shown in Equation (12).

Cpt =
T

∑
t=1

cpo,kσpo,kPMT,i (12)

where cpo,k are the emission cost coefficients of ith pollutants, respectively, yuan/kg;
σpo,k is the discharge amount of ith pollutant, kg/kW.

(2) Objective function F3: the total power loss of the branch ∆Anl_total is the lowest.

F3 = min
T

∑
t=1

b

∑
i=1

10−3 ×
(

P2
i (t) + Q2

i (t)
)

Ri

U2
i (t)

∆t (13)

where b is the number of branches; Pi(t) and Qi(t) are, respectively, the active power
(kW) and reactive power (kVar) flowing through branch i at time t; Ui(t) is the terminal
node voltage of branch i at time t, kV; Ri is the resistance value on branch i; ∆t is the
duration of each period, h.

(3) Objective function F4: the installation ratio γESD,rate of ESD is minimum.

F4 = min

NESD
∑

i=1
EESD,i

NPV
∑

i=1
EPV,i

× 100% (14)

where NESD is the number of ESDs installed; NPV is the number of installed PVs;
EESD,i is the capacity of the ith ESD, kW h; EPV,i is the capacity of the ith PV, kW h.

3.2. Constraints

The regulation model needs to meet equality conditions, such as power balance con-
straints and some inequality conditions, such as unit output constraints, voltage constraints,
energy storage operation constraints and power purchase constraints.

3.2.1. Power Balance Constraints

The sum of the output of all units is equal to the sum of load power and power
loss [24], namely:{

Pg(t) + PPV(t) + PMT(t) + PESD,dc(t)− PESD,c(t) = PL(t) + Ploss(t)
Qg(t) + QMT(t) = QL(t) + Qloss(t)

(15)

where Pg(t) and Qg(t) are the active power (kW) and reactive power (kVar) of the power
supply at time t, respectively; PMT(t) and QMT(t) are, respectively, the active power (kW)
and reactive power (kVar) emitted by the MTs at time t; PESD,dc(t) and PESD,c,i(t) are,
respectively, the discharge and charging power of ESD at time t, kW; PL(t) and QL(t)
are, respectively, the active power (kW) and reactive power (kVar) of the load at time t;



Sustainability 2023, 15, 10732 6 of 19

Ploss(t) and Qloss(t) are, respectively, the active power (kW) and reactive power (kW) of
the network loss at time t.

3.2.2. Unit Output Constraints

The output of the unit meets the following constraints:

Pi,min ≤ Pi(t) ≤ Pi,max (16)

where Pi,max and Pi,min are, respectively, the maximum and minimum value of active output
of unit i, kW.

3.2.3. Voltage Constraints

The node voltage and voltage deviation satisfy the following constraints:{
Umin

i ≤ Ui(t) ≤ Umax
i

Umin
dev UN ≤ Udev(t) ≤ Umax

dev UN
(17)

where Umax
i and Umin

i are, respectively, the maximum value and minimum value of the
voltage amplitude of the ith node, kV; Umax

dev and Umin
dev are, respectively, the maximum value

and minimum value of allowable voltage deviation of the ith node, %.

3.2.4. Energy Storage Operation Constraints

The ESD meets the following operational constraints during operation [25]:
0 ≤ PESD,c(t) ≤ uESD,c(t)Pmax

ESD,c
0 ≤ PESD,dc(t) ≤ uESD,dc(t)Pmax

ESD,dc
uESD,c(t) + uESD,dc(t) ≤ 1

SOCmin ≤ SOC(t) ≤ SOCmax

(18)

where PESD,c(t) and Pmax
ESD,c are, respectively, the charging power of ESD at time t and the

maximum value of the charging power, kW; PESD,dc(t) and Pmax
ESD,dc are, respectively, the

discharge power of ESD at time t and the maximum value of the discharge power, kW;
uESD,c(t) and uESD,dc(t) are, respectively, the charging and discharging state of ESD at time
t, which are variables of 0 to 1, uESD,c(t) = 1 indicating that ESD is in a charging state and
uESD,dc(t) = 1 indicating that ESD is in a discharging state; SOC(t) is the state of charge
of ESD at time t, kVA; SOCmax and SOCmin are, respectively, the maximum and minimum
values of ESD state of charge, kVA.

3.2.5. Power Purchase Constraints

The power purchased meets the following constraints:

0 ≤ Pee(t) ≤ Pee,max (19)

where Pee,max is the maximum value of electric energy exchange power, kW.

3.3. Mathematical Model of Voltage Regulation

The magnitude difference between objective functions is very large, and the dimen-
sions are inconsistent, which will affect the results of DNVR if it is not processed. In order to
eliminate this influence, it is necessary to standardize all indicators, among which the most
typical one is normalization [26]. In this paper, the maximum–minimum normalization
method is used to map the data values of each index to [0, 1]. Set F′n as the objective function
after normalization, and the calculation formula is as follows:

F′n =
Fn − Fn,min

Fn,max − Fn,min
(20)
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where Fn is the ith objective function, n = 1, 2, 3, 4; Fn,max and Fn,min are, respectively, the
maximum and minimum values of Fn.

Then, the mathematical model of DNVR with a high proportion of PVs is:

minF = m1F′1 + m2F′2 + m3F′3 + m4F′4 (21)

where m1, m2, m3 and m4 are, respectively, the weighting factor of F′1, F′2, F′3 and F′4, and
they satisfy m1 + m2 + m3 + m4 = 1.

3.4. Determination of the Weighting Factor of the Objective Function

In this paper, the fuzzy comprehensive evaluation method (FCE) is used to determine
the weighting factor of each objective factor in Section 3.3 [27], and its calculation steps are
as follows:

Step (1): Calculate the overweight weighted value m′n of each factor, and the calculation
formula is as follows:

m′n =
dac,n

dma,n
(22)

where dac,n is the actual value of the nth factor (usually taking the averaged value),
n = 1, 2, 3, 4; dma,n is the maximum allowable value of the nth factor (usually taking
the maximum value).

Step (2): Calculate the weighting factor of each factor as follows:

mn =
m′n

NF
∑

n=1
m′n

(23)

where NF is the number of objective functions.

4. Mathematical Model Solving Method

In this paper, PSO is used to solve the DNVR model [28]. PSO is a kind of collective
intelligence algorithm designed by imitating the predatory behavior of birds. Assuming
that there is only one piece of food in the area (usually the best solution to the optimiza-
tion problem), the task of birds is to find this source. In the whole research process, by
transmitting their own information to each other, other birds can know their position
through this cooperation to determine whether they have found the best solution. Finally,
by transmitting the best information to the whole bird, the whole bird can gather around
the food source, which is the best solution, that is, the optimal solution of the problem.
The foraging behavior of birds corresponds to the algorithm principle, as shown in Table 1.
The optimal output of each unit and the optimal value of each objective function can be
obtained through PSO.

Table 1. Correspondence between foraging behavior of birds and algorithm principle.

Behavior PSO

Bird Particle
Forest Solution space

The amount of food Objective function value
The position of each bird A solution in space (Particle position)

The postion with the most food Global optimal solution

PSO is initialized as a group of random particles, and the optimal solution is found
through iteration. In each iteration, the particle updates its position and velocity by tracking
two extreme values: one is the optimal solution found by the particle itself, which is called
individual extreme value; the other is the optimal solution found by the whole population
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at present, which is called the global extreme value. Among them, the formula for updating
position and speed is as follows [29]:

Vt+1
i = ωVt

i + r1 p(Pt
i − xt

i ) + r2 p(Gt
i − xt

i ) (24)

Xt+1
i = Xt

i + Vt+1
i (25)

where Vt
i is the velocity of the ith particle in the tth iteration; p is a random number between

0 and 1; r1 is a self-learning factor; r2 is a global learning factor; ω is the inertia weight; Xt
i

is the position of the ith particle in the tth iteration.
The traditional particle swarm optimization algorithm uses a fixed ω, which affects

the global search and convergence speed [30]. Using variable ω can improve the global and
local optimization performance of the algorithm, and its calculation formula is as follows:

ω =
ωmaxd2

max − (ωmax −ωmin)d2

d2
max

(26)

where ωmax and ωmin are, respectively, the maximum and minimum value of inertia weight;
d is the current iteration number; dmax is the maximum number of iterations.

5. Example Analysis
5.1. Basic Data

In this paper, the programming is based on MATLAB (version is R2016a), and the
IEEE33-node system is taken as an example. This system is a classic distribution network
model abstractly equivalent from the actual system, and it is a typical radiation network
model. The system diagram is shown in Figure 1 (numbers in Figure 1, such as 1, 2, 3, etc.,
are node serial numbers.); the voltage reference value UB is 12.66 kV; the power reference
value SB is 100 MVA, and the network parameters are shown in Reference [12]. Select the
PV and load data of the maximum load day in a certain area in summer for analysis (see
Figure 2). A high proportion of PVs are connected at nodes 10, 11 and 12 (the proportion of
PV connection is 72.4% in this calculation example), and the MT is connected at nodes 3
and 24, respectively. See Table 2 for the parameters of output power and voltage limit. The
parameters involved in the cost function are shown in Tables 3 and 4. The electricity price
curve is shown in Figure 3.
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Figure 2. PV and load output.

Table 2. Constrains parameter setting.

Parameter Value

Pi,max 200
Pi,min 100
Umax

i 13.293
Umin

i 11.394
Umax

dev 0.633
Umin

dev −0.633
Pmax

ESD,c −250
Pmax

ESD,dc 250
Pee,max 5000

SOCmax 1000
SOCmin 100

Table 3. Cost parameter setting.

Parameter Value

µESD 0.045
cPV,om 0.0096

cgas 2.20
Qgas 8500

η 32
cMT,om 0.082

Table 4. Environmental treatment cost parameter setting.

Pollutant Type cpo,k σpo,k

CO2 724 0.994
NO 0.0036 0.00653
NO2 0.2 0.00312
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Figure 3. Time-sharing electricity price curve.

In order to verify the method proposed in this paper, firstly, the nodes are grouped
into (k− i) categories (0 < i < k, and i is an integer), and (k− i) ESD with the same total
capacity are, respectively, connected to various cluster centers, and (k − 1) schemes are
obtained. Then, according to the method proposed above, the nodes are grouped into k
classes, and a scheme is determined. Then, the nodes are grouped into (k + 1) categories to
determine the last scheme. Connect ESD to each cluster center, respectively, and calculate
DNVR results. To sum up, determine (k + 1) scheme.

In PSO, the maximum number of iterations is 150, the dimension of search space is
144, the number of particles is 50, the maximum and minimum values of inertia weight are
0.9 and 0.4, respectively, and the learning factors c1 and c2 are both 2. The DNVR strategy
based on the PSO algorithm proposed in this paper is used to adjust the voltage of this
example to verify the effectiveness of the proposed model.

See Tables 5 and 6 for the parameter settings involved in the FCE method.

Table 5. Actual value data.

Actual Value Value

dac,1/kV 2.0639
dac,2/yuan 3017.94
dac,3/kW 0.3368
dac,4/% 0.1056

Table 6. Maximum allowable value data.

Maximum Allowable Value Value

dma,1/kV 2.5400
dma,2/yuan 3796.01
dma,3/kW 0.5549
dma,4/% 0.1234

5.2. Determine the Scheme

The weighting factor of each objective function can be calculated from Equation (22)
and Equation (23), and the results are shown in Table 7.
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Table 7. Weighting factor results of each objective function.

Weighing Factor Value

m1 0.2646
m2 0.2590
m3 0.1977
m4 0.2787

In this paper, the Newton–Raphson method is used to calculate the power flow, and
the power flow results before and after the high-proportion PV grid connection can be
obtained, among which the voltage results are shown in Figure 4.
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proportion PV grid connection.

It can be found that after a high proportion of PV nodes are connected to the grid,
the voltage of each node rises, and the voltage near the access point (such as nodes 10, 11
and 12) rises most obviously at noon and afternoon (that is, the peak period of PV output),
and even the voltage exceeds the limit. k-means clustering is performed on the voltage
deviation curve of each node, and the best k value is determined by the elbow rule. See
Figure 5 for SSE curve.
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Figure 5. SSE curve.

Observing Figure 5, it can be seen that after k = 4, the SSE value basically does not
change, and the SSE curve forms an “elbow” shape at k = 4, so 4 is selected as the best k
value. Thus, 33 nodes are grouped into 4 categories, and the results are shown in Table 8.
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Table 8. Node clustering results.

Cluster Sequence Number Node Division Cluster Center (Node
Configured with ESD)

1 1, 2, 19~22 19
2 6~9, 26~33 8
3 10~18 13
4 3~5, 23~25 24

The system partition is shown in Figure 6.
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Figure 6. ESD four-zone configuration system diagram.

For comparative analysis, the nodes are grouped into 1, 2, 3 and 5 categories by using
the k-means algorithm to determine 1, 2, 3 and 5 zones, respectively, and the ESD is also
connected to the cluster center, respectively. See Figures 7–10 for the system diagram.
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So as to determine the following five schemes:
Scheme 1: According to Figure 1, one ESD; with a capacity of 3.6 MWh are configured

at nodes 7;
Scheme 2: According to Figure 8, two ESDs; each with a capacity of 1.6 MWh are

configured at nodes 3 and 9;
Scheme 3: According to Figure 9, three ESDs; each with a capacity of 1 MWh are

configured at nodes 3, 8 and 13;
Scheme 4: According to Figure 6, four ESDs; each with a capacity of 0.7 MWh are

configured at nodes 19, 8, 13 and 24;
Scheme 5: According to Figure 10, five ESDs, each with a capacity of 0.56 MWh are

arranged at nodes 19, 7, 13, 24 and 31.

5.3. DNVR Result Analysis Based on PSO

Using the PSO algorithm to solve the model, the output results of each unit and the
results of each objective function at each time are obtained. Among them, the results of the
MT output, ESD output and voltage deviation are shown in Figures 11–13, respectively.
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Figure 11. MT output results under various schemes (a) scheme 1; (b) scheme 2; (c) scheme 3;
(d) scheme 4; (e) scheme 5.

See Table 9 for the specific cost results of each scheme after DNVR.

Table 9. Specific Results of Total Cost.

Subitem CESD/Yuan CPV,ge/Yuan CMT,ge/Yuan Ce,buy/Yuan Cpt/Yuan

Before DNVR 0 280.0 0 40,315.1 0
scheme 1 270.0 280.0 6085.8 31,144.2 1311.1
scheme 2 540.0 280.0 5997.6 30,259.0 1292.0
scheme 3 769.7 280.0 6645.7 28,384.1 1431.6
scheme 4 1080.0 280.0 6262.2 25,538.2 1349.0
scheme 5 1280.8 280.0 5897.2 27,352.3 1266.5

The numerical comparison results of each objective function under each scheme are
shown in Table 10.
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Table 10. Total comparison results of each objective function.

Subitem Udev_total/kV CE_total/Yuan Anl_total/kWh γESD,rate/%

Before DNVR 48.1080 40,595 6.5324 0
scheme 1 35.6493 39,091 5.8300 12.34
scheme 2 35.1966 38,369 5.6184 10.97
scheme 3 34.0495 37,511 5.5829 10.29
scheme 4 32.3250 34,509 5.2677 9.60
scheme 5 33.8130 36,059 5.5074 9.60
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Figure 13. Voltage deviation results under various schemes (a) scheme 1; (b) scheme 2; (c) scheme 3;
(d) scheme 4; (e) scheme 5.

Analyze with reference to Figures 11–13 and Tables 9 and 10:
Before DNVR: there is only PV in the system, and the ESD and MT are not connected

at this time, so the call cost of the ESD, power generation cost of the MT, and environmental
treatment cost are all zero; Ce,buy is the highest, and CE_total is also the highest compared
with other schemes.

Scheme 1: The total output of the MT reaches the upper limit at 1:00, 10:00~11:00,
13:00, 17:00~18:00 and 21:00~22:00, and the output of the ESD always reaches the limit,
and most are in the discharge state. Since the output of PV is fixed, CPV,ge is also fixed.
After DNVR under scheme 1, CESD is the lowest, Udev_total is reduced by 25.90%, CE_total is
reduced by 3.70%, and Pnl_total is reduced by 10.75%.

Scheme 2: The total output of the MT reaches the upper limit at 1:00, 7:00, 24:00, and
both ESD outputs reach the limit at each time. After DNVR under scheme 2, Udev_total is
reduced by 26.84%, CE_total is reduced by 5.48%, and Pnl_total is reduced by 13.99%.

Scheme 3: The total output of the MT is the most, so CMT,ge is the highest, and ESD is
discharged most of the time. After DNVR under scheme 3, Udev_total is reduced by 29.22%,
CE_total is reduced by 7.60%, and Pnl_total is reduced by 14.54%.
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Scheme 4: The total output of the MT is relatively large, and most of the ESD is in a
discharge state. After DNVR under scheme 4, Udev_total is reduced by 32.81%, CE_total is
reduced by 14.99%, and Pnl_total is reduced by 19.36%.

Scheme 5: The total output of the MT is relatively minimum, and each ESD reaches
the limit at all times. After DNVR under scheme 5, Udev_total is reduced by 29.71%, CE_total
is reduced by 11.71%, and Pnl_total is reduced by 15.69%.

It can be found that the objective function values of these five schemes are effectively
reduced compared with those before DNVR, which verifies the effectiveness of the mathe-
matical model established in this paper. Among the five schemes, the closer the system
partition is to the four zones, the better the effect of DNVR. Among them, the installation
ratio of ESD γESD,rate in scheme 1 is the largest, but the adjustment effect is still the worst,
which shows that the effect of centralized access to the ESD is not as good as that of decen-
tralized access to the ESD. The γESD,rate in scheme 4 is equal to scheme 5 in ESD, and the
lowest among several schemes, but the regulation effect of scheme 4 is still better than any
other scheme, which verifies the effectiveness of the ESD partition configuration method
based on node k-means clustering proposed in this paper.

6. Conclusions

In this paper, a DNVR model with a high proportion of PVs is established, and the
model is solved by the PSO algorithm. The effectiveness of this method is verified based
on the IEEE33-bus system. The conclusions are as follows:

(1) When establishing a DNVR model with the lowest total voltage deviation, the lowest
total cost, including fuel cost, operation and maintenance cost, electricity purchase
cost, and environmental treatment cost, the lowest total power loss, and the lowest
installation ratio of the ESD as the goal, the model is relatively perfect. It can be
more in line with the actual operation of a distribution network and has a good
adjustment effect by comprehensively considering many constraints such as power
flow constraints, voltage deviation constraints and energy storage constraints;

(2) After high-proportion PV access, node k-means clustering is performed on the voltage
deviation curve of each node. The system is divided into different areas, and then FCE
is used to determine the weighting factor of each objective function, thus making the
determination of energy storage access location more reasonable and the subsequent
adjustment effect better;

(3) The results of the PSO algorithm show that the calculation results of the proposed
method can effectively adjust the voltage, reduce the cost, reduce the power loss and
reduce the installation ratio of ESD, thus improving the economy and security of
power grid operation.

The method proposed in this paper is suitable for distribution networks with energy
storage devices, especially with a high proportion of photovoltaic units. Because the
connection of wind turbines has not been considered in the mathematical model proposed
in this paper, it needs to be further explored in future research to put forward a more
effective voltage regulation scheme.
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