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Esenler, İstanbul 34220, Turkey; bildiri@yildiz.edu.tr
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Abstract: The effects of environmental pollution and Industry 4.0 on a sustainable environment
are the main topic of this study, which may be regarded as a complement to the literature on
energy and the environment. The paper aims to investigate the relation between Industry 4.0 (I4.0)
and environmental sustainability, which is very important for policymakers, practitioners, and
company executives in the period of Industry 4.0 in Turkey. To this end, natural gas consumption and
technology patents as control variables of Industry 4.0, in addition to the variables of environmental
pollution and economic growth, were selected during the period of 1988 to 2022 using Markov
switching VAR (MS-VAR), Markov switching Granger causality (MS-GC), Fourier VAR (FVAR),
and Granger causality (FGC) techniques. The reason for covering the period starting in 1988 is
its recognition as the beginning of the Industry 4.0 era with AutoIDLab in 1988. According to the
causality results, there was unidirectional causality running from technology patents to environmental
pollution in the results of both MS-GC and FGC. However, the directions of causality between natural
gas consumption and environmental pollution, and between economic growth and environmental
pollution differed between regimes in the MS-GC model. Bidirectional causality was determined
between economic growth and environmental pollution in the first MS-GC regime. However, in
the second regime, unidirectional causality from economic growth to environmental pollution was
determined. The causality direction determined by Fourier causality gave the same result with the
second regime. A similar finding was observed in the direction of causality between natural gas
consumption and CO2 emissions. While MS-GC determined unidirectional causality from natural gas
consumption to environmental pollution in the first regime, a bidirectional causality result between
GC and environmental pollution was determined in the second regime. The FGC result was similar
to the second regime result. And lastly, the MS-GC and FGC methods determined unidirectional
causality from Industry 4.0 to environmental pollution.

Keywords: Industry 4.0; sustainability; natural gas consumption; environmental pollution; MS-VAR;
MS-Granger causality; Fourier Granger causality; Fourier VAR

1. Introduction

Industry 4.0 is critical in improving the production processes of various industries,
including the oil and gas industry. Thanks to the adoption of Industry 4.0 technology,
which has resulted in the optimization and enhanced performance of the manufacturing
industry, there has been a significant movement from traditional manufacturing enterprises
to smart factories [1,2]. Industry 4.0 refers to modern technology, including cyber-physical
systems, the Internet of things (IoT), big data, the cloud, automation, cybersecurity, and
artificial intelligence. Furthermore, IoT, cloud, big data, and analytics were designated
as the four foundation technologies of Industry 4.0 in [3–5]. Big data and analytics are
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essential enablers for advanced applications of Industry 4.0, while cloud services offer
simple access to information and services, and IoT addresses communication problems.
To this end, advanced technologies have addressed some of the industry’s top concerns,
including supply chain resilience, exploration, analysis, safety, and sustainability. In real
terms, the oil and gas supply chain has already undergone positive adjustments.

While some sectors are transforming under the influence of Industry 4.0, the need
for energy consumption is increasing. Under the influence of Industry 4.0, there has been
a gradual increase in natural gas consumption, especially since the beginning of 2000.
The main reasons for the increase in natural gas consumption are that it is an essential
source of electricity production and the most crucial energy input of the industrial sector,
with an increase in individual consumption. In this process, analysis methods that use
large data groups have just started to be used in production to increase the quality of
production and impact energy consumption. Energy consumption is one of the leading
causes of environmental pollution, a critical problem for our world. Compared to the
average temperature between 1850 and 1900, global surface temperatures increased by
1.09 ◦C over the past 10 years (2011–2020) [6]. Around the world, there was a rise of 1.59 ◦C.
Global temperatures are expected to rise by 1.5 ◦C or more in the next 20 years due to GHG
emissions, which have caused an average warming of ~1.1 ◦C since the 1850–1900 period.
The hazardous limit of 2 ◦C must not be surpassed to safeguard populations and ecosystems
from the overwhelming effects of climate change. Hence, restricting global temperature
increases to 1.5 ◦C is crucial for the same reason [6].

In the era of Industry 4.0, governments are concerned about reducing energy use,
lessening CO2 emissions, and saving money to improve energy efficiency and limiting
disruptions caused by I4.0 technologies. These issues also deal with how to evaluate and
select the appropriate energy technology in accordance with sustainability principles [7].
The International Energy Agency (IEA) estimates that the widespread use of current digital
technology may reduce production costs in the oil and gas industry by 10% to 20%. In
this respect, businesses are spending more on applications that may benefit from digital
technology, such as inventory management and logistics. Among the applications taking
off in the oil and gas industry are digital process optimization and predictive maintenance
for equipment.

The influence of the Fourth Industrial Revolution on energy is mainly unknown (for
example, lack of access to energy), while it presents several chances for sustainability
(addressing social, economic, and environmental concerns) [8]. Hence, Industry 4.0 has
created a situation where businesses must make wise judgments to maintain an advantage
over the competition [9]. The same can be true for the environment and energy consump-
tion. Environmental pollution is a major problem and, in the era of Industry 4.0, their
bidirectional impact should be assessed. Some studies have analyzed the relationship
between energy consumption and Industry 4.0, whereas, in this study, we focus on natural
gas consumption and its relationship with the environment, enabling the dimensions of
environmental pollution, as well as policies to reduce it, to be intensively discussed.

A mentioned above, some papers discussed the relationship between the energy sector
and Industry 4.0. In line with the Industry 4.0 era, Lu et al. [10] evaluated the leading
technologies and application scenarios of the oil and gas (O&G) industry, assessed the
benefits and challenges of implementation, and offered strategies and policies to support
the sector’s adoption of Industry 4.0. The authors of [11–13] also presented vital stud-
ies for the O&G industry. Onyeme and Liyanage [14] investigated the Industry 4.0 (I4.0)
maturity models (MMs) that are currently accessible for manufacturing sectors and inves-
tigated how well they were implemented in the oil and gas (O&G) upstream sector. The
authors of [15] highlighted IoT implementation conflicts among countries, while adapta-
tion issues for I4.0 technologies, such as cloud computing and robotics implementations,
were highlighted by [16]. Raj et al. [17] explored the obstacles to adopting I4.0 technol-
ogy. Among these impediments, Breunig et al. [18] cited the high R&D expenses of I4.0.
Jasiulewicz-Kaczmarek et al. [19] analyzed Industry 4.0 technologies for sustainable asset
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lifecycle management. Recently, Chauhan et al. [20] demonstrated digitalization’s inher-
ent and extrinsic constraints in the context of I4.0. In addition to the problems listed
above, the effects of I4.0 on the sustainability of production and the environment are being
questioned. According to Lin et al. [21], the technologies launched under the notion of
I4.0 necessitate an innovation strategy followed by businesses and governments focusing
on environmental issues. Blockchain technology is one of the technologies created as
part of the I4.0 development. Nonetheless, cryptocurrency technology is regarded as the
most significant technological innovation in the context of financial technologies within
I4.0 [22]. However, the environmental effects of blockchain technologies, in addition to
other I4.0 technologies, are expected to put pressure on the environment.

Kluczek et al. [23] examined how Industry 4.0 places demands on business owners
to make energy-efficient decisions in order to compete in the market. This study intro-
duced prospect theory (PT) for decision making in Industry 4.0 to choose the best energy
technology. Bildirici and Ersin [2] employed internet and communications technology
(ICT) exports, research and development (R&D), artificial intelligence (AI), ICT technology
patents, and Bitcoin as proxies for Industry 4.0. However, these variables could only be
obtained after 2000. The period of 2000–2021 can be considered short when using annual
data. For this reason, we use technology patents as a proxy variable for Industry 4.0. On
the other hand, various studies [24,25] have highlighted the inclined energy consumption
due to I4.0 technologies, in addition to Bitcoin mining activities which significantly burden
the environment.

On the other hand, some papers analyzed the relationship linking natural gas con-
sumption, economic growth, and environmental pollution. The initial literature collection
was a time series data investigation [26–29]. The second, more condensed body of literature
used panel data model analysis as its foundation [29–37]. Later, Zamani [38] used the vector
error correction model (VECM), Hu et al. [39] applied cointegration and causality for the
United States (US), and the authors of [40] investigated Taiwan. They found a long-term re-
lation between natural gas consumption (NGC) and economic development. Furthermore,
some papers found a unidirectional causality between NGC and economic growth in multi-
ple nations, including [41,42] for the US, [43] for the Soviet Union, [44] for Nigeria, [45] for
Iran, [46] for the United Kingdom (UK), US, and Poland, [32] for New Zealand and Aus-
tralia, [31] for Pakistan, Bangladesh, Nepal, India, and Sri Lanka, and [47] for Pakistan.
Considering the studies conducted after 2020, according to [48], Nigeria’s economic growth
was boosted by using natural gas. Additionally, the authors used nonlinear estimate
methods to support this assertion and concluded that the relationship between natural
gas consumption and economic development is nonlinear. Awodumi and Adewuyi [49]
discovered that increasing Gabon’s natural gas use effectively boosted economic growth
and reduced environmental pollution. However, they asserted that natural gas usage in
Nigeria had effects that slowed growth. According to Etokakpan [50], economic growth
and natural gas consumption are both impacted by one another; as a result, a feedback
connection was established. In the context of the top CO2-emitting global economies,
Azam et al. [51] could not show any causality relationship between natural gas use and
economic development.

However, these papers did not analyze cointegration and causality among Industry 4.0,
natural gas consumption, economic growth, and environmental pollution for Turkey. This
paper aimed to analyze the causality among economic growth, natural gas consumption,
and environmental pollution, and Industry 4.0 using Markov switching VAR (MS-VAR),
MS-Granger causality (MS-GC), Fourier VAR (FVAR), and Fourier Granger causality (FGC)
techniques from 1988 to 2022 in Turkey. The reason for covering the period starting with
1988 is its recognition as the beginning of the Industry 4.0 era with AutoIDLab in 1988. The
MS-VAR method can provide us with information about the stages of fluctuations because
when economic growth is used as variable, fluctuations should be taken into account. The
stage of the business cycle must be considered when analyzing the evidence of the GDP
variable; otherwise, estimated parameters could be inaccurate. Some articles used the
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Markov switching (MS) approach to solve this issue in the context of GDP and oil price
variables. The first paper that used the MS approach to evaluate oil price volatility was [52].
Later, MS-AR and MS-VAR models were used by [53–58] to examine the effects of energy
prices on macroeconomic variables and/or to establish the relationship between energy
consumption and economic growth. However, since the period was short, we also used
the Fourier VAR and F-GC methods. On the other hand, the Fourier approach allows
investigating nonlinear series or series with structural breaks with unknown forms and
break dates. The simultaneous use of these methods is expected to provide an opportunity
to make effective policy recommendations.

Our expectation is that, if the results in the MS-GC method differ between regimes, the
results in the FGC method should be similar to those in one of the regimes. In this case, the
policy recommendation will be based on the regime stages and the general interpretation.
If the results are completely different, no policy recommendation will be made.

This paper was constructed as follows: Section 2 presents the methodology; Section 3
explains the data; Section 4 gives the results; Section 5 presents the discussion; Section 6
supplies the conclusion.

2. Methodology
2.1. Markov Switching VAR and Causality

As an alternative to a stationary linear autoregressive model, Hamilton (1989) provided
a simple nonlinear framework for modeling economic time series with a permanent and
cyclical component.

The MSI(.)-VAR(.) model is as follows:

yt = µ(st) +
q
∑

k=0
Ai(st)yt−1 + ut,

ut/st ∼ NID(0, ∑ (st)).
(1)

Ai (.) shows the coefficients of the lagged values of the variable in different regimes,
and ∑ shows the variance of the residuals in each regime. µ(st) defines the dependence of

the mean µ of the K-dimensional time series vector on the regime variable st.
In an MS-VAR model, st is governed by a Markov chain, and

Pr
[
st
∣∣{st−1}∞

i=1, {yt−1}∞
i=1
]
= Pr{ st|st−1; ρ}, (2)

where p includes the probability parameters. That is, the state in period t would depend
only on the state in period t− 1. On the other hand, the conditional probability distribution
of yt is independent of st − 1, i.e., P(yt|Yt−1, s t−1) = Pr(yt|Yt−1 ).

It is assumed that s follows an irreducible ergodic M state Markov process with the
transition matrix, defined as

P =


p11 p12 · · · p1M
p21 p22 · · · p2M

...
... · · ·

...
pM1 pMM · · · pMM

. (3)

The Markov chain is ergodic and irreducible; a two-state Markov chain with transition
probabilities pij with unconditional distribution is presented in the above equations. There
are different methods to estimate the MS models, such as the maximum likelihood estimate
(MLE) and the expectation maximization (EM) suggested by Hamilton.

The EM algorithm was created to estimate the parameters of a model where the
observed time series depends on an unobserved or hidden stochastic variable. To make an
inference, an iterative method was used for t = 1, 2, . . . , T, while taking the previous value
of this probability,

ξit−1 = Pr[st−1 = i|Ωt−1; θ ]. (4)
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This inference can be demonstrated as

ξit = Pr[st = i|Ωt; θ], (5)

where i = 1, 2, Ωt denotes the information set, and θ is the vector of parameters to
be estimated.

The iterative estimation technique can be used to make an inference as

ξit−1 = Pr[st−1 = i|Ωt−1; θ] for t = 1, 2, . . . , T. (6)

The conditional log likelihood can be given as

log f (y1, y2, . . . , yT

∣∣∣∣y0; θ) = ∑ log f (yt|Ωt−1; θ) . (7)

The authors [56,57] used the MS-VAR and MS causality models in their research, and
they used two different models to examine the relationship between economic growth
and energy consumption. These models were MSIA(.)-VAR(.) and MSIAH(.)-VAR(.)
MSIA(.)-VAR(.) is given as

yt = µ(st) +
i

∑
i=0

Ai(st)xt + ut(st), (8)

where ut/st ∼ N
(
0, δ2(st)

)
, and Ai (.) represents the coefficients of the lagged values of

the variables in the different regimes. According to these models, where δ2(st) describes
the variance of the residuals of each regime, µ(st) symbolizes the dependence of the mean
µ on the k-dimensional time series vector. In addition, (st) can be defined as the regime
variable. In the context of the study, the input variables are used.

We can define these input variables in matrix form as

xt =
[

xt
′]′

=
(
dlgct−1, . . . , dlyt−p

)
”, (9)

where p is the optimum lag length and varies according to the information criterion.
Additionally, the regimes here have varying characteristics. That is, the regime varies
according to its previous value and probabilities [59], and it can be defined as

Pr = (st = j|st−1 = i ) = Pij ≥ 0, (10)

where Pij represents the probability of transition from regime i to regime j. It can also be
shown as

k

∑
j=1

Pr(st = j|st−1 = i ) = 1, (11)

where i, j = 1, 2 . . . , k shows k different possible regimes. The transition between regimes is
determined by the Markov model. This model can be defined as

P = [a ≺ yt ≤ b|y1, y2, y3, . . . , yt−1 ] = P[a ≺ yt ≤ b|yt−1 ]. (12)

It can be shown in matrix form as follows:

P =

[
p11 p12
p21 p22

]
. (13)

The Markov chain is ergodic can irreducible, and the ergodic probability vector can be
expressed as the unconditional probability of each regime. When the Markov chains are
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accepted as ergodic, unconditional probabilities can be used as initial values [60]. They are
given by

ξ j = Pr = [s = j] =
1− pii

2− pii − pjj
(14)

Optimal prediction probabilities are found using

εt|t =
εt|t−1Φt

1′
(

εt|t−1Φt

)
”

, (15)

where εt+1|t = P
′
εt|t, and Φt symbolizes the vector of conditional densities, while 1 sym-

bolizes a unit column vector. The estimation is made using the following equation:

Et(yt+1) =
s

∑
j=1

s

∑
i=1

Prt(St = j)Pij (w
(j)
0 +

p(j)

∑
l=1

β
(j)
l yt−l+1). (16)

2.2. Markov Switching VAR Nonlinear Granger Causality

The authors of [56,57] used the MS-Granger causality for MSIA(.)-VAR(.) and/or
MSIAH(.)-VAR(.) models. The approach is described as follows:[

dlxt
dlyt

]
=

[
µ1(st)

µ2(st)

]
+

p

∑
j=1

[
Φj

11st Φj
12st

Φj
21st Φj

22st

][
dlxt−j
dlyt−j

]
+

[
ε1,st
ε2,st

]
(17)

In the dlxt vector, dlyt is Granger cause of dlxt in each j-th regime if the parameter set
or sets of Φj

12 and Φj
21 are statistically different from zero.

2.3. Fourier VAR and Granger Causality

The Fourier model is defined as follows according to [1,2]:

∆yt = c0 +
p

∑
i=1

α1∆yt−i +
q

∑
n=1

β1∆xt−n + γ10 sin
(

2πnt
T

)
+ γ11 cos

(
2πnt

T

)
+ ε1t (18)

∆xt = c02 +
k

∑
i=1

α2∆xt−i +
m

∑
n=1

β2∆yt−n + γ20 sin
(

2πnt
T

)
+ γ21 cos

(
2πnt

T

)
+ ε2t (19)

where εt is i.i.d., and σ2ε(0, ∞). For the Granger causality method, in the bivariate
setting, the short-run Granger noncausalities are tested under the null hypotheses of
H0 : β1 = 0 in the first vector and H0 : β2 = 0 in the second vector against the alternatives
of H0 : β1 6= 0 and H0 : β2 6= 0, respectively, in Equations (18) and (19) for all i. The Granger
causality testing requires estimating the vector model with m optimum lag selected with
an information criterion. Common criteria include Schwarz and Akaike.

3. Data

The cointegration and causality between natural gas consumption, Industry 4.0, envi-
ronmental pollution, and economic growth (y) were explored using monthly data from 1988
to 2021. Every variable was changed to X = log (Xt). Data and their descriptive statistics are
given in Table 1.
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Table 1. (a) Data definitions. (b) Descriptive statistics.

(a)

Data Definations Symbol Source

Natural gas consumption Billion cubic meters GC BP

Economic growth Real GDP Constant 2015 USD Y World Bank

Carbon dioxide emissions from energy Million tons of carbon dioxide CO BP

Industry 4.0 Technology patent number TP OECD

(b)

Descriptive Statistics

GC
Skewness −0.396685
Kurtosis 1.793827
Jarque–Bera 3.482108

Y
Skewness −0.277196
Kurtosis 1.623441
Jarque–Bera 3.303399

CO
Skewness −0.480169
Kurtosis 2.202699
Jarque–Bera 3.465017

TP
Skewness 0.132263
Kurtosis 1.916468
Jarque–Bera 2.125191

In Table 1b, it was presented the results of Skewness, Kurtosis and Jarque–Bera Statistics.

4. Empirical Results

The stages in this paper are given as follows: (1) the stationarity of the variables
was explored using the ADF and PP tests; (2) the Johansen cointegration test was used.
Since the null hypothesis of no cointegration was not rejected, innovations of the variables
were evaluated using the MSVAR and FVAR methods. The results of MSVAR and FVAR
methods were used to determine the direction of causality; (3) the VAR model was evaluated
against an MS-VAR structure with two regimes and then with two regimes versus three to
determine the number of regimes. After the regimes of the MSVAR model were determined,
MS-VAR and FVAR methods were applied; (4) the causality results found by the MSVAR
method were compared with those found by the Fourier VAR (FVAR) method.

In Table 2, the ADF test stated that all variables were found as I (1).

Table 2. ADF test results.

Variables ADF PP

ly −1.7159 0.8636
dly −6.1053 −6.1042
lgc −1.2648 −1.716
dlgc −5.047 −4.110
ltp −1.919 −1.223
dltp −3.119 −3.196
lco −1.215 −1.006
dlco −3.117 −3.145

The results of the Johansen cointegration test are shown in Table 3. We can conclude
from Table 3’s findings that the null hypothesis of no cointegration was not rejected. The
variables are I(1), but they are not cointegrated. In this case, for MS-Granger causality and
Fourier causality, the innovations of variables dlgct, dltpt, dlcot, and dlyt were used.
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Table 3. Johansen cointegration test results.

Unrestricted Cointegration Rank Test (Trace)

Hypothesized No. of CEs Trace Statistic 0.05 Critical Value

None 46.13306 47.85613
At most 1 26.41822 29.79707
At most 2 12.27696 15.49471
At most 3 0.264171 3.841466

4.1. MS-VAR and Fourier VAR Results

The MSIA(2)-VAR(1) model was established. An MS model with two different regimes
where both intercept and autoregressive coefficients are regime dependent. The regimes
were determined as a crisis regime or growth regime. Regime 1 consists the recessions in
the early 1990s, and the recession in 2000–2001, and 2008 great recession.

The MSIA(2)-VAR(1) model suggests, according to our results, that the total lengths
of the growth regimes were higher than the other regimes. In Table 4, the estimates
of all the parameters of the MSIA(2)-VAR(1) model using EM algorithm are reported.
This model is tested for linearity using the LR linearity statistics assuming the null and
alternative hypotheses to be a linear model and a MS model, respectively. All the statistics
support the existence of non-linearity. The transition probability matrix was ergodic.
Additionally, this matrix could not be irreducible. The regime probabilities were found
as Pr(st=1| st – 1 = 1) = 0.72, Pr(st = 2|st – 1 = 2) = 0.91. The findings suggest that the
persistence of the second regime was higher than that of the first.

Table 4. MSIA(2)-VAR(1) results.

Variables
Regime 1 Regime 2

dlgc dly dlco dltp dlgc dly dlco dltp

c −0.85
(−2.15)

−0.77
(−1.92)

0.3482
(1.66)

−0.4218
(−1.239)

−0.31
(−1.89)

0.029
(2.41)

0.139
(1.33)

−0.497
(−1.517)

dlgc(−1) 0.79
(3.2)

0.23
(2.16)

0.46
(6.95)

0.13283
(2.8562)

0.33
(2.27)

0.47
(1.82)

0.1921
(2.21)

0.5541
(2.433)

dlgc(−2) 0.14
(1.52)

0.46
(1.38)

−0.154
(2.12)

−0.286
(−1.723)

0.38
(1.97)

0.36
(1.86)

−0.128
(5.99)

0.318
(2.69)

dly(−1) 0.211
(1.86)

0.173
(2.36)

−0.099
(−2.16)

−0.1498
(−1.499)

0.25
(1.76)

0.27
(1.95)

−0.189
(2.15)

0.320
(1.933)

dly(−2) 0.38
(1.97)

0.22
(1.97)

0.097
(2.40)

0.575
(1.983)

0.27
(1.82)

0.31
(2.7)

−1.17
(1.83)

0.2436
(1.741)

dlco(−1) 0.388
(0.95)

0.072
(2.18)

0.322
(1.87)

−0.086
(−0.058)

0.795
(1.97)

0.108
(0.32)

−0.028
(2.92)

−0.216
(−0.035)

dlco(−2) 0.106
(1.292)

0.383
(2.16)

−0.061
(1.07)

0.390
(0.258)

0.022
(2.69)

0.104
(0.87)

0.067
(2.21)

0.108
(0.886)

dltp(−1) 0.344
(1.816)

0.459
(2.287)

0.1874
(3.652)

0.1371
(8.851)

0.1021
(1.7667)

0.1703
(2.566)

0.08186
(2.3290)

0.363
(8.859)

dltp(−2) 0.1602
(1.847)

−0.1130
(−2.50)

0.1243
(2.5145)

−0.15
(−5.228)

0.27488
(1.872)

−0.115
(−2.946)

−0.1016
(−2.0528)

−0.459
(−5.76)

Standard error 0.8 0.7
Matrix of transition probabilities
Pp1 0.72
Pp2 0.91
Log likelihood 259.95

The dependent variable in the first equation is the innovation of GC, i.e., dlgc. The
dependent variable in the third equation is the innovation of CO, i.e., dlco. The estimated
coefficients of GC innovations (dlgc) are significant only in the first and second regime. The
sign of the coefficient of lgc(−1) on environmental pollution was positive, and the sign of
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the coefficient of lgc(−2) was negative. In the second regime, similar to the first regime, the
sign of the coefficient of lgc(−2) was negative. Hence, natural gas consumption for lgc(−2)
in both regimes can cause a decrease in carbon emissions.

As emphasized above, we solved the Fourier VAR model due to the short period. Moreover,
we wanted to compare the results. We calculated two Fourier coefficients in the Fourier model.

The results are exhibited in Table 5.

Table 5. Fourier VAR Model.

dlco dlgc dltp dly

dlco(−1) −0.23386 −0.1371 0.086861 −0.34192
(0.89156) (−2.28420) (0.05882) (1.00456)

dlco(−2) −0.10603 −0.48997 -0.390063 0.135953
(0.39525) (−0.83742) (1.25826) (0.39056)

dlgc(−1) 0.183099 0.21507 −0.421802 0.109368
(3.02924) (7.74856) (1.23946) (2.39443)

dlgc(−2) −0.12005 0.181864 0.132834 −0.08153
(2.39519) (1.64365) (2.46506) (1.23849)

dltp(−1) 0.082502 0.10804 1.371348 0.29429
(2.99831) (1.98023) (8.85184) (2.26409)

dltp(−2) −0.0648 −0.04626 −0.801475 −0.03417
(2.37988) (−0.77893) (5.22831) (1.96704)

dly(−1) 0.321676 0.328016 0.723.990 0.436574
(1.87511) (1.73641) (1.91935) (3.53422)

dly(−2) −0.42668 0.540891 0.575327 0.223985
(1.85037) (1.07547) (1.98364) (1.74857)

F1 0.00540 0.00285 0.000848 0.0079587
(3.31555) (1.64821) (1.89658) (2.15814)

F2 0.00014 0.00092 0.00128 0.000421
(3.2367) (1.99524) (1.78253) (2.1173)

R−squared 0.792516 0.84673 0.812799 0.791453
Log likelihood 292.4050
F, Fouriers 5.05 ***

F, Fouriers is the F test with F(q, n-q-1) degrees of freedom where the H0: two Fourier parameters are zero (q = 2).
For F, Fouriers, *** denote significance of either one or both Fourier terms at 1% significance level.

4.2. Markov Switching Causality and Fourier Causality Results

Since accurately presenting the causality findings is essential for both policy ideas
and future research, this section aimed to compare the causality results on the basis of two
distinct approaches. The results were similar.

The results are shown in Figure 1.
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5. Discussion

In this paper, the importance of natural gas consumption in the Industry 4.0 process
and the impact of Industry 4.0 on environmental pollution in the Industry 4.0 period were
evaluated using the MS-VAR, MS-GC and FVAR, FGC methods. Unlike the studies in the
literature, these methods gave us information both about the direction of causality and
about the signs of the coefficients of the variables. The results showed that the selected
methods are important to analyze natural gas, which plays an important role in reducing
environmental pollution in Industry 4.0 processes. The importance of the MS-VAR method
for policy recommendations revealed by our results is similar to the results obtained in
the studies conducted by [17,18,20] and the importance of the FVAR and FGC methods is
similar to the results obtained by [2].

Both MS-VAR and FVAR methods showed that the sign of coefficient of natural gas on
environmental pollution was negative at lag(−2). This result was found for the two regimes
of the MS-VAR method and the FVAR method. In the same way, the Industry 4.0 variable,
symbolized by the variable dltp, may also have a mitigating effect on environmental
pollution. However, this situation was only valid for lag(−2) in the FVAR method and in
the second regime of the MSVAR model. In the first regime and for lag(−1) in regime 2,
and lag(−1) in the FVAR the sign was positive.

When the effect of economic growth on environmental pollution was analyzed, the
MS-VAR model showed a coefficient with a negative sign in lag(−1) in reg1 in lag(−1)
and lag(−2) in reg2, but a coefficient with a positive sign in lag(−2) in reg1 and lag(−1)
in the FVAR. The coefficients and signs between economic growth and the environment
were similar to those found by many studies in the literature. In the natural gas equation,
when the coefficients and signs between Industry 4.0 and natural gas consumption were
analyzed, the coefficient of the sign for lag(−1) in the FVAR model was positive while
lag(−2) was statistically insignificant. In the MSVAR model, the signs of the coefficients
were positive in both regime 1 and regime 2. Industry 4.0 increases natural gas consumption.
When the effect of natural gas on carbon dioxide was analyzed, the negative sign of the
coefficient for lag(2) in all models revealed the importance of natural gas consumption in
the Industry 4.0 period.

The causality results have important implications in terms of policy recommendations.
We compare the findings of the two models in Table 6. Since the results were generally the
same in both models, we could easily use the causality results for policy recommendation.

Table 6. Comparison of the ausality results.

MS-Granger Causality Results

Regime 1

gc↔ y gc→ co gc↔ tp y↔ tp y↔ co tp→ co

Regime 2

gc↔ y gc↔ co gc↔ tp y↔ tp y→ co tp→ co

Fourier Granger causality results

gc↔ y gc↔ co gc↔ tp y↔ tp y→ co tp→ co

SAME SAME (only the
second regime) SAME SAME SAME (only the

second regime) SAME

When the causality results in the context of natural gas consumption and environmen-
tal pollution were compared, the causality direction for the results in the first regime of the
MS-GC model was different from that in the second regime and Fourier causality (FGC). In
the second regime of the MS-GC model and in FGC model, a bidirectional causality result
was determined, whereas unidirectional causality from GC to environmental pollution
was found for the first regime in the MS-GC model. In the MS-GC model, unidirectional
causality from Industry 4.0 to environmental pollution was found in both regimes and the
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FGC model. Industry 4.0 was the Granger cause of environmental pollution. In the context
of the coefficient signs of the variables, the negative sign of the variables at lag(−2) in
regime 2 and in FVAR model showed the positive impact of tp on environmental pollution.
Industry 4.0 was also a variable with positive effects on economic growth at lag(−1) in all
models. The evidence of bi-directional causality among the variables was found between
the variables in both regimes in the MS-GC model and FGC model. Industry 4.0 was an
important variable in both environmental pollution and economic growth.

Similar results were highlighted in [1,2], who found that technology 4.0 had sig-
nificant impacts on the environment. On the other hand, in the context of the relation-
ship between natural gas and economic growth, similar results have been highlighted
in the literature. Indeed, the authors of [49] discovered that increasing Gabon’s natural
gas use effectively boosted economic growth and reduced environmental pollution. The
authors [33,36,37,50] determined the evidence of causality between economic growth and
natural gas consumption.

Natural gas can have positive effects on economic growth, as well as positive effects
on the environment. Similar to our results, some papers determined the positive effects
of natural gas consumption on environmental pollution. Kuang and Lin [61] found an
emission reduction effect of natural gas consumption on environmental pollution. Natural
gas is a vital fossil energy in the fight against air pollution as it is the least harmful fossil
fuel to the environment. Our results differed slightly from the literature. Sign of coefficient
of carbon dioxide emissions in lag(−1) was determined to be positive and negative for
lag(−2). So, for the results in lag(−2), our results support the above judgment. Natural gas
can have positive effects on economic growth, as well as positive and negative effects on
the environment. Since natural gas is the most critical energy input of the industrial sector,
it is an important energy source that meets the heating needs.

Moreover, bidirectional causality between Industry 4.0 and natural gas was found in
both models and in both regimes in the MS-GC model. As a result of the interaction between
energy technology and the adoption of I4.0, it is possible to improve the organization and
quality of manufacturing processes to support the transition from a traditional production
facility to one that uses extensive IT while still achieving both high manufacturing efficiency
and sustainability (recovering energy, a precise measurement of energy use, etc.). At this
point, ensuring supply security is of great importance.

The findings make it abundantly evident to governments and policymakers that the
I4.0 shift has significantly supported environmental sustainability. As a result, govern-
ments need to increase their efforts to reduce the harmful impacts of economic output,
energy use, and I4.0.

6. Conclusions

For Turkiye, the cointegration and causality of natural gas consumption, industry 4.0
environmental pollution, and economic growth during the 1988–2022 were evaluated using
MS-VAR, FVAR, MS-GC, and FGC methods. First, unit root tests were applied to the data.
Variables were stationary at first difference values. Among the variables, cointegration
was investigated using the Johansen test. Following our result of no cointegration, the
innovation of the variables was used in the MS-VAR and Fourier VAR analysis. The results
we obtained under these conditions were interpreted as the result of causality. Accordingly,
our results determined bidirectional causality between GC and CO in the second regime
of the MS-GC model and FGC model, as well as unidirectional causality from GC to CO
in the first regime of MS-GC model. There was evidence of unidirectional causality from
TP to CO in both regimes and the FGC model. Industry 4.0 was the Granger cause of
environmental pollution.

The increased energy demand from I4.0 has put additional strain on the environment
because I4.0-related technologies require intense energy use. This is especially true for
nations that generate more power from nonrenewable and fossil-fuel sources. In this regard,
governments are advised to switch to renewable energy sources in order for their nations
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to invest in I4.0-related technology. On the other hand, renewable energy cannot be a short-
term policy idea since it pollutes the environment while being produced. Consequently, as
part of Industry 4.0’s exploration of synergies linking economic, social, environmental, and
technological objectives, this technique offers a strategy that can be implemented into an
energy-sustainable policy.
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