
Citation: Alrumaidhi, M.; Farag,

M.M.G.; Rakha, H.A. Comparative

Analysis of Parametric and

Non-Parametric Data-Driven Models

to Predict Road Crash Severity

among Elderly Drivers Using

Synthetic Resampling Techniques.

Sustainability 2023, 15, 9878.

https://doi.org/10.3390/

su15139878

Academic Editors: Juneyoung Park,
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Abstract: As the global elderly population continues to rise, the risk of severe crashes among elderly
drivers has become a pressing concern. This study presents a comprehensive examination of crash
severity among this demographic, employing machine learning models and data gathered from
Virginia, United States of America, between 2014 and 2021. The analysis integrates parametric
models, namely logistic regression and linear discriminant analysis (LDA), as well as non-parametric
models like random forest (RF) and extreme gradient boosting (XGBoost). Central to this study
is the application of resampling techniques, specifically, random over-sampling examples (ROSE)
and the synthetic minority over-sampling technique (SMOTE), to address the dataset’s inherent
imbalance and enhance the models’ predictive performance. Our findings reveal that the inclusion
of these resampling techniques significantly improves the predictive power of parametric models,
notably increasing the true positive rate for severe crash prediction from 6% to 60% and boosting
the geometric mean from 25% to 69% in logistic regression. Likewise, employing SMOTE resulted in
a notable improvement in the non-parametric models’ performance, leading to a true positive rate
increase from 8% to 36% in XGBoost. Moreover, the study established the superiority of parametric
models over non-parametric counterparts when balanced resampling techniques are utilized. Beyond
predictive modeling, the study delves into the effects of various contributing factors on crash severity,
enhancing the understanding of how these factors influence elderly road safety. Ultimately, these
findings underscore the immense potential of machine learning models in analyzing complex crash
data, pinpointing factors that heighten crash severity, and informing targeted interventions to mitigate
the risks of elderly driving.

Keywords: crash severity; machine learning; resampling techniques; imbalance data; road safety;
elderly drivers; transportation safety

1. Introduction
1.1. Background

Road crashes are a major global public health problem that has far-reaching impacts
on human life and economic growth. According to the World Health Organization (WHO),
an estimated 1.35 million individuals die and another 50 million are injured annually in
road crashes worldwide [1]. These crashes impose a significant burden on public health
systems and economies, resulting in massive economic, social, and human capital losses.
Furthermore, the WHO has predicted that road accidents will become the seventh leading
cause of death worldwide by 2030 [1].
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The severity of road crashes is a crucial factor in the loss of life and disability. A crash’s
severity is determined by the severity of the injuries sustained by the individuals involved,
and this can lead to short- and long-term effects on their lives. The fatality rate in road
crashes is a crucial measure of the impact of crashes on human life. The number of deaths
and injuries resulting from road crashes places an enormous burden on healthcare systems
worldwide, leading to a significant reduction in productivity and economic growth. The
economic losses incurred due to crashes are substantial, leading to a reduction in the gross
domestic product (GDP) of most nations [2].

The cost of road crashes to the world’s economy is significant. The economic losses
due to crashes are both direct and indirect. The direct losses include medical expenses,
emergency services, insurance costs, and legal costs. Indirect losses include the impact on
the economy, such as a reduction in productivity, absence from work, and the loss of life,
leading to a decrease in the quality of life. According to the World Bank, road crashes cost
most countries approximately 2–5% of their GDP [2].

1.2. Elderly Drivers

As the global population ages, the number of elderly drivers on the road continues
to rise [3,4]. This demographic shift highlights the importance of road safety for seniors,
particularly concerning the severity of crashes involving elderly drivers. Understanding
the factors contributing to crash severity among elderly drivers is crucial for developing
effective interventions to mitigate risks and enhance the safety of all road users.

The National Highway Traffic Safety Administration (NHTSA) indicates that senior
drivers are at a higher risk of being involved in deadly crashes than their younger coun-
terparts overall [5]. The age group of 65 and above demonstrates the most significant
growth in fatal crash numbers when contrasted with other age groups. Moreover, the risk
of injuries and fatalities among elderly drivers in crashes continues to escalate, with the
death rates for these drivers and their passengers surpassing those of any other vehicular
accident victims in terms of severity [5]. The Insurance Institute for Highway Safety (IIHS)
states that drivers who are 70 years old or older exhibit elevated fatal crash rates per mile
driven in comparison to middle-aged drivers [6]. This age group tends to face deteriorating
physical, cognitive, and visual capabilities, which may contribute to a greater likelihood
of severe injuries or death during crashes. The IIHS also emphasizes that the death rates
for elderly drivers and their passengers surpass all other road-accident-related fatalities in
terms of severity.

Moreover, the Korean Road Traffic Authority reported a significant increase in the
number of traffic crash fatalities involving elderly drivers (aged over 64) in the Republic
of Korea between 2011 and 2015 [7]. Specifically, the authority found a 34.7% increase in
fatalities during this period, highlighting the growing importance of understanding the
factors that contribute to crash severity among older drivers. This demographic shift has
drawn attention to the issue of road safety for seniors, particularly in relation to the severity
of crashes involving elderly drivers.

As individuals age, their risk factors for traffic crashes increase, including decreased
ability to cope with complex traffic conditions, reduced driving stability, and slower reaction
times, particularly at intersections [8–10]. These age-related declines in physical, cognitive,
and visual abilities can pose significant challenges for elderly drivers on the road, increasing
the likelihood of crashes and injuries [11].

In addition to the challenges posed by age-related deficits, the presence of comor-
bidities can exacerbate the risks associated with driving. For example, drivers with im-
paired vision, dementia, or Parkinson’s disease may experience declines in their ability
to make safe and appropriate driving decisions, placing themselves and other road users
in danger [12,13]. Furthermore, the use of multiple medications can also affect driving
performance by causing drowsiness or impairing reaction times [14].

Given the risks associated with elderly driving, it is important to understand the factors
that contribute to crash severity in this population. Previous research has identified several
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such factors, including driver-related factors, such as age, gender, medical history, and
driving experience [15,16], as well as environmental factors, such as road conditions, traffic
patterns, and weather conditions [17]. However, despite these efforts, the identification of
the most influential factors remains an area of ongoing investigation.

1.3. Applications of Machine Learning Models in Crash Severity Prediction

Machine learning models have emerged as powerful tools for analyzing complex
datasets and predicting outcomes across diverse sectors [18–21]. Their application to
road safety, as demonstrated in this study, enables a comprehensive understanding of
factors contributing to crash severity [16,22–29]. These models can discern patterns in large,
complex datasets and assist in elucidating factors contributing to crash severity among
elderly drivers. By analyzing factors such as driver demographics, vehicle type, road
conditions, and traffic patterns, machine learning models can provide insights into the
complex interactions that contribute to crash severity and help identify opportunities for
intervention and prevention.

The application of machine learning models to the analysis of crash severity among
elderly drivers is an area of active research, with studies using a variety of approaches
to model the factors that contribute to crash severity. Several studies have examined the
involvement of senior drivers in traffic accidents [16,22,28]. These studies suggest that
older drivers are at a greater risk of being injured or killed in car crashes. For a more
comprehensive understanding of the topic, readers are encouraged to refer to the detailed
literature review presented in [30].

Despite the potential of machine learning models in predicting crash severity, there
are limitations to their use in imbalanced data, particularly in the case of elderly drivers.
One major challenge is the issue of class imbalance, where the number of instances in
one class (e.g., severe crashes) is much smaller than the number of instances in another
class (e.g., non-severe crashes). This imbalance can lead to biased predictions and poor
model performance [16,23,31,32]. It is essential to take these limitations into account when
employing machine learning models for crash severity prediction among elderly drivers
and to implement suitable strategies to effectively address these challenges.

A limited number of studies have applied resampling techniques to address the issue
of imbalanced datasets in crash severity prediction among elderly drivers [16,22]. In their
research, ref. [16] utilized random undersampling of the majority class (RUMC) as a tech-
nique to balance the dataset, which subsequently improved the performance of multiple
models, including multinomial and ordered random forests, as well as multinomial and
ordered logistic regressions. The study emphasizes the importance of using resampling
strategies to improve the accuracy of severe crash prediction with machine learning models,
particularly in the context of crash severity prediction among elderly drivers. However,
using traditional resampling techniques like RUMC can result in the loss of crucial infor-
mation [23,32]. Consequently, it is vital to explore synthetic resampling strategies as an
alternative approach to effectively tackle this issue [33–36]. Despite the potential benefits of
synthetic resampling strategies, comprehensive comparative analyses assessing the predic-
tive power of parametric and non-parametric machine learning techniques in conjunction
with such strategies remain scarce.

Overall, using machine learning models to predict crash severity among elderly
drivers offers valuable insights into the complex factors contributing to crashes in this
population group. By identifying the most influential factors, these models can help
develop effective interventions to mitigate risks and improve the safety of all road users.
Additionally, the development of accurate models can inform policy decisions related to
licensing requirements for elderly drivers and infrastructure design to accommodate older
drivers’ needs.

1.4. Research Objectives and Novelties

In this research, the primary objectives and contributions are as follows:
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1. Compare the performance of parametric (logistic regression and LDA) and non-
parametric (random forest and XGBoost) machine learning models in predicting
crash severity among elderly drivers, utilizing crash data from the Commonwealth
of Virginia (USA) between 2014 to 2021. We assess model performance employ-
ing various metrics such as accuracy, sensitivity, specificity, balanced accuracy, and
geometric mean.

2. Investigate the impact of class imbalance on the predictive performance of these
models and evaluate the potential benefits of employing synthetic resampling tech-
niques, specifically random over-sampling examples (ROSE) and synthetic minority
over-sampling technique (SMOTE), to address this issue.

3. Assess the impact of training the machine learning models on original, ROSE-balanced,
and SMOTE-balanced datasets on their generalization capabilities when facing unseen
data by comparing cross-validation and test dataset results.

4. Identify the most effective combination of machine learning models and resampling
techniques that provides the best predictive performance in terms of sensitivity,
specificity, balanced accuracy, and geometric mean.

5. Evaluate the effect of various contributing factors on crash severity among elderly
drivers, providing guidance for risk mitigation and safety improvement strategies.

6. Provide insights and recommendations for future research and practical applications
of machine learning models and resampling techniques in the field of crash severity
prediction and traffic safety management.

The novelty of this work is primarily underscored by the distinctive application of ad-
vanced oversampling techniques, specifically synthetic minority over-sampling technique
(SMOTE) and random over-sampling examples (ROSE), in the context of road crash severity
prediction among elderly drivers. This approach effectively counters the significant issue of
class imbalance inherent in crash datasets, a hurdle that has traditionally posed challenges
in obtaining accurate and meaningful predictive results. The use of these techniques, in
conjunction with powerful machine learning models, represents a novel contribution to the
field, offering a robust methodology for enhanced prediction accuracy.

Furthermore, this study provides a unique perspective by targeting a critical but
often underrepresented demographic in crash severity research—elderly drivers. It delves
into a granular examination of various factors contributing to crash severity among this
group, shedding light on the complex interplay of variables that culminate in severe crash
outcomes. By focusing on this specific demographic, the research manages to provide a
more nuanced understanding of crash severity determinants, thereby filling a crucial gap in
the existing literature. This targeted approach, coupled with methodological innovations,
is what sets this work apart in the domain of crash severity prediction.

The combined novelty of this research lies in its targeted exploration of elderly driver
crash severity, along with the innovative application of advanced oversampling techniques
for improving prediction accuracy, thereby enriching the field of crash severity studies with
valuable insights and methodological advancements.

1.5. Structure of the Paper

The remainder of this paper is organized as follows: The “Methodology” section
provides a detailed outline of the comprehensive research framework used in this study.
It starts with a description of the dataset, followed by an explanation of the resampling
techniques employed. This section also elaborates on the implementation of both parametric
and non-parametric machine learning models, the application of K-fold cross-validation,
and the evaluation metrics used to assess the predictive performance of these models.

The “Results and Discussion” section presents the obtained results and provides an in-
depth discussion on them. This section begins with a comparison between cross-validation
and test results, followed by the outcomes of the crash severity models. It further assesses
the effectiveness of the applied resampling techniques on the performance of the predictive
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models. A subsection is devoted to examining the effect of influential factors on crash
severity levels.

Finally, the “Conclusions” and “Study Limitations and Future Directions” sections,
respectively, summarize the study’s key findings and their implications, and acknowledge
the limitations of the current study, while suggesting potential avenues for future research
in this field.

2. Methodology
2.1. Research Framework

In this study, the analysis and operational process, as shown in Figure 1, outlines
the steps undertaken to address the research objectives. Initially, the original datasets
were preprocessed to remove outliers and irrelevant cases. Categorical variables were
transformed into indicator variables using one-hot encoding, while numeric variables were
normalized to a range between zero and one. The dataset was subsequently partitioned
into training (70%) and test sets (30%), employing stratified sampling to maintain the
distribution of the outcome variable, as illustrated in Figure 1.
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The training set was further divided into a balanced sub-training set to facilitate the ap-
plication of learning algorithms on balanced datasets. Both parametric and non-parametric
machine learning models were trained using the original training set (imbalanced class)
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and the balanced sub-training sets. Twelve classifiers were employed to predict crash
severity on the test set, and their performance was evaluated and compared.

Alongside prediction, an important facet of the study focuses on the influence of
various contributing factors on crash severity. For this purpose, the best-performing model
was used to calculate the effect of these contributing factors on crash severity.

This comprehensive methodology ensures a robust investigation of crash severity
prediction, taking into account data preprocessing, partitioning, and model evaluation.
The results contribute to both predictive accuracy and a deeper understanding of the
contributing factors affecting crash severity.

2.2. Data Description

The crash dataset utilized in this study was acquired from the Virginia Department of
Transportation (VDOT) and spans an eight-year period from 2014 to 2021. It encompasses a
total of 986,101 reported crashes within the Commonwealth of Virginia. The study’s primary
focus is to analyze crash severity involving motor vehicle accidents with senior drivers aged
65 years and older, as defined by the National Highway Traffic Safety Administration [37].
The sub-dataset consists of 157,800 crashes involving senior drivers, all of which were
included in the analysis [17].

Crash severity levels were represented using the KABCO scale, which was further
categorized into two groups: non-severe crashes (labeled as O, B, and C) and severe
crashes (marked as K + A). Table 1 provides the descriptive statistics for the eighteen
variables considered in the analysis. These variables comprise area type, alcohol use, animal
involvement, seatbelt usage, bicycle involvement, crash type, distraction, drowsiness, drug
usage, pedestrian involvement, posted speed limit, roadway alignment, roadway type,
speed violation, time of the week (weekend or weekday), presence of a traffic signal, and
weather conditions.

Table 1. Variables’ descriptive statistics.

Variable Category Count Percentage

Crash severity Non-severe 148,473 94.09%
Severe injury 9327 5.91%

Crash type

Fixed-object 13,399 8.49%
Head-on 3813 2.42%

Overturned 1156 0.73%
Other 10,479 6.64%

Rear-end 52,953 33.56%
Sideswipe 17,471 11.07%

Angle 58,529 37.09%

Traffic signal Yes 40,998 25.98%
No 116,802 74.02%

Weather condition
No adverse condition 137,196 86.94%

Adverse condition 20,604 13.06%

Roadway alignment Straight 142,472 90.29%
Curve 15,328 9.71%

Roadway type
Two-way divided 91,375 57.91%

Two-way undivided 62,206 39.42%
One-way 4219 2.67%

Work zone
No 153,567 97.32%
Yes 4233 2.68%

Alcohol
Yes 3483 2.21%
No 154,317 97.79%

Belted
No 4271 2.71%
Yes 153,529 97.29%
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Table 1. Cont.

Variable Category Count Percentage

Bike
Yes 915 0.58%
No 156,885 99.42%

Distracted
Yes 28,054 17.78%
No 129,746 82.22%

Drowsy Yes 2733 1.73%
No 155,067 98.27%

Drug Yes 716 0.45%
No 157,084 99.55%

Pedestrian
Yes 1605 1.02%
No 156,195 98.98%

Speed violation Yes 20,211 12.81%
No 137,589 87.19%

Area type Urban 121,884 77.24%
Rural 35,916 22.76%

Animal
Yes 5060 3.21%
No 152,740 96.79%

Posted speed (mph) - 157,800 -

Weekend
Yes 32,622 20.67%
No 125,178 79.33%

2.3. Resampling Techniques

Imbalanced datasets, where the number of instances in one class is significantly
smaller than the number of instances in the other class(es), can lead to biased models that
underperform on the minority class [16,23,32,33,38]. When the dataset is imbalanced, the
model’s focus may shift towards the majority class, leading to inaccurate predictions for
the minority class. This can result in significant consequences in real-world applications,
such as in medical diagnosis, fraud detection, or crash severity prediction [23,39].

Therefore, to address this issue, resampling strategies can be used to improve the
model’s performance on the minority class. Resampling strategies involve adjusting the
dataset’s class distribution by either over-sampling the minority class or under-sampling
the majority class [16,38].

The over-sampling technique involves generating a balanced dataset by duplicating
instances from the minority class randomly until the desired ratio is achieved [38]. The
advantage of over-sampling is that it does not lead to any loss of information [32]. However,
despite being widely used, over-sampling may not be effective in improving recognition of
the minority class and can result in overfitting [23,40].

However, the undersampling method involves randomly removing instances from the
majority class until the desired ratio between the classes is achieved [38]. This approach of-
fers the advantage of reducing the size of the training data when dealing with large datasets.
However, the removal of instances from the majority class may lead to a loss of valuable
information and potentially result in a less representative sample [23,32]. Therefore, careful
consideration is needed when using undersampling as a balancing strategy.

In this study, the focus was on overcoming the limitations of traditional resampling
techniques by utilizing two synthetic resampling methods: the synthetic minority over-
sampling technique (SMOTE) and random over-sampling examples (ROSE). The goal was
to enhance the model’s ability to learn from a more balanced dataset and generate more
accurate predictions for severe crashes. By adopting these techniques, it was possible
to improve the model’s performance and mitigate the risk of biased predictions. This
facilitated better outcomes in real-world applications, particularly in the context of elderly
driver crash severity prediction.
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2.3.1. Synthetic Minority Over-Sampling Technique (SMOTE)

SMOTE (synthetic minority over-sampling technique) is a widely used data aug-
mentation technique to address class imbalance in machine learning [41]. This technique
generates synthetic samples in the feature space around the minority class by creating
new instances between existing minority class samples. SMOTE works by selecting a
minority class sample and computing its k nearest neighbors. It then randomly selects one
of these k neighbors and generates a new sample at a point along the line connecting the
original minority class sample and its chosen neighbor. This process is repeated until the
desired level of over-sampling is achieved. In this study, the parameter k, which represents
the number of nearest neighbors, was set to 5, and the amount of synthetic samples was
determined such that the classes become balanced.

One of the significant benefits of SMOTE is that it can effectively address the issue
of overfitting by generating synthetic samples that are close to the existing minority class
samples, but not identical to them. SMOTE can help improve the performance of machine
learning algorithms by increasing the representation of minority class samples in the
training data. This approach has been shown to improve the accuracy and robustness of
the models trained on imbalanced data [29,34,35].

2.3.2. Random Over-Sampling Examples (ROSE)

ROSE (random over-sampling examples) is a data augmentation technique used to
address class imbalance in machine learning [31]. Like other resampling techniques, ROSE
works by generating synthetic samples to increase the representation of the minority class
in the training data.

ROSE is a three-step process. First, the majority class is undersampled using a boot-
strap resampling technique, which removes instances from the majority class to create a
more balanced dataset. Second, the minority class is over-sampled by generating synthetic
samples in the feature space around the minority class. Finally, a new synthetic training
dataset is created that is approximately the same size as the original dataset.

The generation of synthetic samples in ROSE is conducted by taking each minority
class sample and identifying its k nearest neighbors in the feature space. The synthetic
samples are then generated by randomly choosing one of the k neighbors and creating a
new sample in the direction of that neighbor. The distance between the original sample
and its new synthetic sample is determined by a function provided by the ROSE package
in the R program [31].

One of the benefits of ROSE is that it can generate synthetic samples that are represen-
tative of the minority class but not identical to the original samples. This can help prevent
overfitting and improve the model’s generalization ability. Additionally, ROSE can help
address the issue of class imbalance in a more effective way than traditional resampling
techniques [31].

Research has indicated that generating synthetic data to balance an imbalanced dataset
is a viable alternative to traditional resampling techniques, such as over-sampling and
undersampling. This approach is believed to reduce the risk of overfitting and enhance the
generalization ability that may be compromised by over-sampling methods [33,36].

Table 2 provides a detailed overview of the distribution of each class, including their
respective shares and frequencies, for both the original training set and the augmented
datasets generated using the SMOTE and ROSE techniques. Additionally, the table also
includes the corresponding distributions for the test dataset. As can be observed, the
original training set exhibited a highly imbalanced distribution of the classes, with only
a small fraction of instances belonging to the severe crash class. However, after applying
the SMOTE and ROSE techniques, the resulting training sets showed a more balanced
distribution of classes. To ensure that the models’ performance was evaluated under
realistic conditions, the test dataset’s distribution was kept the same as the original dataset.
Overall, these augmented datasets enable the machine learning models to learn from a
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more representative sample and potentially improve their ability to accurately predict the
minority class [16,29,35,35,38].

Table 2. The distribution of crash severity classes in the training and test datasets.

Crash Severity
Class

Training Data
(Original)

Training Data
(ROSE)

Training Data
(SMOTE) Test Data

Severe 6529 (5.9%) 55,197 (50%) 97,935 (48.5%) 2798 (5.9%)

Non-severe 103,932 (94.1%) 55,264 (50%) 103,932 (51.5%) 44,541 (94.1%)

Total 110,461 110,461 201,867 47,339

2.4. Parametric Machine Learning Models
2.4.1. Logistic Regression (LR)

Logistic regression is a well-known parametric machine learning algorithm used to
analyze the relationship between a binary dependent variable and one or more independent
variables [36]. It is a type of regression analysis that models the probability of an event
occurring given a set of predictor variables.

The logistic regression model works by fitting a logistic function to the data, which
produces an S-shaped curve. The logistic function transforms the linear combination of
the predictor variables into a probability value between 0 and 1, which represents the
likelihood of the event occurring.

One of the main advantages of logistic regression is its simplicity and interpretability.
The output of logistic regression is a set of coefficients that represent the impact of each
predictor variable on the outcome. These coefficients can be interpreted as the change in
the log-odds of the outcome for a one-unit increase in the predictor variable, holding all
other variables constant.

Logistic regression can handle both numerical and categorical predictor variables.
Additionally, it can be used to model interactions between predictor variables and to
perform variable selection to identify the most important predictors.

2.4.2. Linear Discriminant Analysis (LDA)

Linear discriminant analysis (LDA) is a parametric machine learning technique used
for classification and dimensionality reduction [42–45]. It is a supervised learning algorithm
that seeks to identify the underlying linear discriminants that separate different classes in
the dataset.

The goal of LDA is to find a linear combination of the predictor variables that maxi-
mizes the separation between the classes. The linear combination is calculated by projecting
the data onto a lower-dimensional space while maximizing the between-class variance and
minimizing the within-class variance. This results in a set of linear discriminant functions
that can be used to classify new data points.

LDA remains a popular choice for classification and dimensionality reduction due
to its simplicity, interpretability, and computational efficiency. It has been successfully
applied in various domains, including pattern recognition, computer vision, and bioinfor-
matics [43–45].

2.5. Non-Parametric Machine Learning Models
2.5.1. Random Forest (RF)

Random forest is a non-parametric machine learning algorithm that is commonly used
for classification and regression tasks [16,46,47]. It is an ensemble learning method that
combines multiple decision trees to improve the accuracy and robustness of the model.

The random forest algorithm works by constructing a large number of decision trees
on bootstrapped samples of the data, where each tree is trained on a random subset of
the predictor variables. During training, at each node of each tree, the algorithm chooses
the best split among a random subset of predictor variables, rather than considering
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all variables. This randomness helps to avoid overfitting and can improve the model’s
generalization ability.

Once the individual decision trees are built, the random forest algorithm combines
their predictions to make a final prediction. For classification tasks, the majority vote of
the individual trees is used, while for regression tasks, the average of the individual tree
predictions is used.

One of the advantages of random forest is that it can handle large datasets with a
large number of predictor variables. It can also handle missing data and outliers, and it is
relatively insensitive to the choice of hyperparameters.

2.5.2. eXtreme Gradient Boosting (XGBoost)

XGBoost (extreme gradient boosting) is a popular non-parametric machine learning
algorithm used for classification and regression tasks [46,48]. It is an ensemble learning
method that combines multiple weak learners (usually decision trees) to produce a more
accurate and robust prediction.

In XGBoost, each decision tree is built sequentially, where each new tree is trained
to correct the errors of the previous tree. During training, the algorithm assigns weights
to each training instance to emphasize the samples that were incorrectly classified by the
previous tree.

One of the advantages of XGBoost is that it can handle missing data, and it is relatively
robust to outliers. Additionally, XGBoost has a built-in regularization parameter that helps
to prevent overfitting. Another advantage of XGBoost is its ability to handle large datasets
with a large number of predictor variables. The algorithm supports parallel processing,
which can help speed up the training time significantly.

2.6. K-Fold Cross-Validation

K-fold cross-validation is a widely used technique in machine learning to evaluate the
performance of a predictive model [49]. It involves dividing the dataset into multiple folds,
typically between 5 and 10, and performing model training and testing iteratively. In each
iteration, one-fold is used as a validation set to evaluate the model’s performance, while the
remaining folds are used as the training set. The process is then repeated for each fold, and
the results are averaged to obtain an estimate of the model’s performance on unseen data.

Cross-validation helps to avoid overfitting, which is when the model performs well
on the training data but poorly on new, unseen data. By repeatedly testing the model
on different subsets of the data, cross-validation provides a more reliable estimate of the
model’s performance on new data. It also helps to ensure that the model is not biased
towards a specific subset of the data and that it can generalize well to new, unseen data.

Overall, cross-validation is a valuable tool in machine learning for evaluating the
performance of models, selecting hyperparameters, and ensuring that the model can
generalize well to new data.

2.7. Evaluation Metrics

Performance metrics are an essential component of machine learning (ML) models,
providing a quantitative evaluation of how well the model is performing. The selection
of appropriate performance metrics depends on the specific application and goals of
the model.

2.7.1. Confusion Matrix

A confusion matrix, as shown in Table 3, is a fundamental tool used to assess the
effectiveness of a classification model by comparing the predicted class labels with the
actual class labels. This matrix is especially valuable in cases where there are two or more
potential classes. Essentially, the matrix is presented as a table with the actual and predicted
class labels represented in rows and columns, respectively. A confusion matrix comprises
four fundamental components: true positives (TP), false positives (FP), true negatives
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(TN), and false negatives (FN). TP refers to instances where the model accurately predicted
the positive class, while FP denotes cases where the model inaccurately predicted the
positive class. TN indicates instances where the model accurately predicted the negative
class, while FN pertains to cases where the model inaccurately predicted the negative
class. Using the confusion matrix, several metrics can be derived to evaluate the model’s
overall performance. The most commonly utilized metrics include accuracy, sensitivity, and
specificity. Given that imbalanced data are present, it is recommended to employ additional
metrics such as geometric mean and balanced accuracy to ensure a more comprehensive
assessment of the model’s performance.

Table 3. Confusion matrix for evaluating model’s performance.

Predicted Class Actual Class

Positive Negative
Positive True Positive (TP) False Positive (FP)
Negative False Negative (FN) True Negative (TN)

2.7.2. Accuracy

Accuracy is a metric that measures the percentage of correct predictions made by the
model. It is calculated by dividing the number of correct predictions by the total number of
predictions. Accuracy can be a useful metric for balanced datasets, where the number of
positive and negative examples is roughly equal. However, it can be misleading in cases
where the dataset is imbalanced, and the model may achieve high accuracy by simply
predicting the majority class.

Accuracy =
TP + TN

TP + TN + FP + FN

2.7.3. Sensitivity

Sensitivity, also known as true positive rate, measures the percentage of positive
examples that the model correctly identifies. It is calculated by dividing the number of true
positives by the sum of true positives and false negatives. Sensitivity is a useful metric for
datasets where the positive class is of particular interest, such as in medical diagnosis and
crash severity.

Sensitivity =
TP

TP + FN

2.7.4. Specificity

Specificity measures the percentage of negative examples that the model correctly
identifies. It is calculated by dividing the number of true negatives by the sum of true
negatives and false positives. Specificity is a useful metric for datasets where the negative
class is of particular interest, such as in fraud detection.

Specificity =
TN

TN + FP

2.7.5. Geometric Mean

Geometric mean is a metric that measures the geometric average of sensitivity and
specificity. It is calculated by taking the square root of the product of sensitivity and
specificity. The geometric mean is a useful metric for imbalanced datasets, where the
positive and negative classes have different prevalences [50].

Geometric Mean =
√

Sensivity × Specifity
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2.7.6. Balanced Accuracy

Balanced accuracy is a metric that takes into account the balance between the positive
and negative classes. It is calculated as the average of sensitivity and specificity, which is
equivalent to the geometric mean when the dataset is balanced. Balanced accuracy is a
useful metric for imbalanced datasets, where accuracy alone may be misleading.

Balanced Accuracy =
Sensitivity + Specifity

2

It is important to note that accuracy may not be an appropriate metric for imbalanced
datasets, as it can be heavily influenced by the majority class, leading to a falsely optimistic
evaluation of the model’s performance [16,27]. Therefore, using a combination of the above
metrics is often necessary to provide a more comprehensive evaluation of the model’s
performance on imbalanced datasets.

3. Results and Discussion
3.1. Comparison between Cross-Validation and Test Results

Figures 2–13 present the confusion matrices for four different models: random forest,
XGBoost, logistic regression, and LDA. These models were trained using the original
dataset, a balanced dataset using the random over-sampling examples (ROSE) technique,
and a balanced dataset using the synthetic minority over-sampling technique (SMOTE).
The performance of the models was evaluated on both the cross-validation (CV) dataset
and the test dataset. Comparing the CV results and test results provides insight into the
models’ generalization capability when facing unseen data.
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3.1.1. Original Dataset

When trained on the original dataset, the models exhibit similar performance in both
CV and test datasets in terms of accuracy, sensitivity, and specificity. The slight differences
in the metrics between the CV and test datasets indicate that the models have a good
generalization ability when trained on the original dataset. However, it is important to note
that the low sensitivity values in both CV and test datasets indicate poor performance in
identifying the ‘Severe’ class.

3.1.2. ROSE Dataset

For the models trained on the ROSE dataset, there was a more significant discrepancy
between the CV and test dataset results. The non-parametric models, namely, the random
forest and XGBoost achieved high accuracy and specificity on the CV dataset, but the
sensitivity was lower on the test dataset. This difference suggests that the models may have
overfitted the training data, leading to reduced generalization capabilities.

However, the parametric models, namely, the logistic regression and LDA trained on
the ROSE dataset showed a less pronounced difference between the CV and test datasets,
with the accuracy, sensitivity, and specificity being relatively consistent. This consis-
tency indicates better generalization capabilities for these models when trained on the
ROSE dataset.

3.1.3. SMOTE Dataset

When trained on the SMOTE dataset, the models displayed a relatively consistent per-
formance between the CV and test datasets. Although the non-parametric models, namely,
random forest and XGBoost, exhibited higher sensitivity in the CV dataset compared to the
test dataset. The discrepancy was not as substantial as with the ROSE dataset. The para-
metric models, namely, logistic regression and LDA, demonstrated similar performance in
both the CV and test datasets in terms of accuracy, sensitivity, and specificity.
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The results demonstrate that the models trained on the ROSE and SMOTE datasets
exhibit different levels of generalization capabilities. The ROSE-trained models, especially
the non-parametric models random forest and XGBoost, showed a more significant discrep-
ancy between the CV and test datasets, indicating potential overfitting. On the other hand,
the SMOTE-trained models demonstrated more consistent performance across the CV and
test datasets, suggesting better generalization capabilities.

3.2. Results of the Crash Severity Models
3.2.1. Models Trained on Original Training Set

In this section, the performance of four different machine learning models is discussed:
random forest (RF), XGBoost, logistic regression (LR), and linear discriminant analysis
(LDA), on the test dataset. The models were trained on the original dataset, and their
performance is summarized in Figure 14. The performance measures used to evaluate these
models include accuracy, sensitivity, specificity, balanced accuracy, and geometric mean.
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Figure 14. Performance measures for parametric and non-parametric models on the test dataset,
trained on original dataset.

From Figure 14, it can be observed that all four models exhibit a high level of accuracy,
ranging from 0.93 for LDA to 0.94 for RF, XGBoost, and LR. However, accuracy alone
does not provide a comprehensive assessment of the models’ performance, as it may be
misleading in cases of imbalanced datasets [27].

When evaluating the sensitivity, which measures the proportion of true positive cases
among the actual positive cases, the values for all models were notably low, with the LDA
model achieving the highest sensitivity at 0.23, while the other models demonstrated much
lower values. This indicates that all models struggled to identify the ‘Severe’ class correctly,
which might be due to the imbalanced nature of the original dataset [16,27].

Specificity, which assesses the proportion of true negative cases among the actual
negative cases, demonstrates high scores for all models, with XGBoost and LR achieving
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perfect scores of 1.0, RF scoring 0.99, and LDA scoring 0.97. This indicates that all models
perform well in identifying the ‘Non-Severe’ class. It is crucial to maintain a balance
between sensitivity and specificity, as the trade-off between the two metrics determines the
overall performance of the models.

Balanced accuracy provides a more balanced view of the models’ performance, taking
into account both sensitivity and specificity. In this case, the LDA model achieved the
highest balanced accuracy at 0.60, while the other models scored lower values, which
highlights the LDA model’s relatively better performance in terms of the balance between
sensitivity and specificity.

The geometric mean is another metric that accounts for both sensitivity and specificity.
It reflects the models’ ability to identify both classes equally well. The LDA model again
outperformed the other models with a geometric mean of 0.47, indicating a better balance
between sensitivity and specificity compared to the other models.

The results demonstrate that, despite high accuracy values, the models’ performance
in identifying the ‘Severe’ class was relatively poor. This issue could be attributed to the
imbalanced nature of the original dataset, which might have led the models to favor the
majority class (‘Non-Severe’) [16,27,50].

3.2.2. Models Trained on ROSE Training Set

Figure 15 presents the performance measures of parametric (logistic regression and LDA)
and non-parametric (random forest and XGBoost) models on the test dataset when trained on
the ROSE dataset, which employs resampling techniques to address class imbalance.
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Figure 15. Performance measures for parametric and non-parametric models on the test dataset,
trained on ROSE dataset.

The accuracy values for the non-parametric models (RF and XGBoost) remained
relatively high at 0.94 for both, while the parametric models (LR and LDA) experienced a
decrease in accuracy, falling to 0.77 and 0.78, respectively.
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After training on the ROSE dataset, the sensitivity of the logistic regression and LDA
models saw a significant improvement, with values of 0.60 for both, indicating better
performance in identifying the ‘Severe’ class. However, the sensitivity for RF slightly
increased to 0.10, while the XGBoost model’s sensitivity dropped to 0, implying that it
failed to identify any ‘Severe’ cases correctly.

All models maintained high specificity values, with the XGBoost model achieving
perfect specificity (1). However, logistic regression and LDA experienced a slight decrease
in specificity to 0.79 for both.

The balanced accuracy and geometric mean provide a more comprehensive evaluation
of the models’ performance. After training on the ROSE dataset, both the parametric
models logistic regression and LDA showed a notable improvement in balanced accuracy
(0.69 for both) and geometric mean (0.69 for both). In contrast, the RF model had minimal
change in balanced accuracy and a slight increase in the geometric mean, while the XGBoost
model’s balanced accuracy and geometric mean decreased to 0.5 and 0.0, respectively.

The results in Figure 15 highlight the importance of addressing class imbalance when
evaluating model performance. The ROSE dataset led to significant improvements in
sensitivity, balanced accuracy, and geometric mean for the parametric models (i.e., logistic
regression and LDA). However, the XGBoost model’s performance deteriorated, and the
random forest model experienced only minimal changes.

3.2.3. Models Trained on SMOTE Training Set

Figure 16 presents the performance measures of parametric (logistic regression and
LDA) and non-parametric (random forest and XGBoost) models on the test dataset when
trained on the SMOTE dataset.
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The results indicate that the XGBoost model has the highest accuracy (0.88), followed
by RF (0.86), LDA (0.79), and LR (0.78). Although accuracy is an essential performance
measure, it might not be sufficient when dealing with imbalanced datasets. Therefore, other
performance measures such as sensitivity, specificity, balanced accuracy, and geometric
mean are considered to provide a comprehensive evaluation of the models.

Sensitivity measures the proportion of true positive cases among the actual positive
cases. In this aspect, LR has the highest sensitivity (0.60), closely followed by LDA (0.59).
Meanwhile, XGBoost and RF exhibit lower sensitivity values, 0.36 and 0.32, respectively.
This indicates that the parametric models (LR and LDA) perform better in identifying
severe class crashes.

The specificity values for all models decreased compared to their performance on the
original dataset, with RF and XGBoost models achieving specificity values of 0.89 and 0.91,
respectively. The specificity of the parametric models (LR and LDA) also decreased, with
values of 0.79 and 0.80, respectively.

After training on the SMOTE dataset, all models showed improvement in their bal-
anced accuracy and geometric mean values. The RF and XGBoost models had balanced
accuracy values of 0.61 and 0.64, respectively, and geometric mean values of 0.53 and 0.57,
respectively. The parametric models (LR and LDA) had balanced accuracy values of 0.70
for both and geometric mean values of 0.69 for both.

In summary, although XGBoost has the highest accuracy, it exhibits relatively lower
sensitivity and balanced accuracy compared to LR and LDA. In contrast, LR and LDA
demonstrate a better balance between sensitivity and specificity, making them more suitable
for this imbalanced dataset.

3.3. Effectiveness of Resampling Techniques on Predictive Models

Given the higher involvement of elderly drivers in severe crashes, this study aimed to
improve the prediction of such crashes by utilizing synthetic resampling techniques. The
following section will demonstrate how these techniques can improve the performance of
machine learning models.

3.3.1. ROSE

Figure 17 presents the performance measures for four machine learning models after
applying the ROSE balancing strategy. The results show that the implementation of this
strategy leads to an improvement in predictive performance in some measures, but not all.
The accuracy for the RF and XGBoost models slightly improved by 0.21% and decreased by
0.16%, respectively, while the accuracy for LR and LDA models decreased significantly by
16.74% and 14.77%, respectively.
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In terms of sensitivity, the implementation of the ROSE balancing strategy resulted in
a decrease of 0.43% for the RF model, while it was reduced by 7.79% for the XGBoost model.
On the other hand, the LR and LDA models showed a significant increase in sensitivity by
54.07% and 36.53%, respectively. In terms of specificity, the RF and XGBoost models showed
slight improvements of 0.25% and 0.32%, respectively. However, the implementation of
the ROSE balancing strategy resulted in a significant decrease in specificity of 21.19% and
18.00% for the LR and LDA models, respectively.

The balanced accuracy for the RF and XGBoost models showed a slight decrease of
0.09% and 3.74%, respectively, while the LR and LDA models showed a significant increase
of 16.44% and 9.26%, respectively. Finally, in terms of geometric mean, the implementation
of the ROSE balancing strategy resulted in a decrease of 0.64% and 27.87% for the RF and
XGBoost models, respectively. However, the LR and LDA models showed a significant
increase of 43.95% and 21.26%, respectively.

3.3.2. SMOTE

Figure 18 demonstrates the impact of implementing the synthetic minority over-
sampling technique (SMOTE) balancing strategy on the predictive performance of four
machine learning models—random forest (RF), extreme gradient boosting (XGBoost), logis-
tic regression (LR), and linear discriminant analysis (LDA)—for crash severity prediction.
The results indicate that the application of the SMOTE strategy leads to enhanced predictive
performance across various performance measures.
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Figure 18. The implementation of the SMOTE balancing strategy results in enhanced predictive
performance.

For accuracy, the implementation of the SMOTE strategy resulted in decreases for all
models: RF (−8.01%), XGBoost (−6.19%), LR (−15.94%), and LDA (−13.71%). However,
the sensitivity significantly improved for all models: RF (21.91%), XGBoost (28.20%), LR
(53.43%), and LDA (35.60%).

In terms of specificity, the SMOTE strategy led to a slight decrease for all models:
RF (−9.89%), XGBoost (−8.34%), LR (−20.30%), and LDA (−16.81%). On the other hand,
balanced accuracy exhibited improvements for all models following the implementation of
the SMOTE strategy: RF (6.01%), XGBoost (9.93%), LR (16.57%), and LDA (9.39%).

Lastly, the geometric mean also exhibited improvements for all models with the
implementation of the SMOTE strategy: RF (21.76%), XGBoost (29.47%), LR (43.97%), and
LDA (21.24%)

In summary, the findings indicate that employing the SMOTE balancing strategy
can substantially improve the predictive performance of machine learning models when
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predicting the minority class (i.e., ‘Severe’), as well as enhance both balanced accuracy and
geometric mean.

3.4. The Effect of Influential Factors on Crash Severity

In Table 4, the results of the logistic regression model employing a synthetic minority
over-sampling technique (SMOTE) dataset are outlined, detailing the parameter estimates
and odds ratios for various factors contributing to crash severity. This methodology, a
combination of logistic regression and SMOTE, was selected as it yielded the most robust
and insightful results in our study, thereby providing a solid foundation for the ensuing
discussion on the influential determinants of crash severity.

Table 4. Logistic regression model results.

Variable Category Estimate SE p-Value Odds Ratio

Crash type Angle
Fixed object

Head-on
Overturned

Rear end
Sideswipe *

1.10874
1.60342
2.21490
1.88370
0.29230

0.021
0.024
0.032
0.052
0.021

<0.001
<0.001
<0.001
<0.001
<0.001

3.031
4.967
9.160
6.578
1.340

Traffic signal Yes
No *

0.05584 0.013 <0.001 1.057

Weather condition No adverse condition
Adverse condition *

0.44410 0.017 <0.001 1.559

Roadway alignment Curve
Straight *

0.13316 0.019 <0.001 1.142

Roadway type One-way
Two-way divided

Two-way undivided *

−0.70767
−0.13259

0.041
0.012

<0.001
<0.001

0.493
0.876

Work zone Yes
No *

−0.39516 0.035 <0.001 0.674

Alcohol Yes
No *

0.60794 0.032 <0.001 1.837

Belted No
Yes *

1.94371 0.026 <0.001 6.985

Bike Yes
No *

2.27529 0.055 <0.001 9.731

Distracted Yes
No *

0.11692 0.014 <0.001 1.124

Pedestrian Yes
No *

2.72422 0.049 <0.001 15.245

Speed violation Yes
No *

0.47653 0.014 <0.001 1.610

Area type Rural
Urban *

0.44437 0.014 <0.001 1.560

Animal Yes
No *

−1.89159 0.052 <0.001 0.151

Weekend Yes
No *

0.09184 0.012 <0.001 1.096

Intercept Non-severe
Injury|Severe Injury 3.2344 0.146 <0.001 25.391

Log-likelihood at convergence −115,577

Log-likelihood at zero −139,834

Likelihood ratio test 48,514

* Reference category.
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The results of the logistic regression analysis, including model coefficients and cor-
responding odds ratios (ORs), substantiate the relative impact of various factors on crash
severity when compared to a designated baseline or reference category. An odds ratio
exceeding 1, aligned with a positive coefficient estimate, signifies a greater influence on
crash severity compared to the reference category, and vice versa for an OR less than 1.
These odds ratios serve as valuable interpretive tools, providing critical insights into the
increased or decreased likelihood of a severe crash outcome given a specific predictor or
condition, assuming all other factors are constant.

The model indicates that the type of crash is an essential determinant of crash severity.
When compared to sideswipe crashes (reference category), the odds of severe outcomes are
increased for angle crashes (OR = 3.031), fixed object crashes (OR = 4.967), head-on crashes
(OR = 9.160), and overturned crashes (OR = 6.578). These crash types typically involve a
greater force of impact, which may explain the heightened severity.

Considering environmental and situational factors, crashes that occur at locations with
traffic signals (OR = 1.057) have slightly increased odds of severe outcomes compared to
those where no signals are present. This may be due to the complexity of such intersections,
which can lead to more severe crashes when errors occur. Additionally, a higher likelihood
of severe crashes was found under no adverse weather conditions as opposed to adverse
conditions (OR = 1.559). A possible explanation for this could be that drivers tend to
exercise greater caution and lower speeds in the presence of adverse weather conditions.
This phenomenon can be attributed to the concept of risk compensation, where drivers
adjust their behavior in response to perceived levels of risk [51].

The nature of the roadway also influences crash severity. Crashes on curved roads,
compared to those on straight roads, have higher odds of severity (OR = 1.142). Curved
roads may require more complex maneuvering and judgment from drivers, possibly leading
to more severe crashes when errors are made. Furthermore, one-way and two-way divided
roads tend to have less severe crashes compared to two-way undivided roads (ORs of 0.493
and 0.876, respectively).

Crashes occurring in work zones show lower odds of resulting in severe outcomes
(OR = 0.674) compared to those outside of work zones. Work zones typically have lower
speed limits and increased enforcement, which may contribute to the reduced severity.

The non-use of seatbelts markedly increases the odds of severe crashes (OR = 6.985)
compared to crashes where seatbelts are used. Seatbelts are known to significantly reduce
the risk of injury by preventing ejection from the vehicle during a crash, hence their absence
may contribute to more severe injuries.

The study further reveals that crashes involving cyclists pose dramatically higher odds
of severity (OR = 9.731) when compared to their counterparts excluding bikes. Cyclists’
vulnerability, given their lack of physical protection compared to vehicle occupants, po-
tentially accounts for this increased severity. Similarly, pedestrian involvement in crashes
considerably increases the odds of severity (OR = 15.245) compared to crashes with no
pedestrians involved. Pedestrians, like cyclists, lack the physical protection that a vehicle
provides, which makes them particularly vulnerable in crashes.

Crashes where distractions, such as texting on mobile devices, are a contributing
factor demonstrate higher odds of severity (OR = 1.124) in contrast to scenarios free of such
distractions. The subsequent delayed reaction times and impaired decision-making due to
these distractions indeed magnify the potential severity of the crashes. Similarly, crashes
involving alcohol, particularly those associated with intoxicated drivers, considerably
elevate the odds of severe outcomes (OR = 1.837) relative to crashes that occur without the
influence of alcohol. This increased risk can be primarily attributed to alcohol’s deleterious
impacts on crucial cognitive abilities such as reaction time and decision-making capacity.

Speed violations further compound the odds of severe crashes (OR = 1.610), reaffirming
the dangerous consequences of high-speed impacts. Interestingly, crashes transpiring over
weekends demonstrate marginally increased odds of severity (OR = 1.096), which may be
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attributed to altered traffic patterns, increased alcohol consumption, or escalated travel
speeds during leisurely periods.

The geographical context also influences crash severity, with rural crashes associated
with higher severity odds (OR = 1.560) compared to urban occurrences. This divergence
could reflect disparities in speed limits, emergency response times, and access to trauma
care between rural and urban settings. In contrast, crashes involving animals are less likely
to be severe (OR = 0.151) compared to those without animal involvement.

3.5. Operational and Management Implications

The findings of this research provide valuable insights with direct implications for
operational and management strategies in traffic safety. Understanding the critical factors
contributing to crash severity could serve as a fundamental resource for traffic safety man-
agers, city planners, and policymakers in their endeavor to enhance road safety, particularly
for elderly drivers. This study also demonstrates the utility of machine learning models in
developing targeted interventions for preventing such crashes.

Regarding speed violations, this study identified them as significant determinants of
crash severity. Speed management remains a key aspect of road safety because it directly in-
fluences both the occurrence and severity of crashes. Therefore, enhancing law enforcement
measures against speed violations becomes a necessary strategy. Moreover, the implemen-
tation of intelligent speed assistance systems and designing roads to naturally limit speed
could be potential strategies for reducing the instances and impact of speed violations.

Similarly, the effectiveness of seat belts in reducing the severity of crash injuries was
reaffirmed in this study. This underscores the urgency for measures that encourage seat belt
usage. Strategies could include public awareness campaigns highlighting the importance
of seat belts, the strict enforcement of seat belt laws, and incorporating seat-belt reminder
systems in vehicles. These initiatives could considerably enhance compliance with seat belt
usage, consequently lowering crash severity.

This study further revealed that the involvement of pedestrians and bicyclists in
crashes significantly increases crash severity. As such, ensuring the safety of these vulner-
able road users becomes an urgent priority. Infrastructure improvements could include
creating dedicated bike lanes and designing pedestrian-friendly intersections. The imple-
mentation of effective traffic calming measures could also play a crucial role in reducing
the severity of crashes involving pedestrians and bicyclists.

Moreover, the role of alcohol consumption and driver distraction in contributing to
severe crashes was highlighted in our findings. This puts forth a strong case for robust
strategies aimed at tackling drunk and distracted driving. Measures could range from strict
law enforcement to technological solutions such as ignition interlocks for DUI offenders.
Concurrently, public awareness campaigns stressing the dangers of drunk and distracted
driving could promote safer driving habits.

Lastly, the machine learning models developed and tested in this study could serve
as invaluable tools for real-time crash prediction systems. These systems could evaluate
current driving conditions, predict high-risk situations based on the identified influential
factors, and initiate appropriate safety measures, such as adjusting speed limits or deliv-
ering warning messages to drivers. This represents a proactive, data-driven approach to
traffic safety management.

In conclusion, the insights derived from this study offer a solid foundation for the
development of targeted interventions, focusing on the key factors contributing to crash
severity. These interventions can supplement and enhance the effectiveness of existing
traffic safety management strategies, ultimately paving the way for safer road conditions
for all users, particularly elderly drivers.

4. Conclusions

This study explored the potential of both parametric and non-parametric machine
learning models in predicting crash severity involving elderly drivers, utilizing crash data



Sustainability 2023, 15, 9878 27 of 30

from the Commonwealth of Virginia (USA) spanning from 2014 to 2021. A thorough
comparison of performance metrics revealed that resampling techniques, specifically ROSE
and SMOTE, effectively tackled class imbalance, resulting in enhanced sensitivity, balanced
accuracy, and geometric mean for parametric models such as logistic regression and LDA.
Notably, the application of the SMOTE balancing technique substantially improved the
predictive performance of all evaluated models.

Study findings highlight that incorporating resampling techniques can significantly
boost the performance of parametric models, leading to an impressive 54% increase in
the true positive rate for severe crash prediction and a 44% improvement in geometric
mean for logistic regression. Furthermore, the use of SMOTE enhances the prediction
of severe crashes in non-parametric models, yielding a 28% increase in the true positive
rate and a 29% enhancement in geometric mean for XGBoost. The results also suggest
that parametric models outperform non-parametric models when employing balancing
resampling techniques, which can be critical for developing effective interventions and
improving traffic safety for elderly drivers.

Furthermore, the study highlighted a broad range of factors that contribute signif-
icantly to crash severity among elderly drivers. The findings revealed that crash types,
environmental conditions, roadway characteristics, driver behaviors, the involvement
of vulnerable road users, and geographical context are all key determinants of crash
severity. This comprehensive understanding underscores the necessity for multifaceted
interventions, addressing not only individual behaviors but also environmental factors and
road infrastructure.

The findings ultimately underscore the need for further research to refine preventative
strategies, ensuring safer road conditions for elderly drivers. Moreover, the findings
underscore the potential of machine learning models to effectively analyze complex crash
data, identify factors contributing to crash severity, and inform targeted interventions to
mitigate risks associated with elderly drivers.

These results provide valuable insights for policymakers and transportation safety
professionals to develop data-driven strategies that can enhance road safety and reduce the
number of severe crashes involving elderly drivers.

5. Study Limitations and Future Directions

Despite these promising results, this study has some limitations that warrant acknowl-
edgment. First, the data used in this study is specific to Virginia and the United States,
which may limit the generalizability of the findings to other regions or countries with
different road infrastructure, traffic rules, or driving behaviors. Second, while the resam-
pling techniques employed in this study have improved the models’ performance, other
resampling methods or alternative strategies for handling imbalanced datasets should be
considered and compared to assess their impact on predictive accuracy and generalization.

Future research could build upon the findings of this study by applying the resampling
strategies discussed herein to a broader range of modeling approaches, such as deep neural
networks (e.g., convolutional neural networks). This would facilitate a more comprehensive
understanding of the effectiveness of these strategies across various machine learning
techniques and offer insights into the most suitable methods for handling imbalanced
datasets in the context of crash severity prediction.

Additionally, future studies could consider incorporating other relevant factors related
to vehicle characteristics, such as vehicle size, type, and age. Additionally, the distinct
circumstances of single-vehicle crashes and multi-vehicle crashes could be considered
separately, as these might be influenced by different factors. Furthermore, road geometric
variables such as lane width can be incorporated. This could further enhance the analysis
by providing a more holistic view of the factors that contribute to crash severity among
elderly drivers.

Lastly, future work could extend the current research by conducting comparative
studies in different geographic regions and among various driver populations, which
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would contribute to a better understanding of the generalizability of the proposed modeling
approaches and resampling strategies in diverse contexts and settings.

By incorporating these suggestions and ideas, future research can continue to advance
the field of transportation safety and machine learning, ultimately contributing to more
effective interventions and strategies for reducing crash severity among elderly drivers and
other vulnerable road users.
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