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Abstract: In the present scenario, air quality prediction (AQP) is a complex task due to high variability,
volatility, and dynamic nature in space and time of particulates and pollutants. Recently, several
nations have had poor air quality due to the high emission of particulate matter (PM2.5) that affects
human health conditions, especially in urban areas. In this research, a new optimization-based
regression model was implemented for effective forecasting of air pollution. Firstly, the input data
were acquired from a real-time Beijing PM2.5 dataset recorded from 1 January 2010 to 31 December
2014. Additionally, the newer real-time dataset was recorded from 2016 to 2022 for four Indian
cities: Cochin, Hyderabad, Chennai, and Bangalore. Then, data normalization was accomplished
using the Min-Max normalization technique, along with correlation analysis for selecting highly
correlated variables (wind direction, temperature, dew point, wind speed, and historical PM2.5).
Next, the important features from the highly correlated variables were selected by implementing an
optimization algorithm named reinforced swarm optimization (RSO). Further, the selected optimal
features were given to the bi-directional gated recurrent unit (Bi-GRU) model for effective AQP. The
extensive numerical analysis shows that the proposed model obtained a mean absolute error (MAE)
of 9.11 and 0.19 and a mean square error (MSE) of 2.82 and 0.26 on the Beijing PM2.5 dataset and a
real-time dataset. On both datasets, the error rate of the proposed model was minimal compared to
other regression models.

Keywords: air quality prediction; bi-directional gated recurrent unit; correlation analysis; Min-Max
normalization technique; reinforced swarm optimization algorithm

1. Introduction

In recent decades, air pollution has been a serious environmental issue, and several
developed and developing countries have suffered from heavy air pollution [1]. The
identification of atypical pollution in the quantified concentrations of these compounds
has been a significant problem for health [2]. Compared to other pollution, air pollution
has a direct impact on people’s health, and the major causes of air pollution are natural
disasters, residential heating, exhaust from industries and factories, and the burning of
fossil fuels [3,4]. Therefore, predicting the mass concentrations of air pollution is essential
and plays a crucial role in atmospheric management decisions [5]. Additionally, existing
epidemiological research studies state that PM2.5 causes negative human health effects,
like respiratory diseases and cardiovascular diseases [6,7]. Therefore, effective forecasting
of air pollutant concentrations strengthen the prevention of air pollution, which helps in
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achieving efficient environmental management [8]. In addition, it has great significance for
government decision making and people’s health [9]. Poor AQP not only affects the human
physical condition but also produces a key impact on societal and economic controls [10].

Recently, several research studies have been carried out on AQP, but the majority
of the existing studies face difficulty in predicting future air quality for the monitoring
stations [11]. In this scenario, AQP is influenced by several factors, like dust, coal burning,
industrial emissions, vehicle exhaust, spatial distribution, and time patterns [12]. According
to atomic science research, the major factors for the dissipation and accumulation of
atmospheric pollutants are weather conditions, regional transport, and local emissions.
These factors are categorized into indirect and direct factors based on their impact on air
quality [13]. Compared to traditional machine learning models, deep learning models have
gained more attention among researchers, especially in time series analysis. Deep learning
models are effective in exploring longer-term dependencies and implicit features from
time series data for effective AQP. Yet, several deep learning models have problems like
overfitting and the vanishing gradient problem in time series forecasting. Therefore, a new
optimization-based regression model is proposed in this research in order to overcome the
above-stated problems and to achieve better AQP.

The main contributions of our paper are given as follows:

• Initially, this study implemented a Min-Max normalization technique that efficiently
preserves the relationship between the data values with low standard deviation.
In time series forecasting, the Min-Max normalization technique forecast the next
hour’s concentration and reduces the effect of outliers by using different sizes of
sliding windows.

• Then, we performed a correlation analysis to select the optimal meteorological vari-
ables (wind speed, temperature, dew point, wind direction, and historical PM2.5) from
the collected datasets.

• After that, an RSO algorithm was developed for selecting discriminative features
from the selected meteorological variables. This action greatly reduces the model’s
complexity and computational time. The RSO algorithm is the integration of the BSO
algorithm and reinforcement learning, which overcomes the optimization problems
like poor convergence rate and local optima problems.

• Finally, the Bi-GRU model was used for effective forecasting of air quality, and
its efficacy was tested using the performance measures, including MSE, RMSE,
MAE, symmetric mean absolute percentage error (SMAPE), MAPE, and coefficient
of determination (R2).

The manuscript is organized as follows: The existing papers on the topic of AQP are
reviewed in Section 2. The methodology details, numerical investigation, and conclusion
of this research are mentioned in Sections 3–5, respectively.

2. Literature Review

For predicting the air quality in Tripoli [14], Esager and Ünlü proposed an evaluation
of deep learning models for hourly PM2.5 surface mass concentrations. Since the analyzed
data are a time series, the Box–Jenkins methodology is generally used to model such a
dataset. This study gave particular attention to the LSTM and GRU with CNN types of
recurrent neural networks. The result analysis demonstrates the strong forecasting power
of the used algorithms. This type of model’s key benefit is that it does not call for the
same exact assumptions that other traditional models do. These algorithms were also quite
effective in simulating the data’s nonlinear behavior.

Du et al. [15] implemented a hybrid deep learning architecture for effective air pollu-
tion forecasting. The implemented hybrid architecture, Bi-LSTM and a convolutional neural
network (CNN), learns multivariate, temporal, and spatial correlation features from the
collected time series data for effective forecasting of air quality. The experiments conducted
on the two real-world datasets demonstrated that the implemented hybrid architecture was
effective in dealing with PM2.5 air pollution prediction with better accuracy. The integration
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of deep learning models increased the time complexity and computational cost because it
required an enormous amount of data to obtain satisfactory results.

Usually, the dynamics of air pollution is reflected by dissimilar factors, like rainfall,
snowfall, wind speed, wind direction, humidity, and temperature. These factors increase
the difficulty in understanding the changes that occurred in the air pollutant concentration.
Tao et al. [16] integrated the CNN and Bi-GRU models for effective forecasting of air
pollution. The experiments conducted on the UCI machine-learning repository Beijing
PM2.5 dataset demonstrated the effectiveness of the hybrid deep learning models, as they
achieved better results than traditional models. As mentioned earlier, the integration of
two deep learning models leads to high time complexity.

Ma et al. [17] used a Bi-LSTM network with transfer learning for forecasting air
pollution in Anhui, China. The numerical results showed that the Bi-LSTM network with
transfer learning achieved a 35% lower error rate than the existing models on a real-time
dataset. The developed Bi-LSTM network with transfer learning was not scalable and was
time-consuming while performing experiments on a real-time dataset.

Chang et al. [18] implemented a new aggregated LSTM network for effective air
pollution forecasting. The aggregated LSTM network combines information about external
pollution sources, stations nearby industrial areas, and the stations with local air pollution
monitoring systems. Here, three LSTM models were aggregated in order to improve
prediction accuracy, but it was a computationally complex process.

Castelli et al. [19] employed a machine learning technique called support vector
regression (SVR) for forecasting air quality index (AQI) and pollutant levels. After the
acquisition of time series data, data preprocessing (data transformation, outlier removal,
and imputation of missing data) and feature engineering were accomplished. Finally, the
air pollution prediction was carried out by utilizing the SVR technique. However, the SVR
will underperform when the number of feature vectors for every data point exceeds the
number of training samples.

Xayasouk et al. [20] integrated a deep autoencoder and an LSTM network for air
pollution prediction. In addition to this, Wen et al. [21] combined a CNN and an LSTM
network for effective forecasting of air pollution in China. Wang et al. [22] implemented
a two-layer air pollution prediction model based on a GRU and an LSTM network. The
numerical outcomes confirmed that the presented hybrid models obtained higher prediction
performance than existing ones at different regional scales. The hybrid deep learning model
has the ability to handle complex and large data, but it was computationally expensive.

Air pollution is becoming a serious problem due to the rapid growth of industrializa-
tion. In the present scenario, predicting air pollution is crucial in determining prevention
measures for avoiding disasters. Zhang et al. [23] utilized a light gradient boosting tech-
nique for selecting discriminative features from real-time datasets. Further, the selected
500 feature vectors were given to the eXtreme Gradient Boosting (XGBoost) technique for
air pollution forecasting.

Wang et al. [24] initially adopted the Hampel identifier and variational mode decom-
position (VMD) technique for detecting and eliminating outliers from the acquired datasets.
Then, the optimal feature vectors were selected from the denoised data by employing a
sine-cosine algorithm, and finally, an extreme learning machine (ELM) was implemented
for accurate forecasting of air pollution. Generally, standard machine learning techniques,
such as XGBoost and ELM, exhibit outliers and overfitting problems when analyzing
complex time series data.

The PM of the Turkish city Ankara was modeled using a hybrid deep learning method-
ology, which was analyzed by Akbal and Ünlü [25]. According to the WHO’s criteria, PM
levels were categorized to provide a prediction problem. Further, by using the ensemble
machine learning methodology of random forest regression (RFR), extra tree regression
(ETR), and multiple linear regression (MLR), the impact of various contaminants and mete-
orological variables on the prediction of PM has been examined. The findings indicated
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that other substances, the Earth’s surface temperature, wind speed, and PM’s own lagged
values were the most crucial predictor variables for PM.

Li et al. [26] employed the Hampel filter and least square support vector machine
(SVM) regression for AQI forecasting. Maleki et al. [27] implemented an artificial neural
network (ANN) for air pollution forecasting. However, the ANN was a simpler deep
learning mode and required more training data to obtain satisfactory results. Mao et al. [28]
implemented a temporal sliding LSTM network for effective prediction of air quality. The
presented temporal sliding LSTM network achieved higher prediction results with strong
atmospheric decision making.

Zhang et al. [29] integrated empirical mode decomposition (EMD) and a Bi-LSTM
network for effective forecasting of AQI. Firstly, the EMD technique was employed for
decomposing PM2.5 time series data and extracting the amplitude and frequency features.
Secondly, the obtained features were given to the Bi-LSTM network for AQI forecasting.
The experiments conducted on the PM2.5 and Beijing hourly datasets demonstrated the
efficacy of the developed EMD-Bi-LSTM model by means of error rate. In the time series
analysis, the Bi-LSTM network was slower and consumed more time for model training.

Zeinalnezhad et al. [30] integrated an adaptive neuro-fuzzy inference system (ANFIS)
and semi-experimental nonlinear regression for predicting the concentration of important
pollutants. However, the standard ANFIS models include a few problems, such as the curse
of dimensionality, high computational expense, and loss of data interpretability.

Aarthi et al. [31] initially used a Min-Max normalization technique for filling in the
missing attributes in the collected dataset, and then, the optimal attributes were selected
from the preprocessed data by implementing a balanced spider monkey optimization
(BSMO) algorithm. Based on the balancing factor, the BSMO algorithm selects the relevant
attributes, which are given to the Bi-LSTM network for AQP. The developed BSMO algo-
rithm efficiently finds the optimal solution but has a poor convergence rate. To highlight
the aforementioned concerns and to achieve precise AQP, an effective optimization-based
regression model (RSO and Bi-GRU) is introduced in this paper.

Several models have been examined to improve air quality, which is essential for
preventing or reducing the consequences of pollution. We will be prompted by the air
quality to be careful, and it may even motivate individuals to carry out their daily activities
in less polluted areas. However, it is still challenging to analyze the data and provide
improved outcomes. Air pollution forecasting is among the fields in which deep learning
technologies have a substantial impact and penetration rise. The authors use complex
and advanced methods to accurately anticipate the air quality. External factors, such as
weather, geographic features, and temporal characteristics, must be taken into account. For
pollution reduction, human health monitoring, and sustainability, an accurate air quality
prediction model is necessary. Due to overfitting in the prediction model and local optima
trap in feature selection, the current air quality forecast models (state-of-the-art methods)
are inefficient.

3. Methodology

Eight pollutants, namely particulate matter (PM) 10, PM2.5, ozone (O3), sulfur dioxide
(SO2), nitrogen dioxide (NO2), carbon monoxide (CO), lead (Pb), and ammonia (NH3),
act as major parameters in deriving the AQI of an area. While using the annual data, this
research uses 24 lags in time series analysis. In this time series analysis, the proposed
framework includes five phases:

(1) Dataset description—Beijing PM2.5 dataset and a real-time dataset;
(2) Data normalization—Min-Max normalization technique;
(3) Correlation analysis;
(4) Feature optimization—RSO algorithm;
(5) Prediction—Bi-GRU model.

The diagram of the developed regression model is shown in Figure 1.
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3.1. Dataset Description

The introduced optimization-based regression model’s (RSO and Bi-GRU) perfor-
mance was validated on a Beijing PM2.5 dataset and a newer real-time dataset. The Beijing
PM2.5 dataset comprised PM2.5 meteorological data, which were recorded from 1 January
2010 to 31 December 2014 [16]. Here, in this dataset, 70% of data are used for training,
and the remaining 30% are used for testing. From this ratio (70:30), until 2 July 2013, the
data has been trained. Then, the testing process started and lasted until 31 December 2014.
This dataset has eight characteristics: wind speed, rainfall, wind direction, snowfall, dew
point, PM2.5 concentration, air pressure, and temperature. Among 43,800 rows, 30,000 rows
were utilized as a training set, 8000 rows were utilized as a validation set, and the remain-
ing 5800 rows were utilized as a testing set. In this dataset, the wind direction had four
features (southwest, northwest, southeast, and northeast), which were encoded as float
data (−10, 0, 10, and 20) [32].

Additionally, a newer real-time dataset was acquired from the central pollution control
board for four Indian cities: Cochin, Hyderabad, Chennai, and Bangalore. In this collected
dataset (two times a week during a 24 h time period), the pollutants were monitored, and
104 observations were provided annually [31].

3.2. Data Normalization

The acquired time series data were normalized by implementing a Min-Max normal-
ization technique. This helps in removing the units in the acquired data or the impact of
differing scales [33,34]. The Min-Max normalization technique is used for scaling the data
values within a fixed range (zero to one). Initially, the Min-Max normalization technique
subtracts the minimum value from data points X and further divides by its range. The
formula of the Min-Max normalization technique X_norm is presented in Equation (1).

X_norm = (X− X_min)/(X_max− X_min) (1)

In this scenario, the calculation of the normalization is performed only for the training
set, and the validation set and the testing set are unknown. The actual PM2.5 concentration
in the test set is shown in Figure 2.
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3.3. Correlation Analysis

The correlation between all potential pairs of values in a table is shown in the matrix.
It is an effective tool for compiling a sizable dataset and for locating and displaying
data patterns. A correlation matrix simplifies the process of selecting different assets by
tabulating their correlation with one another. It is vital to identify the correlations between
PM concentrations and influencing factors for developing a good prediction model. It
guarantees that the proposed regression model utilizes the efficient features for AQP. PM2.5
is affected by several factors, but all the factors are important in effective AQP. On the
other hand, the irrelevant/inactive factors affect the proposed model’s performance by
means of time complexity. Therefore, it is important to compute the correlation coefficients
(CCs) for every factor that helps in selecting the optimal features for effective forecasting
of air pollution. Let us consider characteristic time series data as X = (x1, x2, . . . , xn) and
other data as Y = (y1, y2, . . . , yn). The CC between the factors r is computed as described
in Equation (2).

r =
n∑n

i=1 xiyi −∑n
i=1 xi∑n

i=1 yi√
n∑n

i=1 x2
i − (∑n

i=1 xi)
2
√

n∑n
i=1 y2

i − (∑n
i=1 yi)

2
(2)

where 0 < r < 1 indicates a positive correlation, −1 < r < 0 represents a negative
correlation, and n represents the number of samples. The correlation is greater and the
space between X and Y is limited if the absolute value of r is closer to 1.

The CCs between PM concentrations and every feature were calculated for the Beijing
PM2.5 dataset and a real-time dataset. Table 1 shows that the snowfall, wind direction, and
dew point have positive correlations with PM2.5 concentration, whereas the wind speed,
temperature, rainfall, and air pressure have negative correlations with PM2.5 concentration.
Table 1 clearly shows that all variables are weakly correlated with each other, and it shows
that there are no duplicate variables. The obtained meteorological variables are directly
utilized as the input of the proposed optimization-based regression model. As specified in
Table 1, the CCs of rainfall, snowfall, and air pressure are small, and the unrelated input
increases the difficulty in learning useful features and the model’s complexity. Therefore,
the wind direction, temperature, dew point, wind speed, and historical PM2.5 were chosen
as the input for the proposed optimization-based regression model.
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Table 1. CCs between PM concentrations and meteorological variables.

R Rain Snow Wind Speed Wind Direction Pressure Temperature Dew Point Pollution

Rain 1.00 −0.01 −0.01 −0.05 −0.07 0.05 0.13 −0.05
Snow −0.01 1.00 0.02 0.01 0.07 −0.09 −0.03 0.02

Wind speed −0.01 0.02 1.00 −0.20 0.18 −0.15 −0.30 −0.24
Wind direction −0.05 0.01 −0.20 1.00 −0.16 0.18 0.23 0.19

Pressure −0.07 0.07 0.18 −0.16 1.00 −0.79 −0.74 −0.06
Temperature 0.05 −0.09 −0.15 0.18 −0.79 1.00 0.82 −0.09
Dew point 0.13 −0.03 −0.30 0.23 −0.74 0.82 1.00 0.18
Pollution −0.05 0.02 −0.24 0.19 −0.06 −0.09 0.18 1.00

3.4. Feature Optimization

From the selected variables, namely wind direction, temperature, dew point, wind
speed, and historical PM2.5, the important features were chosen by implementing the RSO
algorithm, which is a combination of the bee swarm optimization (BSO) algorithm and
reinforcement learning.

3.4.1. BSO Algorithm

The BSO algorithm [35] is one of the effective metaheuristic feature selection algo-
rithms; it mimics the hierarchical task management, adaptation, and self-organization
behavior of natural bees. The BSO is an iterative algorithm that resolves optimization
problems by imitating the probabilistic decision-making mechanism and foraging behavior
of bees for exploiting and selecting optimal food sources. First, the heuristic is utilized
for generating the reference solution, which is considered as the reference for determining
other solutions in the search space. In the BSO algorithm, the search space is defined as
the distance that is inversely proportional to the flip parameter that helps in finding the
convergence in the search process. In the local search, a bee agent is assigned to each of
these solutions. Every bee’s search result is saved to the dance table when it is completed.
One of the solutions is picked to serve as the new reference solution in the following
iteration. In order to avoid cycles, the reference solutions are kept in the dance table. From
the dance table, the fittest and best solutions are passed to the congeners, which are further
utilized for selecting the next reference solution.

In order to avoid congestion problems, the selected reference solutions are placed in
a table “Tab”. Then, a parameter (Chance-Max) is defined for avoiding the local optima
problem. In the BSO algorithm, maximum chances are given to a bee agent in order
to explore a reference solution. In the next step, intensification is performed if a better
reference solution is found within the Chance-Max range; otherwise, diversification is
carried out. The search stops after identifying the global optimal best solution or reaching
the maximum number of iterations.

3.4.2. Reinforcement Learning

Reinforcement learning [36] tackles the issue of autonomous entities needing to learn
control techniques with little or no data. It strengthens or reinforces the behavior. Since
positive reinforcement does not require taking something away or imposing a negative
consequence, people frequently find it simpler to accept than other teaching techniques.
Additionally, it is far simpler to reward behaviors than to penalize them, which makes
reinforcement generally a more effective tool. In machine learning, reinforced learning is
called Q learning, and how a specific task is achieved is defined as a programming agent.
In this scenario, U = {u1, u2, . . . , un} represents the set of states, and V = {v1, v2, . . . , vn}
specifies the set of actions. For each action ai, a reward bi is received, and this is performed
in a set si. This algorithm maps U → V for maximizing the reward function, and it is
mathematically specified in Equation (3).

Bu,v(i) = bi + αbi+1 + α2bi+2 + · · · α2bi+n (3)
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where the discount parameter is defined as α, which ranges between 0 and 1. Generally,
the search agents tend towards the longer-term rewards when α is equal to 1. On the other
hand, the search agents tend towards the immediate or shorter-term rewards when α is
equal to 0. In residual learning, the temporal difference is an extensively utilized method
that integrates the features of the Markov decision process and the Monte Carlo algorithm.
In this scenario, the temporal difference method is used in the recursive Q learning for
computing the immediate reward Q, and it is mathematically described in Equation (4).

Q(ui, vi) = b(ui, vi) + αmaxQ(β(ui, vi), vt) (4)

where β(ui, vi) indicates the resulting state and vt represents another tth action. Therefore,
after modifying Equation (4), we obtain a new formula, expressed as Equation (5).

Q(ui, vi) = lr× (b(ui, vi)) + (1− lr)×Q(ui, vi) + αmaxQ(β(ui, vi), vt) (5)

where lr ∈ [0, 1] and is represented as the learning rate. The pseudocode (Algorithm 1) of
the reinforcement learning process is as follows:

Algorithm 1 Reinforcement Learning

1. Initialize table elements Q(u, v)→ 0
2. Initialize actions Vi ∀i = 1, 2, 3, . . . n
3. Initialize states Ui ∀i = 1, 2, 3, . . . n
4. For k ≤ n do
5. Presents state → uk
6. Present action → vk
7. Execute vk over uk
8. Immediate reward → bk and the new state is obtained from ut
9. Q(uk , vk)← bk + αmax(ut, vt)
10. k = k + 1
11. Update ut → uk
12. End for

3.4.3. RSO Algorithm

As specified earlier, the RSO algorithm [37] is the integration of the BSO algorithm and
reinforcement learning, and it improves the learning process by making the agents learn
from prior experiences. The main issue in the BSO algorithm is the absence of memory or
intelligence in the local search, which results in local optima problems. This makes the BSO
algorithm ineffective compared to other optimization algorithms. In order to highlight the
aforementioned issue, the local search algorithm is replaced by Q learning.

In the context of feature selection, the deletion and inclusion of a feature from the
optimal features is assumed as an action, the reward is considered as the selection of
optimal features, and the improvement of AQP is considered as a secondary constraint. Let
us assume Vt = {vt1, vt2, . . . , vtn} is an action performed in the tth iteration. The reward
obtained in the set ut leverages the prediction accuracy acc and the number of selected
features Num in the feature subsets (selected variables). The reward is mathematically
specified in Equation (6).

bt ←


Acc(ut), i f Acc(ut) < Acc(ut+1)

Acc(ut+1)− Acc(ut), i f Acc(ut) > Acc(ut+1)
Acc(ut)

2 , i f Num(ut) > Num(ut+1)

− Acc(ut)
2 , i f Num(ut) < Num(ut+1)

 (6)

In this scenario, the RSO algorithm selects 4522 features from the selected variables:
wind speed, wind direction, temperature, dew point, and historical PM2.5, which are given
to the Bi-GRU model for effective forecasting of air quality. The parameters considered in
the RSO algorithm are mentioned as follows: the maximum number of iterations is equal
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to 100, Chance-Max is equal to 5, flip is equal to 5, the number of bees is equal to 100, the
learning rate is equal to 0.001, α is set to 0.2, and β is set to 0.1.

3.5. Air Quality Prediction

GRU has fewer gates than LSTM, which makes it less complicated. Sequential data’s
long-term dependencies can be successfully maintained using GRUs. They can also deal
with the so-called short-term memory problem. The selected 4522 features were given to
the Bi-GRU model for effective forecasting of air pollution [38]. The GRU model has reset
and update gates for effective AQP; these gates reduce computational loss and gradient
dispersion and enable the ability of longer-term memory. The update gate dTS replaces
forget and input gates of the LSTM network; it determines the retention degree of the prior
information in the present forecasting, and it is mathematically presented in Equation (7).

dTS = σ(Wd × [hTS−1, FeaTS] + sd) (7)

where hTS−1 represents the hidden state at the prior time step TS− 1; σ denotes the sigmoid
activation function, which ranges between 0 and 1; FeaTS indicates the input matrix at
time step TS; and Wd and sd denote the weight matrix and bias matrix of the update gate
dTS [39]. On the other hand, the reset gate pTS controls the historical time series data, and
it is mathematically specified in Equation (8).

pTS = σ
(
Wp × [hTS−1, FeaTS] + sp

)
(8)

where Wp and sp denote the weight matrix and bias matrix of the reset gate pTS [40].

Further, the candidate hidden state
∼
hTS is mathematically denoted in Equation (9).

∼
hTS = tanh (Wh × [hTS−1 � pTS, FeaTS] + sh) (9)

where � indicates dot multiplication operation, Wh and sh represent the weight matrix and
bias matrix of the memory cell state, and tanh denotes the tangent activation function. The

linear interpolation between
∼
hTS and hTS−1 results in output hTS, which is mathematically

specified in Equation (10). The flow diagram of the Bi-GRU model is shown in Figure 3.

hTS = (1− dTS)� hTS−1 + dTS �
∼
hTS (10)
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Generally, an effective prediction model is required for AQP for extracting complex
variances and implicit features from sequence data. The conventional GRU model only
extracts feature information from the forward direction, and it ignores the backward
time series data. Therefore, the Bi-GRU model was used in this study, which proved to
be effective in mining the knowledge between the meteorological variables from both
backward and forward directions. The Bi-GRU model, composed of backward and forward
GRUs, is shown in Figure 3. The backward GRU obtains future information from the input
data, and the forward GRU captures past information from the input data. The Bi-GRU
model OTS is mathematically denoted in Equation (11).

OTS = C
(→

h TS,
←
h TS

)
(11)

where C indicates the output of two directions (summation function, average function,

multiplication function, and so on), and
→
h TS and

←
h TS represent the hidden state of both

forward and backward GRUs. The assumed parameters of the Bi-GRU model are repre-
sented as follows: the learning rate is equal to 0.001, the optimizer is set to Adam, the loss
function is the MSE loss, the number of epochs is set to 100, the batch size is set to 50, the
dropout rate is equal 0.5, the number of neurons (NoN) is set to 80, and look-back is set to 8.
The numerical analysis of the proposed regression model (RSO and Bi-GRU) is discussed
in Section 4.

4. Numerical Analysis

The proposed regression model (RSO and Bi-GRU) was simulated using a custom-built
Python 3.7 software tool and tested on a computer with an NVidia GeForce RTX 3080,
128 GB of random-access memory (RAM), a Linux operating system, and an Intel core-i5
12th generation processor. The Beijing PM2.5 dataset and a real-time dataset were utilized
for evaluating the effectiveness of the proposed regression model (RSO and Bi-GRU), and
the proposed model was compared with six existing regression models. For this article, all
machine learning and deep learning models were trained on scikit-learn, TensorFlow, and
Keras libraries. All the regression models were trained with a learning rate of 0.001, the
Adam optimizer type, and an MSE loss function.

4.1. Performance Measures

The proposed model’s (RSO and Bi-GRU) efficacy was evaluated using different
loss functions, such as MAE, SMAPE, RMSE and MSE. The MAE performance measure
effectively reflected the actual situation of the forecasting error. In addition, the other
performance measures, such as RMSE and SMAPE, effectively evaluate the degree of data
change and measure the prediction quality of the proposed model. On the other hand,
the MSE is determined as the average or mean square difference between the estimated
and actual values. The mathematical formulas of the performance measures MSE, MAE,
RMSE, SMAPE, R2, and MAPE are stated in Equations (12)–(17).

MSE(z′ ,z) =
1
n

n

∑
i=1

(
z′i − zi

)
(12)

MAE(z′ ,z) =
1
n

n

∑
i=1

∣∣z′i − zi
∣∣ (13)

RMSE(z′ ,z) =

√
1
n

n

∑
i=1

(
z′i − zi

)2 (14)

SMAPE(z′ ,z) =
1
n

n

∑
i=1

∣∣z′i − zi
∣∣(

z′i − zi
)
/2

(15)
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R2 = 1− ∑i(zi − ẑi)
2

∑i(zi − z)2 (16)

MAPE =
1
n

n

∑
i=1

∣∣∣∣ zi − ẑi
zi

∣∣∣∣ (17)

where n represents the number of samples, z′i indicates the predicted time series value, and
zi denotes the measured time series value.

4.2. Experimental Setup with Ablation Analysis

In this scenario, six comparative regression models, namely SVR, random forest,
recurrent neural network (RNN), LSTM, extra tree regression (ETR), and multiple linear
regression (MLR), were developed for investigating the efficacy of the proposed model
(GRU and Bi-LSTM). Here, all regression models were trained for 100 epochs with a batch
size of 50. Additionally, a dropout layer with a probability of 0.5 was extensively applied
between the layers in order to avoid the overfitting problem. The weight matrices were
stored when the loss value of the previous epoch was higher compared to the present epoch.
All regression models utilized an early stopping condition that stops the model training
when the validation loss does not change within 10 training epochs. The Adam optimizer
was utilized as the optimizer in the regression models because it iteratively updates its
learning rate and effectively handles sparse gradients in noisy problems. Further, the Adam
optimizer addresses two major concerns, including the local minima and convergence speed.
Each data point in the testing set was verified by means of MAE, SMAPE, RMSE and MSE
after the trained models were obtained.

Numerous ablation experiments were performed in terms of MAE, SMAPE, RMSE
and MSE as specified in Tables 2–5. A couple of hyper-parameters, namely NoN and look-
back, were tuned in the Bi-GRU model for achieving better prediction performance. The
NoN indicates which neurons have a high prediction effect, and the look-back represents
the previous time steps needed by the normalized data. Here, the NoNs were chosen from
different candidate sets {256, 128, 80, 64, and 32}. Tables 2 and 3 represent the effect of
the NoN on the Bi-GRU model for a Beijing PM2.5 dataset and a real-time dataset. Table 2
indicates that the Bi-GRU model with 80 neurons obtained a minimum error rate with
MAE of 9.11, SMAPE of 0.16, RMSE of 9.82, MSE of 2.82, MAPE of 13.76, and R2 of 2.45
on a Beijing PM2.5 dataset. Correspondingly, as depicted in Table 3, the Bi-GRU model with
80 neurons obtained a lower error rate with MAE of 0.19, SMAPE of 0.44, RMSE of 0.48,
MSE of 0.26, MAPE of 16.59, and R2 of 1.86 on a real-time dataset.

Table 2. Analyzing the effect of NoN on Bi-GRU model for a Beijing PM2.5 dataset.

Neurons MAE SMAPE RMSE MSE MAPE R2

256 23.40 5.68 32.80 6.53 16.42 3.12
128 19.43 4.53 28.27 5.49 14.23 2.90
80 9.11 0.16 9.82 2.82 13.76 2.45
64 10.92 2.33 12.12 3.90 12.48 2.01
32 14.55 3.48 19.30 4.55 11.59 1.84

Table 3. Analyzing the effect of NoN on Bi-GRU model for a real-time dataset.

Neurons MAE SMAPE RMSE MSE MAPE R2

256 3.88 5.01 3.92 3.92 18.29 2.42
128 2.12 4.02 2.03 3.80 17.37 2.23
80 0.19 0.44 0.48 0.26 16.59 1.86
64 1.82 2.92 1.18 1.94 14.74 1.77
32 1.50 3.11 1.78 2.50 13.19 1.75
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Table 4. Analyzing the effect of look-back on Bi-GRU model for a Beijing PM2.5 dataset.

Look-Back MAE SMAPE RMSE MSE MAPE R2

16 12.33 12.20 15.60 12.80 14.23 2.55
12 20.47 9.82 13.22 10.28 12.38 2.49
10 13.45 2.39 10.09 6.50 14.15 2.48
8 9.11 0.16 9.82 2.82 12.74 1.94
6 11.25 2.11 12.92 12.92 13.76 1.43
4 20.34 10.82 16.57 18.29 12.84 1.29

Table 5. Analyzing the effect of look-back on Bi-GRU model for a real-time dataset.

Look-Back MAE SMAPE RMSE MSE MAPE R2

16 2.80 3.23 4.22 3.20 12.64 1.92
12 2.12 2.30 3.20 1.29 12.43 1.74
10 1.92 1.14 1.01 0.82 12.29 1.56
8 0.19 0.44 0.48 0.26 12.06 1.19
6 1.02 0.82 0.93 1.28 11.98 1.12
4 0.82 1.44 0.98 1.22 11.89 0.99

Tables 4 and 5 represent the effect of look-back on the Bi-GRU model for a Beijing
PM2.5 dataset and a real-time dataset, respectively. Tables 4 and 5 show that the Bi-GRU
model with a look-back of 8 has obtained a minimum error rate in terms of MAE, SMAPE,
RMSE, MSE, MAPE, and R2. The optimal selection of look-back and NoN effectively fits
the model on historical data for better AQP.

4.3. Analysis on a Beijing PM2.5 Dataset

Quantitative analysis was performed on a Beijing PM2.5 dataset by varying the regres-
sion models and the optimization algorithms. In this research, the importance of the nor-
malization technique (Min-Max normalization technique) is specified in Table 6. The table
clearly shows that preprocessing data using the Min-Max normalization technique accom-
plished better results in terms of MAE (9.11), SMAPE (10.16), RMSE (9.82), MSE (12.82),
MAPE (12.27), and R2 (0.78) on a Beijing PM2.5 dataset. For non-preprocessed data, an
MAE of 12.37, SMAPE of 14.27, RMSE of 20.38, MSE of 11.83, MAPE of 19.92, and R2

of 0.43 were obtained. The above values demonstrate that the preprocessing of the data
using the Min-Max normalization technique effectively preserves the relation between the
original data values with limited standard deviations that effectively suppress the effect
of outliers. On the other hand, the numerical analysis of different deep learning models
on a Beijing PM2.5 dataset is represented in Table 7. Compared to other regression mod-
els (SVR, random forest (RF), RNN, LSTM, ETR, MLR, GRU, and Bi-LSTM), the Bi-GRU
model obtained better forecasting performance with the minimal MAE of 9.11, SMAPE
of 0.16, RMSE of 9.82, MSE of 2.82, MAPE of 10.46, and R2 of 0.84 on a Beijing PM2.5
dataset. The graphical evaluation of different prediction models on a Beijing PM2.5 dataset
is shown in Figure 4.

The comparison of different feature selection algorithms on a Beijing PM2.5 dataset
is described in Table 8. As mentioned in Table 8, the RSO algorithm with Bi-GRU model
obtained higher forecasting performance with minimal error rate compared to other opti-
mization algorithms, such as the butterfly optimization algorithm (BOA), firefly optimiza-
tion algorithm (FOA), whale optimization algorithm (WOA), genetic algorithm (GA), grey
wolf optimization (GWO) algorithm, and particle swarm optimization (PSO) algorithm.
The selection of optimal features by the RSO algorithm significantly decreases the computa-
tional time. The proposed regression model (RSO and Bi-GRU) consumed a computational
time of 43.22 s, which is efficient in comparison to other combinations. The graphical
evaluation of different optimization algorithms on a Beijing PM2.5 dataset is shown in
Figure 5. Additionally, the plot of actual and predicted PM2.5 values and the boxplots of
actual and predicted PM2.5 values are presented in Figures 6–8. The boxplot of prediction
errors from deep learning models is illustrated in Figure 9.
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Table 6. Performance analysis of normalization technique on a Beijing PM2.5 dataset.

Technique MAE SMAPE RMSE MSE MAPE R2

Non-preprocessed data 12.37 14.27 20.38 11.83 19.92 0.43
Preprocessed data

(Min-Max) 9.11 10.16 9.82 12.82 12.27 0.78

Table 7. Comparison of different deep learning models on a Beijing PM2.5 dataset.

Models MAE SMAPE RMSE MSE MAPE R2

SVR 13.12 0.21 23.22 12.14 18.92 0.76
Random

forest 14.32 0.22 24.92 12.33 17.79 0.71

RNN 13.90 0.28 19.21 10.94 16.71 0.72
LSTM 12.12 0.25 15.42 9.13 15.54 0.75
ETR 11.94 0.24 14.26 8.12 15.51 0.77
MLR 11.35 0.22 15.34 9.94 14.47 0.76
GRU 11.22 0.21 16.39 9.82 12.42 0.79

Bi-LSTM 10.78 0.26 12.77 6.65 12.36 0.80
Bi-GRU 9.11 0.16 9.82 2.82 10.46 0.84
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4.4. Analysis on a Real-Time Dataset

This subsection presents the results of the quantitative analysis performed on a real-
time dataset by varying the deep learning models and optimization algorithms. The
importance of the normalization technique is clearly described in Table 9. The table clearly
shows that the results of non-preprocessed data provide an MAE of 0.80, SMAPE of
0.76, RMSE of 0.78, MSE of 0.81, MAPE of 17.93, and R2 of 0.46. Once the data are
preprocessed using the Min-Max technique, minimal error rate values are obtained (MAE
of 0.39, SMAPE of 0.44, RMSE of 0.48, MSE of 0.41, MAPE of 12.31, and R2 of 0.74). As
specified in Table 10, the Bi-GRU model achieved the minimal MAE of 0.19, SMAPE of
0.44, RMSE of 0.48, MSE of 0.26, MAPE of 10.98, and R2 of 0.83, which are better when
compared to those of the six others regression models. In time series forecasting, the
Bi-GRU model uses special gates (reset and update gates) that reduce the computational
loss, enable the ability of long-term memory, and reduce the gradient dispersion.

Table 9. Performance analysis of normalization technique on a real-time dataset.

Technique MAE SMAPE RMSE MSE MAPE R2

Non-preprocessed data 0.80 0.76 0.78 0.81 17.93 0.46
Preprocessed data (Min-Max) 0.39 0.44 0.48 0.41 12.31 0.74

Table 10. Comparison of different deep learning models on a real-time dataset.

Models MAE SMAPE RMSE MSE MAPE R2

SVR 1.28 1.11 1.45 1.76 14.83 0.64
Random

forest 1.23 1.02 1.33 1.44 14.71 0.68

RNN 0.82 0.91 1.09 1.28 14.62 0.66
LSTM 0.76 0.86 1.12 0.88 14.54 0.69
ETR 0.71 0.81 0.94 0.65 13.51 0.70
MLR 0.67 0.79 0.77 0.54 13.49 0.71
GRU 0.54 0.77 0.62 0.43 12.46 0.76

Bi-LSTM 0.22 0.54 0.56 0.31 11.37 0.77
Bi-GRU 0.19 0.44 0.48 0.26 10.98 0.83

Correspondingly, the comparison of different feature optimization algorithms on a
real-time dataset is described in Table 11. As shown, the combination of the RSO algorithm
with the Bi-GRU model obtained a minimal error rate compared to other optimization
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algorithms. The RSO algorithm effectively selects the optimal features from the highly
correlated variables (wind speed, wind direction, temperature, dew point, and historical
PM2.5) with a better convergence rate. This action improves the prediction performance
with limited computational time. In this scenario, the proposed regression model (RSO and
Bi-GRU) consumed a computational time of 19.28 s on a real-time dataset.

Table 11. Comparison of different feature selection algorithms on a real-time dataset.

Optimization Algorithm MAE SMAPE RMSE MSE MAPE R2

PSO 1.55 1.16 1.32 1.35 18.59 0.58
GWO 1.28 1.08 1.20 1.22 18.53 0.62

GA 0.77 0.98 1.02 1.04 17.50 0.59
WOA 0.64 0.84 0.82 0.84 16.46 0.57
FOA 0.50 0.90 0.60 0.48 15.14 0.64
BOA 0.25 0.53 0.51 0.30 13.02 0.70
RSO 0.19 0.44 0.48 0.26 11.37 0.81

4.5. Comparative Analysis

As reviewed in the literature section, Tao et al. [16] combined the CNN and Bi-GRU
models for effective AQP. The experiments performed on a Beijing PM2.5 dataset demon-
strated the efficacy of the developed model. The developed CNN-Bi-GRU model obtained
the RMSE of 14.53, MAE of 10.47, and SMAPE of 0.20 on a Beijing PM2.5 dataset. Com-
pared to this existing model, the proposed regression model (RSO and Bi-GRU) obtained
better AQP with the RMSE of 9.82, MAE of 9.11, and SMAPE of 0.16 on a Beijing PM2.5
dataset, as shown in Table 12. Aarthi et al. [31] used the Min-Max normalization technique,
BSMO, and Bi-LSTM network for AQP. The developed model proved to be effective in AQP
with an MSE of 0.31, RMSE of 0.56, and MAE of 0.22 on a real-time dataset. As specified
in Table 13, the proposed regression model (RSO and Bi-GRU) obtained the minimal MAE
of 0.19, RMSE of 0.48, and MSE of 0.26 on a real-time dataset, and these results are better
than those of the existing model.

Table 12. Comparative results on a Beijing PM2.5 dataset.

Models MAE SMAPE RMSE

CNN and Bi-GRU [16] 10.47 0.20 14.53
RSO and Bi-GRU 9.11 0.16 9.82

Table 13. Comparative results on a real-time dataset.

Models MAE RMSE MSE

BSMO and Bi-LSTM [31] 0.22 0.56 0.31
RSO and Bi-GRU 0.19 0.48 0.26

4.6. Discussion

As discussed earlier, feature selection and prediction are the two integral parts of this
research. The selection of optimal features from the highly correlated variables, namely
wind direction, temperature, dew point, wind speed, and historical PM2.5, significantly
increases the prediction performance with limited computational time and complexity. In
this research, the RSO algorithm was utilized for feature selection, and the Bi-GRU model
was implemented for AQP. Compared to other deep learning models, the Bi-GRU model
utilizes reset and update gates for AQP, and these gates reduce the gradient dispersion
and computational loss and enable the ability of long-term memory. Correspondingly, the
RSO algorithm significantly selects the optimal features with a better convergence rate. The
RSO algorithm has better exploration and exploitation abilities in achieving better feature
selection performance. Additionally, the Diebold Mariano (DM) test was conducted for
this manuscript to assess the superiority of the proposed regression model statistically.
The DM test defines the loss differential between forecasts. Here, the probability p value
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of the DM test was equal to 0.01, which shows that the proposed regression model is
statistically efficient. The numerical study revealed that the suggested model on a Beijing
PM2.5 dataset and a real-time dataset produced values of 9.11 and 0.19 for MAE and
2.82 and 0.26 for MSE. On a Beijing PM2.5 dataset and a real-time dataset, the suggested
regression model (RSO and Bi-GRU) required the least amount of processing time, 43.22
and 19.28 s, respectively.

5. Conclusions

In this research, a new optimization-based regression model (RSO and Bi-GRU) was im-
plemented for effective AQP. In the present scenario, effective AQP assists the government
in controlling pollution. After collecting Beijing PM2.5 and real-time data, normalization
and correlation analysis were accomplished to eliminate the outliers and select the highly
correlated variables: wind direction, temperature, dew point, wind speed, and historical
PM2.5. From the selected variables, the optimal and relevant features were selected by im-
plementing the RSO algorithm. Finally, the selected features from the variables were given
to the Bi-GRU model for AQP. Here, the proposed model’s (RSO and Bi-GRU) performance
was validated on a Beijing PM2.5 dataset and a real-time dataset, and it was evaluated using
different performance measures, such as MAE, SMAPE, RMSE, and MSE. The numerical
analysis showed that the proposed model obtained MAE values of 9.11 and 0.19 and MSE
values of 2.82 and 0.26 on a Beijing PM2.5 dataset and a real-time dataset. Additionally, the
proposed regression model (RSO and Bi-GRU) consumed minimal computational time of
43.22 and 19.28 s on a Beijing PM2.5 dataset and a real-time dataset.

Still, the proposed regression model faces difficulty in analyzing real-time data due
to their dynamic nature and high variability. Therefore, as an extension, hyper-parameter
tuning was performed in the Bi-GRU model to further enhance the prediction efficiency.
In addition to this, the present research work can be further extended by conducting both
parametric and non-parametric statistical analysis using the Wilcoxon test, t-test, Z-test, etc.
In upcoming research, the high-pollution Indian cities (Delhi and Ghaziabad) will be also
considered in experiments.
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