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Abstract: As urbanization continues to grow around the world, the risks associated with construction
are increasing. Scientific and practical risk assessments help reduce safety risks and achieve healthy,
long-term growth, so there has been much research in this field. Through a review of the literature,
this study aims to reveal the state and trends of research in the field of safety risk assessment. We
searched 473 articles on construction risk assessment from the Web of Science (WoS) in the last
decade, bibliometrically analyzed them, and then uncovered their significance using CiteSpace
software (6.1. R6 (64-bit) Basic). The primary topics of conversation are countries, institutions,
authors, and keywords, followed by references. According to the co-authorship analysis, the current
research in this field is mainly from China, the USA, and Australia. Most influential authors currently
have teaching or research positions at educational institutions; the most notable of which include
Huazhong University of Science and Technology, Hong Kong Polytechnic University, and Tsinghua
University. They form a relatively close network of institutional cooperation. Based on the results
of the co-term analysis, this study found that the current research hotspots are mainly focusing
on “multi-objective optimization”, “risk management”, “mechanical characterization”, “mental
fatigue”, “accident prevention”, and many others. Data-driven, AI-assisted, and multi-stakeholder
participation are the future trends in this field.

Keywords: construction; safety risk assessment; literature review; CiteSpace; bibliometrics

1. Introduction

Due to rapid economic development and urbanization, construction gained massive
potential [1–3]. The construction project is a complex social activity that brings together
various production factors, which are subject to uncertainty [4–6]. Usually, scholars refer to
uncertainties that affect project objectives or performance as risks [7–9]. Project activities
are also unique and dynamic, so the types of construction risks are diverse, such as political,
economic, technical, environmental, and partner risks [10–12]. The reasons for risk are
equally varied. Environmental changes, COVID-19, and mechanical failures can all lead to
risks [13–15]. The damage can be significant if there is landslide, falling of large components,
chemical blasting, or machine collapse [16–18].

Risk assessment is essential in managing uncertain events [19–21]. Risk assessment
during the construction phase is necessary and challenging because it requires the most in-
vestment and human resources and has the most frequent changes in site conditions [22–24].
Nowadays, the safety risks associated with construction are still a pressing issue globally,
especially in developing countries. As shown in Figure 1, Malaysia recorded 1680 construc-
tion safety incidents during 2015–2021 [25]. India also adopted many risk-control practices.
However, the average fatal accident rate in the construction industry is still 50 times higher
than in the USA [26].
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Figure 1. Statistics on construction safety accidents in Malaysia (2015–2021). 

Many scholars still do risk assessments using qualitative methods because they are 
more flexible, easier to estimate, and require less information. For instance, some research-
ers used fuzzy sets and object element theory to figure out how risky it is to build an urban 
rail [27,28]. Some researchers have also used a six-sigma evaluation to examine car park 
construction risk. They found that “falling objects” were the most likely type of accident, 
mainly caused by too much wind at the project site [29]. The Relative Importance Index 
(RII) was also used to look at different risks in road construction [30]. However, the qual-
itative evaluation results depend on the experts’ experience and skill [31]. Therefore, aca-
demics started to introduce various quantitative and dynamic methods. For example, 
some scholars incorporated real-time monitoring data and update risks as construction 
progresses to improve the dynamics of assessment models [32]. Others combined quanti-
tative assessment and subjective randomness analysis to improve cloud models for risk 
assessment in tunnel construction [33]. Scholars also combined quantitative risk assess-
ment with stochastic conditions, construction schedules, and cost estimation [34]. 

There are many more ways to divide assessment methods, but it is hard to say 
whether qualitative or quantitative methods are better for risk management. So it is essen-
tial to review the last 10 years of research on construction safety risk assessment in a sys-
tematic way to show where the research is now and what the trends are for the future. 
Indeed, researchers completed several literature reviews. Some scholars summarized the 
methodology for evaluating occupational hazards in construction projects [35]. Some 
scholars also conducted a content analysis of comprehensive literature reviews published 
during 2005–2017, investigating the application of fuzzy and mixed methods in construc-
tion risk assessment [19]. The application of system dynamics modeling to construction 
risk assessment was also reviewed [36]. Nevertheless, these review papers mostly used 
subjective evaluations and small sample sizes to examine the literature. 

Bibliometric analysis is a statistical and quantitative tool that can analyze research 
fields to decrease subjectivity and prejudice [37,38]. Therefore, Lin et al. (2021) reviewed 
the application of fuzzy set theory and machine learning in deep foundation construction 
risk assessment using VOSviewer software [39]. Osei-Kyei et al. (2022) also reviewed con-
struction risk management studies using VOSviewer and Gephi [40]. Chao-Mei Chen cre-
ated CiteSpace with visualization features that visually present relevant information 
about the research area [41,42]. In addition, CiteSpace is widely used for its robust co-
citation analysis, as it can follow the development process of a research area on a citation 
network map and detect emergent and transitional literature [43–45]. CiteSpace software 
has not yet been utilized to investigate research topics and potential construction risk as-
sessment trends. This study, therefore, aims to address the gap. 

This paper’s primary structure is as follows: Section 2 illustrates the research process, 
which includes selecting the software and database and searching and screening the 
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Figure 1. Statistics on construction safety accidents in Malaysia (2015–2021).

Many scholars still do risk assessments using qualitative methods because they are
more flexible, easier to estimate, and require less information. For instance, some re-
searchers used fuzzy sets and object element theory to figure out how risky it is to build
an urban rail [27,28]. Some researchers have also used a six-sigma evaluation to examine
car park construction risk. They found that “falling objects” were the most likely type of
accident, mainly caused by too much wind at the project site [29]. The Relative Importance
Index (RII) was also used to look at different risks in road construction [30]. However, the
qualitative evaluation results depend on the experts’ experience and skill [31]. Therefore,
academics started to introduce various quantitative and dynamic methods. For example,
some scholars incorporated real-time monitoring data and update risks as construction
progresses to improve the dynamics of assessment models [32]. Others combined quanti-
tative assessment and subjective randomness analysis to improve cloud models for risk
assessment in tunnel construction [33]. Scholars also combined quantitative risk assessment
with stochastic conditions, construction schedules, and cost estimation [34].

There are many more ways to divide assessment methods, but it is hard to say whether
qualitative or quantitative methods are better for risk management. So it is essential to
review the last 10 years of research on construction safety risk assessment in a systematic
way to show where the research is now and what the trends are for the future. Indeed,
researchers completed several literature reviews. Some scholars summarized the method-
ology for evaluating occupational hazards in construction projects [35]. Some scholars
also conducted a content analysis of comprehensive literature reviews published during
2005–2017, investigating the application of fuzzy and mixed methods in construction risk
assessment [19]. The application of system dynamics modeling to construction risk assess-
ment was also reviewed [36]. Nevertheless, these review papers mostly used subjective
evaluations and small sample sizes to examine the literature.

Bibliometric analysis is a statistical and quantitative tool that can analyze research
fields to decrease subjectivity and prejudice [37,38]. Therefore, Lin et al. (2021) reviewed
the application of fuzzy set theory and machine learning in deep foundation construction
risk assessment using VOSviewer software [39]. Osei-Kyei et al. (2022) also reviewed
construction risk management studies using VOSviewer and Gephi [40]. Chao-Mei Chen
created CiteSpace with visualization features that visually present relevant information
about the research area [41,42]. In addition, CiteSpace is widely used for its robust co-
citation analysis, as it can follow the development process of a research area on a citation
network map and detect emergent and transitional literature [43–45]. CiteSpace software
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has not yet been utilized to investigate research topics and potential construction risk
assessment trends. This study, therefore, aims to address the gap.

This paper’s primary structure is as follows: Section 2 illustrates the research process,
which includes selecting the software and database and searching and screening the relevant
literature. Section 3 presents the outcomes of the co-author, co-term, and co-citation
analyses. Section 4 discusses the future research directions in this field. Section 5 provides
a summary of the work and its limitations.

2. Materials and Methods

The analysis and research of database information can be quantitatively and objec-
tively completed using bibliometrics. Typically, it consists of co-term and co-citation
analysis [46,47]. This paper is based on bibliometrics and looks at co-authorship, co-term,
and co-citation analysis to help people learn more about construction risk assessment. As
shown in Figure 2, the co-authorship analysis was conducted from a macro-to-micro per-
spective, including country analysis, institutional analysis, and author analysis. Included
in the co-term analysis are keyword clustering analysis and keyword evolution analysis.
Co-citation analysis consists of both co-citation author analysis and co-citation literature
clustering analysis.
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2.1. Software Selection

CiteSpace is a piece of information visualization and analysis software developed
by Chen Chaomei that runs on the Java programming language and can be used to ex-
amine co-citation networks based on massive volumes of bibliometric data [48]. Many
academics utilized CiteSpace for literature reviews of various sectors, including construc-
tion. For instance, Li et al. (2022) utilized CiteSpace to comprehensively synthesize the
construction and demolition waste management literature and find prospective commer-
cial prospects [49]. Cai et al. (2022) collected worker safety training literature and used
CiteSpace to analyze research hotspots and future research directions [50]. Their work
showed that CiteSpace can effectively help scholars discover research trends and visualize
them. Therefore, this paper provides an in-depth analysis of the current state of research
on construction risk assessment with the help of CiteSpace software (6.1. R6 (64-bit) Basic).
The time threshold for CiteSpace was set to 2012–2022, and one year was selected as the
time slice. Then, tick the options “Pathfinder”, “Pruning sliced networks”, and “Pruning
the merged network” to remove redundant information and ensure the clarity of the map.

Two quantitative CiteSpace metrics are frequently mentioned in the subsequent proce-
dure: intermediary centrality and burst strength [51,52]. Centrality is a value in network
analysis that considers the role of the mediator in connecting pairs of nodes in the net-
work [53]. It measures the extent to which nodes facilitate communication or interaction
between other teams of nodes in the network. According to Chen (2016), a node is crucial
if its mediated centrality is more significant than 0.1 [42]. Burst strength can be used
to identify research areas with a sudden increase in activity or interest that may signal
emerging trends or significant breakthroughs, thus helping researchers identify research
directions worthy of further exploration [48,54].

2.2. Database Selection and Paper Search

Web of Science (WoS), one of the world’s most widely used bibliographic databases,
provides access to a large body of scholarly research literature in various fields of study [55,56].
Web of Science indexes thousands of scholarly journals, conference proceedings, books, and
other academic sources, facilitating literature reviews [57]. The combination of WoS and
CiteSpace was heavily utilized in numerous influential review articles. For instance, some
academics utilized it as a search tool to collect literature on green buildings and discuss the
shortcomings of current developments [58]. Others analyzed the literature on sustainable
urbanization using the WoS database and emphasized the value of combining bibliometrics
with CiteSpace software [53]. Consequently, the WoS database served as the search source
for this paper, and the collected search results were utilized for bibliometric analysis.

“Construction safety risk assessment” and “Construction safety risk evaluation” were
some of the search terms used to find articles in the field of construction risk assessment.
The type of literature was then set to “journal articles”, the language to “English”, and
the field of expertise to “civil engineering” to ensure the high quality of the data source.
In addition, the articles’ period was set to 2012–2022 to ensure the cutting-edge nature
of the articles. Then, 496 papers were initially selected. However, bibliometric analyses
heavily rely on accurate metadata, such as author names, publication titles, abstracts,
year of publication, and citation information. If any of these key metadata are missing,
incomplete, or incorrectly formatted in the WoS data export, the bibliometric software
may have difficulty correctly processing the data. We manually screened and excluded
23 papers with incomplete data to ensure the validity of the analysis, so the final number
of documents used for bibliometric analysis was 473.

3. Results
3.1. Overview of Selected Publications
3.1.1. Average Annual Publication

To predict research trends, we need to know how many articles are published annu-
ally [59]. Based on the Web of Science’s search data (Retrieved 17 January 2023), Figure 3
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shows that construction risk assessment publications experienced a steady increase until
2017. After 2018, the number rapidly rose and peaked in 2021 at 105. There was an overall
upward trend in the number of articles published.
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Figure 3. Number of publications per year in construction risk assessment research.

3.1.2. Major Sources

Most articles on construction risk assessment are published in internationally renowned
journals, indicating that construction risk assessment is currently a topic of interest. Table 1
summarizes the journals that have published more than five articles, with the top three
being the Journal of Construction Engineering and Management, Automation in Construction,
and Advances in Civil Engineering and Buildings, the first two of which have an overwhelming
numerical advantage in terms of publications at 58 and 55, respectively. However, the other
journals on the list are also essential publishing platforms.

Table 1. Major journals in construction risk assessment research.

No. Journal Number Percentage

1 Journal of Construction Engineering and Management 58 11.69%
2 Automation in Construction 55 11.09%
3 Advances in Civil Engineering 25 5.04%
4 Buildings 24 4.84%
5 Construction and Building Materials 22 4.44%
6 Journal of Civil Engineering and Management 22 4.44%
7 Tunneling and Underground Space Technology 22 4.44%
8 Engineering Construction and Architectural Management 21 4.23%
9 Journal of Computing in Civil Engineering 14 2.82%
10 Structural Safety 14 2.82%
11 KSCE Journal of Civil Engineering 11 2.22%
12 Engineering Structures 9 1.82%
13 Journal of Management in Engineering 9 1.82%
14 Journal of Performance of Constructed Facilities 9 1.82%
15 Stochastic Environmental Research and Risk Assessment 9 1.82%

16 ASCE-ASME Journal of Risk and Uncertainty in Engineering
Systems, Part A Civil Engineering 8 1.61%

17 Building and Environment 8 1.61%
18 Ocean Engineering 8 1.61%
19 Journal of Building Engineering 7 1.41%
20 Structure and Infrastructure Engineering 6 1.21%
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3.2. Co-Authorship Analysis

Co-authorship analysis can be used to investigate the most populated nations, institu-
tions, and authors in the chosen literature and their collaborative relationships [60,61]. This
section identifies the major contributing countries, institutions, and authors to the field of
construction risk assessment based on co-country, co-institution, and co-author analysis
from a macro-to-micro perspective.

3.2.1. Analysis of Country

Co-country analysis can quantify spatial article distribution [62]. Figure 4 depicts a
network of 64 nodes and 67 links containing the primary contributing countries in the field.
The nodes in the network represent individual nations, the size of the nodes is proportional
to the number of publications per nation, and the outer purple circle of the nodes reflects
the strength of mediated centrality. China has the most articles, followed by the United
States, Australia, Canada, and Korea. Mediation centrality indicates the significance of
a network node. England has the most extraordinary centrality, followed by Portugal,
Scotland, France, and Singapore. They are international cooperation leaders.
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Table 2 provides information on the top 10 countries regarding frequency and centrality.
Notably, most of the top 10 countries are developed, as these nations pioneered research
on construction risk assessment. England and Italy are at the heart of the list regarding
centrality and frequency, indicating that these two countries play an essential role in this
field. In addition, developing countries, represented by China, Iran, Malaysia, India, Chile,
and Brazil, are gradually increasing their influence in this field. Although many articles
were published in countries such as China, the United States, and Australia, an increased
need for international cooperation has emerged in recent years.
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Table 2. Top 10 countries by frequency and centrality in construction risk assessment research.

No. Country Frequency Country Centrality

1 China 174 England 0.60
2 USA 96 Portugal 0.36
3 Australia 40 Scotland 0.35
4 Canada 36 France 0.24
5 South Korea 28 Singapore 0.22
6 England 22 Malaysia 0.2
7 Iran 20 India 0.19
8 Italy 19 Brazil 0.17
9 Spain 17 Chile 0.15
10 Poland 16 Italy 0.11

3.2.2. Analysis of Authors

Co-author analysis aims to reveal the influential authors and their collaborative re-
lationships with each other [63]. By monitoring their research interests, knowledge area
research trends can be uncovered. The co-authorship network of the principal authors is de-
picted in Figure 5. This network’s threshold value is set to two consisting of 310 nodes and
245 links; the node size represents the frequency of each author’s publications, and the links
between nodes illustrate the authors’ collaborative relationships. There are several complex
research groups in the field of construction risk assessment, centered on those of Zhang
Limao, Wu Xianguo, Li Heng, Jeong Jaewook, and others. Many groups are from China,
such as those of Xue Yiguo, Liu Yang, Qiu Daohong, and Su Maoxin. There are groups
from other nations, such as those of Han SangUk, Abourizk Simaan, and Han SangHyeok.
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The top 10 authors in terms of frequency of articles are shown in Table 3. Li Heng is
the most published author, followed by Zhang Limao and Wu Xianguo. They are all from
China, reflecting researchers’ vital interest in construction risk assessment. Umer Waleed,
Antwi-afari, Al-hussein, Jeong, Abourizk, Han, and Yu are crucial linkages among the
research groups, each with five (authors are ranked 4–10, in no particular order). They are
playing an essential role in advancing the field of construction risk assessment. Therefore,
all these authors deserve more attention.

Table 3. Top 10 authors in frequency in construction risk assessment research.

No. Author Frequency

1 Li Heng 10
2 Zhang Limao 9
3 Wu Xianguo 7
4 Umer Waleed 5
5 Antwi-afari Maxwell Fordjour 5
6 Al-hussein Mohamed 5
7 Jeong Jaewook 5
8 Abourizk Simaan 5
9 Han SangUk 5
10 Yu Yantao 5

3.3. Co-Term Analysis

Keywords summarize the main ideas of a whole research article, so they can be used
to find research hotspots [64,65]. Furthermore, keyword popularity fluctuates over time,
and keyword evolution analysis can reveal research trends [66].

3.3.1. Analysis of Keyword Cluster

Figure 6 shows the keyword clustering graph generated by CiteSpace, with 362 nodes
and 663 links, which indicate current research hotspots. Cluster #1 is “multi-objective
optimization”. Multi-objective optimization balances multiple conflicting objectives to
find the best solution [67]. These objectives include cost, schedule, and quality; the opti-
mization process involves using mathematical algorithms to evaluate different scenarios
and determine the best trade-off between objectives [2,68]. Clusters #2 and #3 are “risk
management” and “risk assessment”. Risk management and risk assessment are closely
related concepts. Risk assessment involves identifying, assessing, and prioritizing potential
risks associated with a project [69]. Risk management manages the uncertainty associated
with threats through risk assessment or other tools [70]. Cluster #4 is “mechanical character-
ization”. Mechanical characterization is primarily used to assess the mechanical properties
of building materials and components, including the ability to withstand various loads
and stresses [71]. This information helps identify potential design weaknesses and pro-
vides information on the strength and stability of the materials and structures used [72,73].
Cluster #5 is “construction safety”. Safety remains an urgent issue in the construction
industry, as it is not only detrimental to the health of the industry but also causes many
casualties and economic losses [74,75]. Cluster #6 is “accident prevention”. Accident pre-
vention is essential to construction risk assessment [76]. It aims to eliminate or mitigate
accidents before they occur by analyzing past accidents and incidents to identify trends
and patterns and conducting site inspections to identify potential hazards [77,78]. Cluster
#7 is “worker”. It indicates that human factors are still the primary source of risk [79,80].
Cluster #8 is “fire spalling”, which refers to the surface cracking and spalling of concrete
or masonry materials due to internal pressure expansion caused by high heat [81]. Fire
spalling is considered a potential risk to the stability and safety of buildings in construction
risk assessments [82]. Cluster #9 is “seismic”. Seismic activity is an essential factor in
risk assessment [83,84]. The assessed factors include the construction site’s location, the
likelihood of seismic activity, and the potential intensity of the earthquake [85]. Cluster #10
is “computer vision”. Computer vision can analyze images and detect potential hazards
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and risks such as unstable terrain, unsafe structures, and equipment failures. At the same
time, it can also be used to monitor workers and detect unsafe behavior [86]. Cluster
#11 is the “construction industry”. Construction risk assessment contributes to a better
understanding of the safety risks in the construction industry and, thus, to the construc-
tion industry’s health [87,88]. Clustering #12 is “machine learning”. Machine learning
can be applied to construction risk assessment to automate processes and improve their
accuracy and efficiency [89,90]. It can rapidly analyze large volumes of data to provide
more comprehensive and accurate insights into potential risks [91,92]. Cluster #13 is “com-
pressive strength”, a key indicator for construction materials, as it is often used to evaluate
the load-bearing capacity of building materials such as concrete and bricks [93,94]. This
information is essential to determining the safety and stability of a structure and is used
to assess the risk of failure or collapse [95,96]. Cluster #14 is “tunnel collapse”. Tunnel
collapse risk is an essential concern for the construction industry [97]. Tunnel collapse can
cause significant damage to the structure itself and the surrounding area and endanger
the lives of workers and the public [98,99]. Cluster #15 is “optimized escape routes”. Opti-
mized escape routes can reduce the likelihood of injury to workers in emergencies [100,101].
These escape routes are planned and designed with safety in mind, considering factors
such as building layout, toxic gases, and visibility [102,103]. Cluster #16 is “stability against
sliding”. Stability against sliding is a significant risk factor, as it determines the likelihood
of a structure slipping or sliding in response to external forces such as soil erosion, wind,
and earthquakes [104]. Such assessment factors include the soil type, foundation geometry,
weight distribution of the structure, and material strength [105,106].
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3.3.2. Analysis of Keyword Evolution

The keyword evolution network, as shown in Figure 7, reveals the keyword evolution
trend during 2012–2022. The threshold value for this network was set to 10. The time
associated with the nodes indicates the first occurrence of the keywords, and the size
of the nodes is proportional to the frequency of the keywords. In 2012, the keyword
“risk” appeared in abundance and continued to do so for a long time. Risk is becoming
one of the leading research directions in the industry. At the same time, “BIM” and
“AHP” are effective methods for addressing risk assessment [107–109]. The node size
of “risk management” suggests that it received more attention than “risk assessment” at
the time. In 2014, “Bayesian network”, “technology”, “tracking”, and “health” exploded
with cumulative frequency, suggesting that many scholars are attempting to use Bayesian
networks in risk assessment. In 2016, the terms “case study”, “climate”, and “labor and
personnel” emerged, suggesting that real-world case studies explore the impact of labor
and weather on construction risk. In addition, computer technologies such as “simulation”,
“computer vision”, and “optimization” are beginning to be applied to risk prediction and
assessment, optimizing some traditional risk methods. In 2020, a growing number of
keywords, such as “earthquake”, “risk identification”, “mixed reality”, “neural networks”,
“fragility curve”, and “machine learning”, do not frequently appear. This reflects that
research interests have become diverse and fragmented in recent years. These directions
are likely to become the focus of future research in the field.
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3.3.3. Analysis of Partner Institutions

The network of co-occurring institutions is shown in Figure 8. The threshold value
for this network is set to 2. It has 274 nodes and 199 links; the links between the nodes
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indicate collaboration between institutions. Most institutions are universities, such as the
Huazhong University of Science and Technology, the Hong Kong Polytechnic University,
the University of Alberta, Tongji University, and Tsinghua University, which are network
cores, forming several large research communities. For example, the Huazhong University
of Science and Technology, the Hong Kong Polytechnic University, the University of
Alberta, the Polish Academy of Science, the Nanyang Technology University, and other
institutions form one of the largest research chains. Smaller research collaborations exist,
for example, between the Delft University of Technology, the Autonomous University of
the State of Mexico, and the Netherlands Organisation for Applied Scientific Research
TNO. In addition, there needs to be more external collaboration at about 20 institutions. In
the future, cooperation between institutions must be bolstered to expand the channels for
disseminating research experience.
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Table 4 lists the top 10 institutions in terms of frequency and centrality. The institution
with the highest number of publications is the Huazhong University of Science and Tech-
nology, followed by the Hong Kong Polytechnic University, the University of Alberta, the
China University of Mining and Technology, and Dalian University of Technology. Notably,
the institutions with centrality above 0.05 are all from China: the Huazhong University of
Science and Technology, the Hong Kong Polytechnic University, the University of Alberta,
the China University of Mining and Technology, Tongji University, Tsinghua University,
and the Georgia Institute of Technology, suggesting that their research work in this area is
an outstanding contribution and deserves a higher degree of attention.
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Table 4. Top 10 institutions by number and centrality in construction risk assessment research.

No. Institutions Frequency Institutions Centrality

1 Huazhong University of Science and
Technology 23 Tongji University 0.07

2 Hong Kong Polytechnic University 21 Tsinghua University 0.07

3 University of Alberta 16 Huazhong University of Science and
Technology 0.06

4 China University of Mining and
Technology 7 Central University of Finance and

Economics 0.06

5 Dalian University of Technology 7 Hefei University of Technology 0.06

6 Islamic Azad University 7 University of Alberta 0.05

7 Tongji University 7 Broadvis Engineering Consultants 0.05

8 Tsinghua University 7 Hong Kong Polytechnic University 0.04

9 Georgia Institute of Technology 6 China University of Mining and
Technology 0.03

10 National University of Singapore 6 Georgia Institute of Technology 0.03

3.4. Co-Citation Analysis

CiteSpace software utilizes co-citation analysis to quantify the knowledge base, re-
search hotspots, and trends [49]. When two articles about a third article appear together,
they are called co-cited [110]. Following this section is a co-citation analysis of authors and
the literature.

3.4.1. Analysis of Co-Cited Authors

As shown in Figure 9, the author co-citation network in this study has 474 nodes and
865 links, designed to filter out crucial information about the authors and their relationships.
Only a few of the network’s nodes are more important, which shows that research in the
field is concentrated. The thick lines between nodes reveal close relationships between the
most cited authors. Among them, the top five authors in terms of mediated centrality are
Chan Apc, Hallowell, Fema, Choudhry Rm, and Pearl J; the top five authors in terms of
frequency are Hallowell, Zhang Lm, Hinze J, Mitropoulos P, and Ding Ly.

The top ten authors in terms of burst intensity are shown in Figure 10. Hinze J was
the most frequently cited, followed by Baradan S, Rozenfeld O, Gambatese Ja, and Carter
G. In addition, the authors with high burst intensity values were HSE, BLS, Patel Da, and
Zhou ZP. The results show that these authors are essential in construction risk assessment.
Considering the results of the author analysis in Table 5 and Figure 10, this study found
that many authors, including Hallowell, Hinze J, Zhang Lm, Ding Ly, and Choudhry
Rm, have been working on construction risk assessment for many years and have made
significant contributions. Hinze J has a high co-citation frequency, centrality, and burst
intensity frequency, indicating that many scholars recognized Hinze J’s research. Their
research continues to have a profound impact as a cornerstone of the current developments
in construction risk assessment. Following the research work of these authors helps to
acquire knowledge and capture future trends in the field.
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Table 5. Top 10 co-cited authors by frequency and centrality in construction risk assessment research.

No. Author Frequency Author Centrality

1 Hallowell 49 Chan Apc 0.23
2 Zhang Lm 47 Hallowell 0.21
3 Hinze J 34 Fema 0.19
4 Mitropoulos P 33 Choudhry Rm 0.18
5 Ding Ly 30 Pearl J 0.18
6 Zadeh La 26 Ding Ly 0.17
7 Choudhry Rm 25 Zhang Lm 0.15
8 Zhang Sj 23 Abdelhamid Ts 0.14
9 Teizer J 23 Chen Cx 0.14
10 Fang Dp 21 Chi S 0.13

3.4.2. Analysis of Co-Cited Clusters

The 10 most cited publications in construction risk assessment are shown in Table 6.
Most of the most cited articles focus on models that explore human factors. For example,
Aryal et al. (2017) found that fatigue significantly contributed to increased accident risk in
construction and proposed a new method for the real-time monitoring of physical fatigue in
construction workers using wearable sensors [111]. Wu et al. (2015) considered the causal
relationships and interactions between personal safety performance evaluation (PSPE) ob-
jectives and implementation factors [112]. They constructed an assessment method based
on structural equation modeling (SEM). Case studies are a very effective assessment tool.
Raviv G et al. (2017) implemented the Analytic Hierarchy Process (AHP) and case studies to
assess quantitative outcome severity level values, revealing the inter-relationship between
technical and human factors in tower cranes [113]. Hallowell et al. (2013) identified over
50 active safety indicators through case studies, the content analysis of award-winning
projects, and expert discussion [114]. With the development of computer technology, the
application of artificial intelligence, sensing technology, and imaging technology has also
attracted significant attention. For example, Ilbahar et al. (2018) applied the Pythagorean
fuzzy proportional risk assessment (PFPRA) to occupational health and safety risk assess-
ment [115]. Fang et al. (2018) proposed a risk assessment method based on an extended
form of fuzzy logic and a Bayesian belief network (BBN) to capture the inter-relationships
of various risks better [116]. In addition, some scholars also used sensing devices to record
participants’ positions, postures, and images to assess their risk levels [117,118]. Zhang
S et al. (2013) tried to solve the problem by performing automatic safety rule checks on
Building Information Models (BIM) [119]. Zhou et al. (2015) discussed using innovative
technologies in building safety and the flow of safety information [120]. Thus, the interplay
between risk factors and the application of new computer technologies are the central
research themes of these highly cited articles.

Table 6. Top 10 articles in frequency in construction risk assessment research.

No. Frequency Articles

1 11 [111]
2 11 [112]
3 10 [115]
4 8 [116]
5 8 [118]
6 8 [119]
7 8 [113]
8 7 [114]
9 7 [120]
10 7 [117]
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Using CiteSpace’s cluster analysis, quantitative analysis of co-cited references can
reveal the primary trends in each field [121]. CiteSpace proposes two metrics, the mode
value (Q-value) and the average profile value (S-value), based on the clarity of the network
structure and clustering, as indicators of validity [122]. Generally, a Q-value of [0, 1]
generates significant clustering graphs when the Q-value exceeds 0.3; clustering is efficient
and convincing when the S value is 0.7. Clustering is usually considered reasonable if the
Q-value exceeds 0.5 [123]. This study reveals the current hotspots and future trends in
construction risk assessment. In this paper, co-cited references were, therefore, evaluated for
clustering, and keywords were collected as clustering labels. Figure 11 depicts the cluster
analysis graph as a co-citation reference network with 422 nodes and 854 links. The graphs
of cluster analysis with Q = 0.8252 and S = 0.9246 reveal a significant and well-clustered
clustering structure. The cluster analysis produced a total of nine primary clusters.
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The size of the nodes in the timeline plots shows how many co-cited references each
cluster has [42]. As shown in Figure 12, nine clusters have the highest frequency of co-
citations, indicating that they are the most popular topics in the field. The average year
that each cluster appears shows how the clusters change and grow over time. Before 2015,
scholars researched labor and personnel issues, like how construction workers were treated.
Most of these studies used traditional case study methods. From 2015 to 2020, scholars
began to use construction projects. After 2020, most scholars explored how to assess
construction risks more accurately and quickly by incorporating deep neural networks.
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Since other clusters are rare after 2020, this paper focuses on cluster #0 (deep neu-
ral network). Deep learning algorithms have gained widespread popularity in the last
decade [124]. They have a multilayer architecture, with each layer constituting a nonlinear
information processing unit [125]. In contrast, deep neural networks (DNNs) use a deep
architecture in NNs, where the more layers and units there are in a single layer, the higher
the complexity of the representation function is [126,127]. The superior performance of
a DNN comes from its ability to statistically learn from a large amount of data to obtain
an efficient representation of the input space. DNNs can include network types such as
feedforward networks, convolutional neural networks (CNNs), recurrent neural networks
(RNNs), and generative adversarial networks (GANs) [128–130].

Recently, this approach was increasingly applied to construction risk assessment. For
example, deep neural network models can improve the performance of automatic pose
recognition of wearable IMU outputs [131]. Isah et al. (2021) developed DNN models to
assess the impact of risk on the schedule and the cost performance of road projects [132].
Deep neural networks (DNNs) were also used for construction cost estimation and were
found to perform slightly better than other machine learning tools [133]. In addition,
scholars also combined graph convolutional networks (GCNs) to account for information on
the dependencies between construction accidents [134]. Kim et al. (2022) developed a deep
learning model for predicting sustainable construction safety accidents [135]. They found
that, compared to traditional multiple regression models, deep neural networks (DNNs)
performed better regarding the mean absolute error. Pan and Zhang (2022) proposed a
data-driven approach based on deep neural networks and gradient descent techniques
for developing meaningful tunnel safety and security strategies that rely on something
other than time-consuming and laborious manual assessments [136]. Regarding accident
losses, construction site financial loss models were also developed based on construction
site financial loss data and deep learning algorithms [137,138]. Deep learning models
can automatically learn hierarchical features from raw data, thus eliminating the need
for manual feature engineering that is often required in traditional machine learning
methods; it also supports end-to-end learning, which means that the model learns from the
raw inputs and produces the desired outputs directly, simplifying the design of complex
systems [139–141].

Although much has been achieved in this area, many areas remain for further im-
provement. First, historical loss data may not be available or are insufficient in some
developing countries, making it hard to obtain the needed database DNN models [138].
Second, there are data on accidents, but the different ways they are recorded make it hard
to effectively use them [139]. Also, traditional neural network models could be easier to
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understand, so many researchers are working on new algorithms to make them easier to
understand and make better predictions [142,143]. Scholars are also trying out different
control methods [144]. This is because all models need help with overfitting or being more
general. Due to this and deep neural networks always getting better, it is becoming an
essential method of evaluating construction risk.

4. Discussion

In the field of construction risk assessment, there have been a lot of changes and new
research directions in the past few years. Here are some possible directions for future
research in construction risk assessment based on what we learned in the previous sections.

1. Data-driven and AI: The increased availability of data and the adoption of digital tools
such as Building Information Modeling (BIM) and Internet of Things (IoT) devices
enable more comprehensive risk assessments [145,146]. Real-time data on project
schedules, environmental factors, and equipment performance can provide valuable
insights for effective risk identification and the mitigation to AI [141,147].

2. Blockchain and cloud computing: More construction project data are becoming avail-
able, and cloud computing makes it possible to find new ways to collect, analyze, and
visualize large amounts of data for construction risk assessment [148–150]. Blockchain
technology can also make secure, transparent, and tamper-proof systems for recording
and tracking information about construction risk [151,152].

3. Enhanced collaboration and stakeholder engagement: Effective risk assessment re-
quires the collaboration and input of a variety of stakeholders, including contractors,
architects, engineers, and owners [153,154]. Future approaches to risk assessment are
likely to emphasize improved collaboration and stakeholder engagement using cloud-
based platforms, virtual reality (VR), and augmented reality (AR) tools [155,156].
These technologies can facilitate real-time communication, the better visualization of
risks, and enhance the decision-making process.

4. Focus on sustainability and resilience: The construction industry is placing increas-
ing emphasis on sustainability and resilience in building design and construction
practices. Risk assessment needs to address these factors by considering the poten-
tial risks associated with climate change, extreme weather events, resource scarcity,
and social impacts [157,158]. Assessing the resilience of buildings and infrastructure
regarding these risks is essential to ensure long-term performance and minimize
adverse impacts.

5. Regulatory requirements and the impact on the insurance industry: As regulatory
regulations in the construction industry evolve, risk assessment methods need to be
accordingly adapted [159,160]. Regulators may require more stringent risk assessment
practices to enhance safety, environmental protection, and compliance. In addition,
insurers may influence risk assessment practices by requiring comprehensive risk
assessments to accurately assess premiums.

Overall, the future direction of construction risk assessment involves leveraging
technology, adopting a data-driven approach, integrating risk assessment throughout the
project lifecycle, fostering collaboration, and addressing sustainability and resilience issues.
These advances can enhance risk mitigation strategies, improve project outcomes, and
contribute to greater efficiency and sustainability in the construction industry.

5. Conclusions

This paper uses the bibliometric and knowledge graph analysis tool CiteSpace to
visualize and analyze 473 pieces of literature on construction risk assessment. The results
show that the number of articles about construction risk assessment has increased. Most
articles were published in the Journal of Construction Engineering and Management and
Automation in Construction. In the co-authorship analysis, this study found that most
publishing institutions are universities; the research labs and companies do not contribute
as much as they could. The Hong Kong Polytechnic University, Tsinghua University,
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and the Huazhong University of Science and Technology all have much to offer and
meaningfully work together. The most important contributions come from China, the
United States, and Australia, far ahead of other countries. A group approach is also typical
of the work that authors from different countries accomplish together. It is also important to
note that China has many publications, but it needs to be more involved in communication
and teamwork. In the co-term analysis, this study found that scholars in the last decade
have focused on “multi-objective optimization”, “mechanical characterization”, “accident
prevention”, “computer vision”, “machine learning”, and “tunnel collapse”, among 16
other topics. In the co-citation analysis, this study found that the research frontier is
focused on the application of deep neural networks, with the trend being to improve the
accuracy and interpretability of applications and to incorporate emerging technologies such
as blockchain, the Internet of Things (IoT), and Building Information Modeling (BIM). The
significance of the findings of this paper is that they can provide valuable insights into the
current state of research in the field. By analyzing and synthesizing the latest developments
and trends, researchers can better understand the field’s critical challenges, opportunities,
and knowledge gaps. This can enable them to formulate more informed research questions,
hypotheses, and methods and identify promising avenues for future research.

The limitations of this study should, likewise, be noted. First, the search source
constrains the scope of the data. Other sources, such as Scopus and EI, may provide
additional insights. In addition, different parameter settings may lead to different analysis
results due to software limitations. Further research could apply systematic literature
review techniques to delve into a particular type of construction or a specific application of
an assessment method.
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