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Abstract: Background: Policy coordination is necessary to address many of the sustainability chal-
lenges we face today. The formal representations of policy coordination focus on modeling conflict
management but neglect its collaborative nature. This limits efforts to build more realistic models of
policy coordination. The objective of this paper is to simulate collaboration and noncollaboration
between agents in the context of policy coordination in order to determine the effect of different ap-
proaches to policy coordination. Methods: For this purpose, a multiagent simulation of collaboration
based on evolutionary game theory is used. Results: The results suggest that policy coordination
through collaboration produces the most desirable outcomes and that reducing the cost of commu-
nication between agents is necessary to increase the probability of collaboration. Conclusions: The
cost of information (both its transmission and transformation) is critical to increase the probability of
collaboration in policy coordination. This paper advances the understanding of how to model the
collaborative nature of policy coordination by contributing to the methodological standardization of
the analysis and implementation of public policy coordination.

Keywords: collaboration; policy coordination; evolutionary game theory; multiagent systems;
information cost

1. Introduction

Few sustainability challenges can be solved by the independent actions of individual
policymakers; rather, their solutions require policy coordination between institutions.
Through the coordination of public policies, the specialized contributions of different
agencies and departments can be integrated [1]. Coordination enables the necessary
dialogue and consensus between them, which allows them to agree to act according to
certain rules or goals [2]. Without coordination, there may be a waste of resources, so
coordination facilitates the exchange of resources, personnel, and knowledge between
agencies [3]. Peters [4] also indicates that the coordination of public policies makes it
possible to (i) avoid or minimize duplication and overlapping of policies, (ii) reduce policy
inconsistencies, (iii) ensure policy priorities and aim for cohesion and coherence between
them, (iv) mitigate political and bureaucratic conflict, and (v) promote a holistic perspective
that goes beyond the narrow sectoral view of policies.

Even so, as Repetto [5] explains, coordination is not always an interactive process in
which everyone who is involved wins but a process of seeking new equilibria where the
results can be “zero sum”: what the agent who leads the coordination wins is usually lost
by those who must transfer the goods and/or services to be coordinated and that were
previously under their sectoral responsibilities. Coordination is therefore a complicated
phenomenon that involves strategic behavior and requires careful reasoning.

The preferred method of reasoning in economics is modeling [6]. Models enable
policymakers to explain past coordination failures and successes and to predict the effects
of current and proposed coordination efforts and from that derive recommendations. Due
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to the complexity of coordination, there is a range of models that attempt to understand
it. However, the problem with most current models of policy coordination is that the
vast majority of them are qualitative [7–9] and present only general patterns supported by
narrative explanations.

Qualitative models yield imprecise predictions about the directions of change and are
often ambiguous, especially when multiple and conflicting cause-and-effect interactions
are involved. They are an initial step in reasoning about a phenomenon, but further
inquiry can only lead to reliable results if such models evolve into mathematical and
quantitative models [10]. Through mathematical modeling, the consistency and precision
of the reasoning is improved and, so, makes model evaluation more rigorous and lays a
sounder basis for quantitative models [11]. Since the available models of policy coordination
are not mathematical, their explanatory and predictive powers are limited.

This paper aims to develop a mathematical model of policy coordination with the aid
of game theory, which is the appropriate framework for analyzing strategic behavior. This
model is then converted into a simulation by means of multiagent modeling in order to
analyze different approaches to policy coordination.

2. Literature Review
2.1. Theoretical Framework

In general, public policy coordination involves attempts to avoid conflicts between the
decisions of different government agencies, as well as aligning such decisions and actions
to produce solutions that are of mutual benefit to all [12]. Coordination can therefore be
approached from the perspective of cooperation as a way to manage conflict or from the
perspective of collaboration that is defined as a type of decision-making in which agents
adjust their strategies for mutual benefit [13].

There have been attempts at the mathematical modeling of policy coordination mostly
using game theory [14–16]. The game theoretic literature on the topic frames policy coor-
dination from the perspective of coordination failure as caused by conflict. Game theory
models on this topic therefore focus on understanding and avoiding conflict in order to re-
duce failures. Since game theory focuses on modeling rational approaches to conflict [17,18],
it is well suited to this task.

Researchers prefer to employ noncooperative games to model policy coordination, and
when they do so, we find that they fall into two categories. First, there are those associated
with imbalances of incentives for cooperation (prisoner’s dilemma) [9,19] and, second,
those in which personal interest overrides common interest when there is social conflict
over the use of limited resources (tragedy of the commons) [2,20]. Within the literature
that employs noncooperative games, the models focus on situations in which agents have
some conflicts of interest. By cooperating, they may choose an action that is not optimal for
them but superior for society [21]. The emerging conflict between self-interest and social
welfare leads to a social dilemma [22,23], and social dilemmas are at the root of many of
the complex problems in public policy coordination, such as the efficient use of limited and
scarce resources [20,24].

While all these models are useful to understand coordination strategies in general,
they are not completely appropriate to understand public policy coordination. This is
because the coordination of public policy in practice is largely the result of collaboration
between agencies of the state, where conflict is not necessarily the predominant element [9].
Collaboration between decision-makers, based on consensus and collective trust, offers a
way out of the problems generated by the prisoner’s dilemma and other conflicts inherent
in coordination [2]. This suggests that, instead of approaching coordination from the
perspective of cooperation in the face of conflict, a more fruitful approach may be to look
at it from the perspective of collaboration. This shifts the emphasis away from trying to
reduce coordination failures toward increasing the likelihood of coordination successes.

Given its association with conflict, game theory has not sufficiently explored the
modeling of collaboration, but more recent developments in game theory (especially those
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found in population games and evolutionary games) offer useful tools to do this [25,26].
A first nonformal approximation of collaboration in evolutionary terms is found in [27],
while [28] attempted to model collaboration with regard to the adoption of technology.
However, it was Newton [29] who offered the first formal model of collaboration. While
he demonstrated that game theory is a useful way to model collaboration, it is based on
a primitive society without sophisticated agents or hierarchical institutional structures.
He models coordination in a population of individual agents, whereas to model policy
coordination we need a society that is composed of m populations that, in turn, consist
of groups and individuals. A more complex society requires individuals who are more
sophisticated than in Newton’s model, since they must be able to design public policies
and coordinate them. Newton’s model provides the theoretical basis for simulations of
collaboration and related actions that allow experiments and the drawing of more specific
behavioral conclusions and recommendations. With the appropriate modifications to this
model, it will be possible to simulate a more complex and realistic society. By making these
modifications, this paper is the first to offer a game theoretic model of policy coordination
by means of collaboration.

It offers a unique perspective by recognizing the limitations of human cognitive
abilities and behavioral biases in information processing [30]. By incorporating these costs
into the model, the paper addresses the need to consider information processing costs in
order to improve decision-making processes [31].

Furthermore, the paper emphasizes the role of collaboration in policy coordination. It
argues that successful coordination requires collaboration between state agencies and sug-
gests that models should focus on increasing coordination successes through collaboration
rather than solely managing conflict and reducing coordination failures [9]. This perspec-
tive aligns with the modern approaches to governance that emphasize the importance
of collaborative governance and multi-stakeholder engagement in addressing complex
societal challenges [1,32].

2.2. Simulation Methods

Simulations offer a way to understand the impact of policy options, but given that the
theoretical models of policy coordination emphasize conflict management, this understand-
ing will be limited. Extending game theoretic models of policy coordination to include
collaboration will make it possible to consider a wider range of options in simulations.

A promising new approach to simulate interactions between agents and the resulting
complexity of economic systems is the multiagent simulation [33–35]. According to [36],
multiagent systems are preferable to simple-agent-based models because they offer “a
more emergent view of macroeconomic quantities”. Multiagent modeling has already been
used to simulate human and human-like behavior successfully in the fields of health care,
education, decision systems [12,35,37], and engineering [15,38,39]. However, there has been
no attempt in the economic literature to simulate policy coordination through collaboration
using multiagent systems, so the multiagent simulation in this paper offers the first step in
understanding the different approaches to policy coordination.

In several papers [33,34,40,41], evolutionary games were used as the theoretical basis
for simulations of collaboration. This suggests that Newton’s model [29] is a valid starting
point from which to specify a simulation.

2.3. Contribution

In summary, the game theoretic models of policy coordination focus on managing
conflict, whereas this paper extends the analysis to collaboration, which is neglected in
the literature. While the literature of policy coordination recognizes that collaboration is
critical to policy coordination, there are no studies that investigate the relative merits of
collaborative and noncollaborative approaches or models of how such collaboration occurs.

The objective of this paper is to simulate collaboration and noncollaboration between
agents in the context of policy coordination in order to determine the effect of different
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approaches to policy coordination. This is undertaken by first identifying the adaptations
to be made to Newton’s game theoretic model of collaboration [29] and, second, by incor-
porating them into a multiagent simulation. The adaptations are then incorporated into an
existing multiagent simulation that has already established the feasibility of collaboration
in a noneconomic context [34].

We introduce a few minor modifications to enhance the realism of our simulation (in
the following section), and the multiagent simulation is specified in the section thereafter.
It employs three kinds of agents in three scenarios (noncoordination, coordination through
cooperation, and coordination through collaboration). By comparing the outputs of these
scenarios, the relative desirability of the different approaches to policy coordination will
be inferred.

Multiagent modeling is a novel technique to research collaboration and its implications
for establishing coordination in public policy. Another novel aspect of this research is
that it includes information transmission and transformation costs in the model. These
costs reflect humans’ cognitive limits and behavioral biases in information processing,
which have an impact on the success of collaboration and coordination efforts [6,8]. This
modification improves the model’s applicability to real-world policy implementation
scenarios and provides a more accurate understanding of the problems encountered in
attaining coordination [32,33]. Moreover, the research offers insights into the behavior of
different types of agents and their interactions in a multiagent system. By analyzing the
probabilities of collaboration and the impact of transmission and transformation costs, the
study sheds light on the factors that influence successful coordination and the emergence
of collaborative coordination [34,42].

This paper offers a more comprehensive understanding of collaboration and its impli-
cations for public policy coordination. It provides valuable insights into the dynamics of
collaboration and the strategies that can enhance coordination outcomes. By identifying
the factors that hinder or facilitate successful collaboration, the research contributes to the
development of effective coordination strategies and the improvement of policy outcomes.

3. Materials and Methods
3.1. The Model to Be Simulated

In Newton’s [29] model, there are no policies because the agents in his model do not
think about the future. They are prehistoric humans whose only concern is hunting and
seeking a safe haven for their clan, so they only think about the present. By introducing
a collective problem that requires collective action, it becomes possible in this paper to
make these agents more future oriented. This model will not simulate a modern policy
environment but, rather, create a society in which policies can emerge as a result of collabo-
ration. To introduce the possibility of policies, we need to introduce a third group of agents.
These individuals are more sophisticated than Newton’s, which means that they have the
ability to share intentions, exhibit mutualistic behavior, think strategically, choose mixed
strategies, and solve problems.

Given that the society in this model faces collective problems that need to be solved by
collective action, there needs to be collaboration in order to find a solution by implementing
policy-like solutions. So, unlike Newton’s model, we assume that there is always the
opportunity to collaborate, which makes the formulation of public policies more efficient.
This ensures that there will always be collective problems to solve.

In [29], the balance condition implies that collaborative-type individuals will find
themselves in groups in which collaboration occurs much more frequently. We must bear
in mind that Newton deals with individuals who do not contemplate communities. The
process of seeking solutions to collective problems occurs in a collaborative environment.
Since collaboration is a mutualistic act, not an altruistic act, our group of problem solvers
adjust their strategies and improve their payoffs, as well as the payoffs of their communities
(solving common problems). Additionally, it is guaranteed that those who, for some
reason, cannot solve problems do not adjust their strategies against themselves or their
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communities. The balance condition guarantees the existence of at least 50% of individuals
capable of solving problems in each community.

Since Newton’s generality presents stability, the particular case is also in an evolution-
arily stable state. So, in this society, groups of problem solvers evolve into institution-like
organizations dedicated to improving the quality of life of their communities by solving
collective problems and implementing policy-like solutions.

3.2. The Game and the Multiagent System

Gou and Deng [16] explored the process of evolutionary decision and stable strategies
within multi-agent systems, including different types of agents involved in mutual collab-
oration based on evolutionary game theory. Their model was designed for the analysis
of the consistency problem in robots and artificial intelligence, so it is necessary to make
certain adaptations to use it in simulations of human societies.

3.2.1. Adaptations

To simulate collaboration in human societies, a number of adaptations were made to
Gou and Deng’s model:

1. Cost of transmitting and transforming information

To make the model of [19] more applicable to policies implemented by humans,
information processing costs were added (which consist of the transmission cost and
transformation cost of information). Information processing costs derive from humans’
limited ability to process information, as several studies have shown [42–44].

Information processing goes through distinct phases: first information is transmitted
by the senders, and then, it is transformed by the receivers. Since we are dealing with
humans, and they have cognitive limitations or behavioral biases, each of these phases
is susceptible to error [30,45,46]. This type of error is one of the causes of information
processing costs.

During the processing of the information, we can incur information transformation
costs, that is, make errors such as analysis errors or incorrect interpretations. In the same
way, errors can be made during the information transmission process, which also leads
us to incur costs. If the message/information transmitted is not correct or is incorrectly
transmitted, the processed information will not fulfil its objective.

2. Behavior of agents

The second adaptation that was made to the model has to do with the behavior of the
cooperators. Unlike Gou and Deng’s model, in this model, cooperators do not have the
power to sabotage the system but only to react to incentives.

In our multiagent system, each agent can work individually or in a collaborative
environment and interact with other agents. Agents that are characterized by mutualistic
behavior deal with the formulation and solution of collective problems in a coordinated
approach so that policies can emerge to achieve a common goal. The system can be affected
when the information is transformed and transmitted, resulting in the possible failure of
policy coordination to solve collective problems. We assume that these factors are described
by the behavior of the collaborators, cooperators, and formulators.

3.2.2. Interaction of Agents

Initially, the formulators transmit a message, a perceived problem, to both collab-
orators and cooperators. The collaborators analyze and interpret the information and,
then, decide whether to share this transformed information with formulators while also
messaging cooperators to invite them to collaborate. Cooperators decide whether or not to
accept messages to collaborate.

All agents make free choices in the collaborative environment. The set of strategies
for collaborators is to transform information or to not transform information. Whether
they deliver whole or partial messages to the formulators, collaborators get messages and
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earn rewards. The collaborators then determine whether or not the processed information
is sent back to the formulators. They may get incentives for passing information back to
the formulators.

For formulators, the strategy set is to send all messages or to send some messages. The
formulators obtain benefits if their messages to collaborate are accepted, and these benefits
are additional to the payoffs and do not imply costs. If their messages are not accepted,
they incur a transmission cost.

The set strategy for cooperators is to accept the messages to collaborate or to not accept
the messages to collaborate. For cooperators, if one of the messages sent by the formulators
is incomplete, they receive a payoff, and if they decide to interact with formulators and
collaborators, they receive a reward.

All these parameters are summarized in Table 1.

Table 1. Parameters of the game.

Parameters Description

Collaborators

Pw1,Cw1 > 0 payments and costs associated with receiving messages from formulators

Pw2,Cw2 > 0 payments and costs associated with sending messages to cooperators

Bw > 0 benefit for sharing the transformed information with formulators

Tw > 0 transformation cost

α > 0 probability of sending transformed information to formulators

β > 0 probability of receiving transmitted information from formulators

Formulators

Pf1,Cf1 > 0 payments and costs associated with sending all messages to collaborate

Pf2,Cf2 > 0 payments and costs associated with sending only some messages

Bf > 0 benefits for receiving a response to the message to collaborate

Tf ≥ 0 transmission cost

0 > ρ > 0 probability of successful transmission of messages to collaborate

λ send all the messages

Cooperators

PB1,CB1 > 0 payments and costs associated with receiving messages to collaborate from formulators

PB2,CB2 > 0 payments and costs associated with receiving messages to collaborate from collaborators

U ≥ 0 payments for receiving failed messages

0 > γ > 0 probability of collaboration when they successfully receive a message

Rw,Rf > 0 reward for collaborating with formulators and collaborators

3.2.3. The Payoff of Agents

In [29], we assume that half of our population are collaborators (x = 0.5), fewer are
formulators (y = 0.3), and cooperators are the minority with (z = 0.2). For collaborators,
x(0 ≤ x ≤ 1) is the probability that the collaborators accept the messages, which implies
that the probability of nonacceptance is (1 − x) For formulators, y(y = 1) represents the
number of messages, while 0 < y < 1 indicates the number of incompletely sent mes-
sages. For cooperators, the probability of receiving messages is z, and (1 − z) denotes the
probability of messages they do not receive.

The expected payoffs are obtained from the payoff matrix in Table 2 and the strategies
chosen by each of the agents (see Appendix A for equations).
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Table 2. Payoff matrix for Formulators, Collaborators, and Cooperators.

All (y = 1) Some (0 < y < 1)

Accept (z) Not Accept
(1 − z) Accept (z) Not Accept

(1 − z)

Transform (x) (W1, F1, B1) (W2, F2, B2) (W3, F3, B3) (W4, F4, B4)

Not transform
(1 − x) (W5, F5, B5) (W6, F6, B6) (W7, F7, B7) (W8, F8, B8)

3.2.4. Expected Payments and the Replicator Dynamics

Equation (1) shows the expected average payoffs for the collaborators, and it is com-
posed of the expected payoffs of the collaborators when they send the transformed infor-
mation plus the expected payoffs of not sending it:

Ex = xEx + (1 − x)E1−x (1)

From Equation (1), we can obtain Equation (2), which is the replicator dynamic
equation of a collaborator:

Fx = x(1 − x)[λ + y(1 − λ)](αBw − Tw) (2)

Equation (3) shows the expected average payoffs for the formulators, and it is com-
posed of the expected payoffs of sending all the messages plus the expected payoffs of
sending only some of the messages:

Ey = yEy + (1 − y)E1−y (3)

From Equation (3), we can obtain Equation (4), which is the replicator dynamic
equation of the formulators:

Fy = y(1 − y)
[
ρ
(

Pf 1 − Pf 2

)
+
(

C f 2 − C f 1

)
+ x(βB f − T f )(1 − λ)

]
(4)

Equation (5) shows the average expected payoffs for the cooperators, and it is com-
posed of the expected payoffs when they receive the messages plus when they do not
receive the messages:

Ez = zEz + (1 − z)E1−z (5)

Similarly, from Equation (5), we can obtain Equation (6), which is the replicator
dynamic equation for the cooperators:

Fz = z(1 − z)
{
[β(PB1 + PB2)− (CB2 + CB1)]

[
λ + y

(
(1 + λ) + γ

(
Rw + R f

)
− U

)]}
(6)

These replicator equations, together with the strategies, show us the dynamic process
of convergence toward the steady state. From these results, we run the simulation for the
different parameters in order to analyze their influence on the probability of collaboration
under the constraint conditions of evolutionary stable strategies (ESS) and, from there,
generate our three scenarios.

4. Results
4.1. The Simulation and the Three Scenarios

Three scenarios will be simulated: noncoordination, coordination through cooperation,
and coordination through collaboration. The relative desirability of the various approaches
to policy coordination will be inferred by comparing the outputs of these scenarios. These
three scenarios are the evolutionary result of the equilibrium points under the constraint
conditions of the ESS.
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4.1.1. Scenario 1—Noncoordination

A noncoordination scenario is one in which the agents do not interact. There is
no exchange of information between agents. As there is no exchange of information,
it is impossible to initiate collaboration and/or cooperation; therefore, coordination is
not possible.

For this simulation, we assign initial values to the different parameters (See Table 1)
based on the stability and constraint conditions (Equations (7)–(9)):

αBw − Tw < 0 (7)

ρ
(

Pf 1 − Pf 2

)
+
(

C f 2 − C f 1

)
< 0 (8)

λ[β(PB1 + PB2) + (CB1 − CB2)] < U − γ
(

Rw + R f

)
(9)

Figure 1 shows the results of the simulation for the noncoordination scenario. The
probability of collaboration appears on the x-axis and the number of rounds on the y-axis.
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The first thing to notice is that all strategies tend to zero; in fact, the system converges
rapidly to zero. After five rounds, the strategies tend to zero, which means that there is no
collaboration. The foregoing implies that, if it is very costly for the formulators to send the
initial messages, neither the collaborators nor the cooperators can interact with each other,
and as a consequence, there is no possibility of coordination.

4.1.2. Scenario 2—Coordination through Cooperation

A scenario of coordination through cooperation is one in which the exchange of
information exists but not among all the agents. One of the agents exchanges information
only when it receives incentives, and one of the agents loses interest and/or decides to
stop exchanging information in response to the behavior of the agent that responds only
to incentives.

For the simulation, we assign initial values to the different parameters on the stability
and constraint conditions (Equations (10)–(12)):
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αBw − Tw > 0 (10)

ρ
(

Pf 1 − Pf 2

)
+
(

C f 2 − C f 1

)
<
[

βB f − Tf

]
(λ − 1) (11)

λ[β(PB1 + PB2) + (CB1 − CB2)] > U − γ
(

Rw + R f

)
(12)

Figure 2 shows the results of the simulation for coordination through cooperation.
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The strategies of the collaborators and cooperators converge quickly to one, while the
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allows for the possibility of coordination through cooperation between agents, but it does
not involve all the agents that are part of the system. We can observe that the formulators
lose interest in the interaction and do not participate in the exchange of information.

4.1.3. Scenario 3—Coordination through Collaboration

A scenario of coordination through collaboration is one in which information flows
between all agents. The strategies of the agents are aligned toward the achievement of a
common objective.

For the simulation, we assign initial values to the different parameters on the stability
and constraint conditions (Equations (13)–(15)):

αBw − Tw > 0 (13)

ρ
(

Pf 1 − Pf 2

)
+
(

C f 2 − C f 1

)
>
[

βB f − Tf

]
(λ − 1) (14)

β(PB1 + PB2) + (CB1 − CB2) > U − γ
(

Rw + R f

)
(15)

Figure 3 shows the results of the simulation for the coordination through collaboration
scenario.
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Figure 3. Scenario 3—coordination through collaboration.

As we can see, all the strategies quickly converge to one, which indicates an exchange
and active processing of information and interaction between agents, giving rise to coordi-
nation through collaboration. This scenario is theoretically and empirically ideal, but it is
rarely achieved.

4.2. Achieving Collaboration

The three previous scenarios showed us the behavior of all the parameters at the
same time. Let us analyze how these transformation costs (TF) and transmission costs
(TW) of information affect the parameters (α, β, ρ, γ) and the system, bearing in mind
that information processing costs can negatively affect the ability of agents to process
information.

4.2.1. α Probability of Sending Information

This parameter measures the probability that the three groups of agents will send
transformed information.

In Figure 4a, we can observe that α affects the strategy selection of collaborators. As the
probability of sending transformed information (α) increases, the chance of collaboration
increases. Transformation costs (TF) affect the probability of sending information (α). In
Figure 4b, we can observe how by eliminating the transformation costs, the increase in
the probability of sending the transformed information and the effect of α on the choice
of strategies of the collaborators bring the system to the point of coordination through
collaboration.

In Figure 4c, we can observe that α affects the strategy selection of formulators. It also
shows that the increase in the probability of sending the transformed information improves
the possibilities of the collaboration of formulators. In Figure 4d, we can observe that zero
transmission costs speed up the coordination process through collaboration.
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In Figure 4e, we can observe that α has no effect on the strategy choice of cooperators.
Figure 4f shows that when transmission costs are equal to zero, this implies that there
are no problems during the transmission of information, so there are no errors during
transmission. That is, when Tw = 0, U = 0, which makes the system for the cooperators to
be of the coordination-through-collaboration type.

4.2.2. β Probability of Receiving Information

This parameter allows us to measure the probability that agents receive transmitted
information.

In Figure 5a, we can observe that β does not affect the selection of strategies by the
collaborators when the transformation costs are greater than zero. In Figure 5b, we can
observe how transformation costs equal to zero make the system for the collaborators to be
of the coordination-through-collaboration type. Transformation costs affect the behavior
of β.
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Figure 5. β Probability of Receiving Information.

In Figure 5c, we can observe that β affects the strategy selection of formulators. It
also shows that the increase in the probability of receiving the transformed information
improves the possibilities of the collaboration of formulators. In Figure 5d, we can observe
how zero transmission costs speed up the coordination process through collaboration.

In Figure 5e, we can observe that β affects the strategy selection of Cooperators.
It is also shown that as the probabilities of receiving information increase, the agents’
possibilities for collaboration improve. In Figure 5f, we can also observe that by eliminating
the transmission costs, the increase in the probability of receiving information and the effect
of β on the choice of the strategies of the cooperators, the system is brought to the ideal of
coordination through collaboration.

4.2.3. ρ Probability of Successful Transmission

This parameter allows us to measure the probability of successful transmission of
messages inviting collaboration.

In Figure 6a, we can observe that ρ affects the strategy selection of formulators. It
is also shown that as the probabilities of successful transmission increase, the agents’
possibilities for collaboration improve.

Sustainability 2023, 15, x FOR PEER REVIEW 13 of 21 
 

Cooperators 

  

(e) With transmission cost (f) Without transmission cost 

Figure 5. β Probability of Receiving Information. 

In Figure 5c, we can observe that β affects the strategy selection of formulators. It also 

shows that the increase in the probability of receiving the transformed information im-

proves the possibilities of the collaboration of formulators. In Figure 5d, we can observe 

how zero transmission costs speed up the coordination process through collaboration. 

In Figure 5e, we can observe that β affects the strategy selection of Cooperators. It is 

also shown that as the probabilities of receiving information increase, the agents’ possi-

bilities for collaboration improve. In Figure 5f, we can also observe that by eliminating the 

transmission costs, the increase in the probability of receiving information and the effect 

of β on the choice of the strategies of the cooperators, the system is brought to the ideal of 

coordination through collaboration. 

4.2.3. ρ Probability of Successful Transmission 

This parameter allows us to measure the probability of successful transmission of 

messages inviting collaboration. 

In Figure 6a, we can observe that ρ affects the strategy selection of formulators. It is 

also shown that as the probabilities of successful transmission increase, the agents’ possi-

bilities for collaboration improve. 

Formulators 

 
 

(a) With transformation cost (b) Without transformation cost 

Figure 6. Cont.



Sustainability 2023, 15, 11887 14 of 20
Sustainability 2023, 15, x FOR PEER REVIEW 14 of 21 
 

Collaborators 

  

(c) With transmission cost (d) Without transmission cost 

Cooperators 

  

(e) With transmission cost (f) Without transmission cost 

Figure 6. ρ Probability of Successful Transmission. 

In Figure 6b, we can also observe that by eliminating the transmission costs, the in-

crease in the probability of successful transmission, and the effect of ρ on the choice of 

strategies of the formulators, the system is brought to the ideal of coordination through 

collaboration. 

In Figure 6c, we can observe that ρ affects the strategy selection of collaborators. In 

Figure 6d, we can observe how zero transformation costs speed up the coordination pro-

cess through collaboration. 

In Figure 6e, we can observe that ρ affects the strategy selection of cooperators and 

how transmission costs slow down the process of coordination through collaboration. In 

Figure 6f, we can observe how zero transmission costs speed up the coordination process 

through collaboration. 

4.2.4. γ Probability of Collaboration 

This parameter allows us to measure the probability of collaboration once agents suc-

cessfully receive the messages. 

In Figure 7a, we can observe that γ affects the strategy selection of collaborators and 

how transformation costs slow down the process of coordination through collaboration. 

Figure 6. ρ Probability of Successful Transmission.

In Figure 6b, we can also observe that by eliminating the transmission costs, the
increase in the probability of successful transmission, and the effect of ρ on the choice of
strategies of the formulators, the system is brought to the ideal of coordination through
collaboration.

In Figure 6c, we can observe that ρ affects the strategy selection of collaborators. In
Figure 6d, we can observe how zero transformation costs speed up the coordination process
through collaboration.

In Figure 6e, we can observe that ρ affects the strategy selection of cooperators and
how transmission costs slow down the process of coordination through collaboration. In
Figure 6f, we can observe how zero transmission costs speed up the coordination process
through collaboration.

4.2.4. γ Probability of Collaboration

This parameter allows us to measure the probability of collaboration once agents
successfully receive the messages.

In Figure 7a, we can observe that γ affects the strategy selection of collaborators and
how transformation costs slow down the process of coordination through collaboration.
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In Figure 7b, we can observe how zero transformation costs speed up the coordination
process through collaboration.
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In Figure 7c, we can observe that γ affects the strategy selection of formulators and
how transmission costs slow down the process of coordination through collaboration. In
Figure 7d, we can observe how zero transmission costs speed up the coordination process
through collaboration.

In Figure 7e, we can observe that γ affects the strategy selection of cooperators. It
is also shown that, as the probabilities of collaboration once they successfully receive the
messages increase, the agents’ possibilities for collaboration improve.

We can also see that, by eliminating the transmission costs in Figure 7f, the increase
in the probability of collaboration once they successfully receive the messages, and the
effect of γ on the choice of strategies of the cooperators, the system is brought to the ideal
of coordination through collaboration.

5. Discussion

The simulation results indicate that the formulators play a crucial role in collaboration.
If the formulators successfully transmit all messages (Tw = 0), they offer a fundamental as-
surance for the sharing of reliable information. Inversely, failure to deliver full information
results in a deviation from common goals and affects how collaborators respond (Tf > 0). In
a multiagent system, collaboration is essential to ensuring that all agents create a cohesive
whole in an anticipatory manner. In practice, evidence is neither neutral nor a quality that
can be retrieved from a shelf. Producing and using evidence strategically is possible [47].

Additionally, according to the simulation outcomes, we determined that the probability
of collaboration is ideal when the agents agree to follow a common information-sharing
objective. That is, formulators transmit all communications, collaborators respond and
send messages on time, and cooperators favorably accept messages, so the probabilities of
sending (α) and receiving (β) information also increase the probabilities of collaboration.
This result suggests that our proposed model can be applied in practice.

In terms of information cost, the results of the modeling provide insights into the
impact of information costs on policy coordination. The results show the effects of trans-
mission cost (Tw) and transformation cost (Tf) on the probability of sending and receiving
information, as well as the strategies adopted by different agents.

The findings indicate that information costs play a significant role in shaping the
behavior and outcomes of policy coordination. When transmission costs are high, the
probability of sending and receiving information decreases, leading to a lower likelihood
of collaboration. This suggests that reducing transmission costs, such as improving com-
munication channels and information-sharing platforms, is crucial for enhancing policy
coordination [42,44,45,48].

Similarly, transformation costs have an impact on the probability of sending infor-
mation. Higher transformation costs reduce the probability of sending transformed in-
formation, which hinders collaboration among agents. This highlights the importance of
minimizing transformation costs, such as by improving information-processing systems
and reducing errors in information transformation to facilitate effective policy coordina-
tion [42,44,45,48].

Furthermore, the results demonstrate that reducing information costs can lead to
more desirable coordination outcomes. When transmission costs are eliminated (Tw = 0),
the system moves toward coordination through collaboration, where all agents actively
exchange information and collaborate. Similarly, when transformation costs are eliminated
(Tf = 0), the system shifts toward coordination through collaboration, indicating a higher
probability of collaboration among agents.

These findings underscore the significance of addressing information costs in policy
coordination efforts. By reducing transmission and transformation costs, policymakers
can enhance the probability of collaboration, improve information exchange, and achieve
more effective coordination outcomes [45,47,49]. This highlights the need for investments
in information systems, technology, and training to streamline information processing and
communication in policymaking and governance.
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In summary, the results of the modeling highlight the influence of information costs
on policy coordination. By reducing transmission and transformation costs, policymakers
can enhance collaboration, improve information exchange, and achieve more effective
coordination outcomes in the pursuit of sustainable policy objectives.

Through this model, one shortcoming in the formal treatment of policy coordination
has been addressed, a shortcoming that [3] describes as follows: “there is still no standard-
ized method for approaching coordination issues, and much of the success or failure of
attempts to coordinate appears to depend upon context”. The model presented in this paper
contributes to the methodological standardization of the analysis and implementation of
public policy coordination.

6. Conclusions

Almost all of today’s sustainability concerns necessitate policy coordination; never-
theless, research on the modeling of such coordination is lacking in public policy research.
The objective of this paper was therefore to simulate collaboration and noncollaboration
between agents in the context of policy coordination in order to determine the effect of
different approaches to policy coordination. For this purpose, a multiagent simulation of
collaboration based on evolutionary game theory was used.

The paper proposes that collaboration across state agencies is a crucial driver of
successful policy coordination and that it should focus on enhancing coordination suc-
cesses through collaboration rather than managing conflict and decreasing coordination
failures [18,20]. To handle complex societal concerns, modern governance emphasizes
collaborative coordination and multi-stakeholder engagement.

The results suggest that policy coordination through collaboration produces the most
desirable outcomes and that reducing the cost of communication between agents is neces-
sary to increase the probability of collaboration. The research recognizes the limitations of
human cognitive capacities and behavioral biases by integrating the cost of transmitting
and transforming information into the model [6,7]. This awareness is critical in the modern-
ization of policy-making processes because it underlines the importance of accounting for
the obstacles and costs of information processing in order to improve decision-making and
coordination. The cost of information (both its transmission and transformation) is critical
to increase the probability of collaboration in policy coordination. This paper advances
the understanding of how to model the collaborative nature of policy coordination by
contributing to the methodological standardization of the analysis and implementation of
public policy coordination.

Reduced information processing costs are required for policy implementation. Com-
plex and interconnected issues necessitate the integration of disparate information sources
and the coordination of operations across sectors and levels of government [35,38,46]. Poli-
cymakers can improve the efficiency and success of sustainability programs by tackling
information transmission and transformation costs.

Overall, the findings of this article have implications for enhancing policy-making
processes by accounting for the costs of information processing, prioritizing collaboration in
policy coordination, and creating standardized approaches for analyzing and implementing
public policy coordination.

Policymakers and government agencies can use the findings to create more effective
coordination methods and improve the results of their policy endeavors [18]. Collaborators
and cooperators can better grasp the aspects that drive successful collaboration and work
together to achieve common goals [31,34]. Furthermore, researchers and academics can
build on this work to further investigate the dynamics of collaborative coordination and
their applications.
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Appendix A

Payoffs of different strategies:

W1 = βPw1 + βPw2 − Cw1 − Cw2 + αBw − Tw

F1 = ρPf 1 − C f1 + βB f − T f

B1 = βPB1 + βPB2 − CB1 − CB2 + γ
[

Rw + R f

]
W2 = 0

F2 = ρPf1 − C f 1 + βB f − T f

B2 = 0

W3 = λ(βPw1 + βPw2 − Cw1 − Cw2 + αBw − Tw)

F3 = ρPf 2 − C f 2 + λ(βB f − T f )

B3 = λ(βPB1 + βPB2 − CB1 − CB2) + γ
[

Rw + R f

]
W4 = λ(βPw1 + βPw2 − Cw1 − Cw2 + αBw − Tw)

F4 = ρPf 2 − C f 2 + λ(βB f − T f )

B4 = U

W5 = βPw1 + βPw2 − Cw1 − Cw2

F5 = ρPf 1 − C f 1

B5 = βPB1 + βPB2 − CB1 − CB2 + γ
[

Rw + R f

]
W6 = βPw1 + βPw2 − Cw1 − Cw2

F6 = ρPf 1 − C f 1

B6 = U



Sustainability 2023, 15, 11887 19 of 20

W7 = λ(βPw1 + βPw2 − Cw1 − Cw2)

F7 = ρPf 2 − C f 2

B7 = λ(βPB1 + βPB2 − CB1 − CB2) + γ
[

Rw + R f

]
W8 = λ(βPw1 + βPw2 − Cw1 − Cw2)

F8 = ρPf 2 − C f 2

B8 = U
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