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Abstract: Planning effective routes and monitoring vehicle traffic are essential for creating sustainable
smart cities. Accurate speed prediction is a key component of these efforts, as it aids in alleviating
traffic congestion. While their physical proximity is important, the interconnection of these road
segments is what significantly contributes to the increase of traffic congestion. This interconnectedness
poses a significant challenge to increasing prediction accuracy. To address this, we propose a novel
approach based on Deep Graph Neural Networks (DGNNs), which represent the connectedness of
road sections as a graph using Graph Neural Networks (GNNs). In this study, we implement the
proposed approach, called STGGAN, for real-time traffic-speed estimation using two different actual
traffic datasets: PeMSD4 and PeMSD8. The experimental results validate the prediction accuracy
values of 96.67% and 98.75% for the PeMSD4 and PeMSD8 datasets, respectively. The computation
of mean squared error (MSE), root mean squared error (RMSE), mean absolute error (MAE) and
mean absolute percentage error (MAPE) also shows a progressive decline in these error values
with increasing iteration count, demonstrating the success of the suggested technique. To confirm
the feasibility, reliability, and applicability of the suggested STGGAN technique, we also perform
a comparison analysis, including several statistical, analytical, and machine-learning- and deep-
learning-based approaches. Our work contributes significantly to the field of traffic-speed estimation
by considering the structure and characteristics of road networks through the implementation of
DGNNs. The proposed technique trains a neural network to accurately predict traffic flow using
data from the entire road network. Additionally, we extend DGNNs by incorporating Gated Graph
Attention Network (GGAN) blocks, enabling the modification of the input and output to sequential
graphs. The prediction accuracy of the proposed model based on DGNNs is thoroughly evaluated
through extensive tests on real-world datasets, providing a comprehensive comparison with existing
state-of-the-art models for traffic-flow forecasting.

Keywords: Graph Neural Networks (GNNs); traffic-speed prediction; Convolutional Neural Networks
(CNNs); smart cities

1. Introduction

The prediction of traffic speed in real time for sustainable smart cities is an essential
component for intelligent and efficient transportation systems. Several popular applications
of transportation like congestion avoidance, route navigation, and traffic monitoring are
deeply reliant on high-quality predictions [1]. However, there exist some complications
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in accurate predictions in terms of unbalanced flow patterns and complex dynamic traffic
environments. These factors make the prediction system more complex in terms of accu-
racy. Therefore, numerous studies have attempted to capture these different factors and
patterns to improve the prediction accuracy in order to avoid congestions and collisions [2].
Recently, the implementation of deep-learning-based models has achieved exceptional
performances in several applications [3]. There are many studies which emphasise the
implementation of Deep Neural Network (DNN)-based models for the accurate prediction
of traffic-information-related problems. It was found from the survey that most of these
studies are based on RNNs (Recurrent Neural Networks) [4], CNNs (Convolutional Neu-
ral Networks) [5], or a combination of these two models [6]. The Convolutional Neural
Network-based models usually frame the highway network as an image and establish the
network-wide traffic flows on the basis of spatial dependency [7]. In comparison with
CNN-based models, the Recurrent Neural Network-based models are highly implemented
for studying temporal dynamics. However, more efficient traffic prediction outcomes have
been achieved by implementing LSTM (long short-term memory) neural networks that are
proficient in learning both long- and short-term time series. However, conventional CNNs
and RNNs do not explore important characteristics such as road network topology, essential
properties of road sectors, and the relationships among them, which can be characterised as
a graph. The connection of these road segments inside the structure of the road network is
the real cause of the rise in traffic congestion, even though geographical proximity appears
to have an impact on the correlation among traffic environments.

In Figure 1, the main road connecting a city with its outskirts is depicted, with vehicles
C1, C2, C3, C4, and C5 signifying the traffic flow situated on it. C1, C2, C4, and C5
travel from the city centre towards the outskirts, while C3 moves in the opposite direction.
As time passes, during the evening hours, traffic congestion initiates at C1, as shown
in Figure 1a. Subsequently, other vehicles, such as C2, C4, and C5, are also affected
by this congestion, as illustrated in Figure 1b. Eventually, all vehicles connected to C1
experience heavy congestion, while C3 remains congestion-free, as depicted in Figure 1c.
These observations indicate that the spread of traffic situations is primarily influenced by
the interconnectedness of road segments in the network structure, rather than by their
spatial proximity.
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Figure 1. Progression of traffic conditions (a) when traffic congestion begins at C1. (b) After some
time, other vehicles C2, C4, and C5 also become affected when (c) vehicles connected to C1 become
involved in heavy congestion.

Note: In above Figure, the arrows represent movement of vehicles in a particular lane, red
lines represent the traffic congestion and green line represents the smooth passage or slip roads for
traffic movement.
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In sustainable smart cities, the efficient management of traffic is crucial to optimising
transportation systems, reducing congestion, and minimising environmental impacts. Real-
time estimation of traffic speed plays a vital role in achieving these goals. Traditional
methods of traffic-speed estimation rely on sensors and data collected from fixed locations,
which often have limitations in terms of coverage, accuracy, and real-time updates. To
overcome these limitations, a Graph Neural Network (GNN)-based approach has emerged
as a promising solution for real-time traffic-speed estimation in sustainable smart cities.
GNNs are a type of deep-learning model specifically designed to analyse and process graph-
structured data, where the nodes represent entities (such as intersections or road segments)
and edges represent the relationships or connections between them. The GNN-based
approach for traffic-speed estimation leverages the inherent graph structure of urban road
networks to capture the spatial dependencies and temporal dynamics of traffic flow.

By considering the interdependencies between different road segments and their
influence on each other, GNNs can learn complex patterns and make accurate predictions.
In order to accurately predict the traffic speed, several studies on GNNs (Graph Neural
Networks) [8,9] and GCNNs (Graph CNNs) [10] have generated novel concepts. This is the
inspiration behind this study, where the problem is formulated considering both input and
output as a sequential graph. There are still some open research challenges that need to
be addressed. The first challenge is how to extract important characteristics from intricate
road networks in order to discover patterns or trends in the growth of traffic speeds. The
second challenge is that the current research on GNNs only produces a single value and
not a series of graphs when the network is fed sequential inputs. The third challenge is that
the typical structure of sequence-to-sequence models (Seq2Seq) of the encoder and decoder
techniques are inadequate for directly processing graph-structure data.

1.1. Research Contribution

In this study, a brand-new deep Graph Neural Network-based traffic-speed estimate
model is suggested. The main contributions of this study are summarised as follows:

1. The structure and characteristics of road networks are taken into consideration by
implementing DGNNs. The proposed technique trains a neural network for the
accurate prediction of traffic flow using data from the entire road network.

2. The proposed approach is an extension of a DGNN that uses Gated Graph Attention
Network (GGAN) blocks for the modification of inputs and outputs to sequential graphs.

3. Extensive experiments on real-world datasets show that the proposed model based
on DGNNs predicts outcomes accurately. The suggested model’s validation and
forecasting of traffic flow are put to the test against current state-of-the-art models.

1.2. Article Organisation

The rest of the article is structured as follows: A few relevant studies are discussed in
Section 2. The preliminaries are discussed in Section 3, followed by a description of the
proposed model in Section 4. The experimental analysis and performance evaluation of the
proposed model is presented in Section 5. Last, the concluding remarks are presented in
Section 6, with some suggestions for future research.

2. Related Work

This section discusses a variety of cutting-edge studies on neural networks, Deep
Neural Networks, Convolutional Neural Networks, and Recurrent Neural Networks that
are used to estimate traffic speed.

2.1. Prediction of City Road-Traffic Speed

Researchers from several parts of the world are attracted towards the challenge of
predicting or estimating traffic speed on city roads, and several approaches and solutions
for the traffic congestion problem have been proposed. Initially, the prediction of traffic
speed on roads was considered to be the problem of a time-series sequence that could be
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handled using autoregressive moving-average techniques [11]. There are several other
approaches, such as gradient boosting [12], k-nearest neighbour [13], and SVR (support
vector regression) [14], which are referred to as statistical learning techniques. Statistical
learning techniques are more advantageous over time-series techniques because of their
capability in aggregating relevant information, which ultimately leads to improvement in
prediction performance. However, due to their inadequate representation of complicated
scenarios, the potential of these models for performance improvement is severely limited.
In recent years, there have been numerous advances in the theoretical aspects underlying
Deep Neural Networks as well as effective implementations to different applications on the
basis of these studies. The diverse range of Deep Neural Network models have attracted
several researchers and received much of attention, particularly CNNs (Convolutional
Neural Networks) and RNNs (Recurrent Neural Networks). The CNN models were
initially primarily employed to process image data, although since then, they have been
implemented for various types of data that can be described as two-dimensional matrices.
A large number of convolution kernels that have shared weights make up a Convolutional
Neural Network of convolutional layers. A convolution kernel only links with variables
in a specified area, dramatically reducing the number of hyperparameters in the neural
network. Additionally, in Convolutional Neural Networks, pooling is frequently employed.
As a sample scenario, finding the matrix element with the highest value is referred to as
maximum pooling. The Recurrent Neural Network consists of a loop structure that enables
the model to process data in a consistent form, which includes several forms of sequential
data formats like articles and voice. LSTM (long short-term memory) is a type of RNN
that provides a solution for the gradient-vanishing problem in the conventional Recurrent
Neural Network with gated structures.

The performance of prediction on the basis of Deep Neural Networks is further en-
hanced with the acquisition of more valuable spatio-temporal data. Wu et al. [15] captured
the randomness and nonlinearity among traffic flow by proposing a model based on the
LSTM-RNN technique. Their proposed model improves prediction accuracy as it collects
better nonlinear and random traffic flow. Zhang et al. [16] proposed another model based
on the Convolutional Neural Network in order to model periodic traffic data. In their
proposed model, it takes the time series and folds it into a two-dimensional matrix, and this
matrix is further considered as an input to CNNs. Additionally, their proposed model sim-
ulates multiscale traffic forms, and the overall situation is responsible for determining the
general trend, while more comprehensive changes are determined locally. Jiang et al. [17]
employed a Convolutional Neural Network along with a residual network as a deep-
learning approach for traffic prediction after converting geographical data into images.
Guo et al. [18], by combining the benefits of both LSTM and CNN techniques, proposed
a new approach, i.e., the SRCN (spatio-temporal recurrent convolutional network), for
traffic prediction and forecasting. However, a drawback of conventional Convolutional
Neural Networks and Recurrent Neural Networks is their inefficiency in modelling compli-
cated road networks. The present research can further be extended by implementing the
integration approaches of Artificial Intelligence and Machine Learning [19–21].

2.2. Graph Neural Network-Based Approaches

Graph-structured information is represented by employing Neural Networks such as
knowledge-based networks and social networks. For graph-structured information, the
traditional Convolutional Neural Networks and Recurrent Neural Networks have also
been employed. Shang et al. [22] proposed a model on the basis of CNNs which acts
directly on graphs of any size and form. In contrast, Zhu and Koniusz [23] proposed a
scalable method implementing a convolutional architecture on the basis of the localised
estimation of spectral graph convolutions, an effective variation which can function directly
on graphs. The limitation of these studies is that only undirected graphs can be used for
the execution of these approaches. Graph-modelling neural networks, or GNNs, were
first introduced in 2005 [24], and in recent years, their appeal and scope have increased to
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a great extent. The Graph Neural Network family as a whole includes a broad range of
subjects, including as reinforcement learning, unsupervised learning, supervised learning,
and semi-supervised learning. For instance, a model proposed by Lu et al. [25] based on
GNNs has the capability of mapping a graph G, including all its nodes, to an m-dimensional
Euclidean space with n ∈ N. On the other hand, Reza et al. [26] proposed a model that is an
extension of Lu et al.’s [25], in which the authors used gated recurrent elements for making
output GNN sequences. Bogaerts et al. [27] proposed a GCNN model by employing CNNs
for handling graph data in addition to a variety of alternative GNNs. Dong et al. [28]
proposed a unified architecture based on CNNs for handling non-Euclidean structures
such as three-dimensional surfaces and graphs. Yadati [29] proposed a model in which the
authors combined various GNNs and GCNNs into one type of neural network and named
it an MPNN (message-passing neural network). In contrast to that study, Zhan et al. [30]
proposed the use of an NLNN, i.e., a non-local neural network that integrates multiple
self-attention models.

Even though the idea of Graph Neural Networks has been around for a while, their
advancement continues to depend on the development of the theoretical aspects and the
background that comes through DNN research. The theoretical and background of RNNs
serve as the foundation for creating GNNs. More specifically, in Graph Neural Networks,
certain modules of the neural network are initially well-defined and later recursively
processed on every edge and every node. Due to this, the executions of Graph Neural
Networks typically involve more intricate operations. Therefore, the research on boosting
neural-network training speeds with GPUs (Graphic Processing Units) has benefited the
recent rapid development of the Graph Neural Network theory. Li et al. [31] suggested
a new kind of neural network model, i.e., GN (Graph Network), which extends and
summarises several kinds of GNN types, including Message Passing Neural Networks
(MPNNs) and Non-local Neural Networks (NLNNs). The Graph Network generally defines
unified NN units known as GN blocks, where every block is a graph–graph module that
accepts a graph as an input, processes the structure while doing some computations, and
then presents outputs as a graph. The blocks of the Graph Network can be arranged in
a number of different ways to facilitate the creation of complex architectures. Although
its usefulness has only been tested through a number of trials on simulation data rather
than actual data, graph-structured knowledge has recently been used for forecasting traffic,
such as in the GCNN + LSTM model for real-time traffic prediction [32]. Graph-structure
modelling techniques using GNNs or GCNNs are progressing quickly; however, simulating
the evolution of traffic conditions calls for a strategy in order to deal with graph sequences.

In this literature review, various approaches for predicting city-road traffic speed are
discussed, including traditional statistical learning techniques and more advanced deep-
learning techniques, with a specific focus on Convolutional Neural Networks (CNNs) and
Recurrent Neural Networks (RNNs). Additionally, the use of Graph Neural Network-based
approaches for traffic prediction is explored.

Table 1 provides a tabular comparison of the different approaches mentioned in the
literature review:

Table 1. Literature review comparison of the different approaches.

Approach Description Advantages Limitations

Time Series [16] Autoregressive
moving-average techniques Suitable for handling time-series data Limited representation of

complicated scenarios

Statistical Learning Techniques [12,13] Gradient boosting, k-nearest
neighbor, SVR Aggregates relevant information Limited improvement due to

inadequate representation
Deep Neural Networks

(DNNs) [14,15] CNNs, RNNs Better representation and performance Inefficiency in modelling complicated
road networks

LSTM-RNN [15] Model based on LSTM-RNN for
traffic flow

Captures randomness
and nonlinearity

Depends on availability of
spatio-temporal data

CNN-based Models [25–27] Model based on CNNs for periodic
traffic data Simulates multiscale traffic forms Limited to undirected graphs

GNN-based Approaches [31,32] GNNs, GCNNs, GNs Enables processing of
graph-structured data Complexity in operations
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Traditional statistical learning techniques provide some advantages in handling time-
series data, but their representation of complicated scenarios limits their performance
improvement. Deep Neural Networks, such as CNNs and RNNs, have shown better repre-
sentation and performance in traffic-speed prediction. However, they may not efficiently
model complicated road networks. The combination of LSTM-RNN and CNN techniques
has been proposed to improve traffic prediction accuracy by capturing randomness and
simulating multiscale traffic forms. Graph neural network-based approaches, such as
GNNs, GCNNs, and GNs, have gained attention and offer the ability to process graph-
structured data. However, the limitation of handling only undirected graphs needs to be
addressed. The deep-learning techniques, particularly CNNs and RNNs, show promise in
improving traffic-speed prediction. The use of Graph Neural Network-based approaches
provides a way to handle graph-structured information, although some limitations still
need to be addressed. Integrating AI and ML approaches can be a potential direction for
further enhancing traffic prediction models.

Furthermore, the authors in [33] present a Recurrent Neural Network (RNN) and satel-
lite image-based real-time traffic-speed prediction algorithm. To increase forecast accuracy,
the model integrates satellite pictures and the RNN to collect temporal trends in traffic
data. The authors in [34] outline a graph convolutional network (GCN)-based traffic-flow
prediction model that incorporates spatial–temporal information. Road network spatial
dependencies are captured by the GCN, and historical traffic flow data are taken into
account by the spatial–temporal characteristics. A real-time traffic-prediction model based
on graph convolutional networks (GCNs) is presented in this paper. The model uses GCNs
to represent geographical relationships in the traffic data and integrates the road network’s
graph structure [35]. In a study revealed in [36], a traffic-state estimation and prediction
model that combines Recurrent Neural Networks (RNNs) and graph convolutional net-
works (GCNs) is proposed. The RNNs capture temporal correlations in the traffic data,
while the GCNs collect geographical connections. A real-time traffic-speed prediction
model that integrates data from several sources, such as traffic data, meteorological data,
and social media data, is presented in article [37]. To identify temporal trends in the data,
the model makes use of LSTM networks.

Comparing the articles in the literature review with the proposed STGGAN model,
both the state-of-the-art (SOTA) models and the STGGAN model take into account temporal
trends in the traffic data. While not expressly described in the SOTA model, the STGGAN
model includes graph structures, edge characteristics, an RNN-based gated module, and a
residual structure. The STGGAN model is also able to measure attentional relevance and
capture spatio-temporal correlations. Hence, the STGGAN model stands out due to its
integration of spatio-temporal data and graph structures, the inclusion of edge features, the
use of an RNN-based gated module and a residual structure, and the incorporation of edge
features. These components enable the STGGAN model to successfully measure attentional
relevance, capture spatial dependencies, and optimise training, leading to accurate real-time
traffic-flow prediction on urban road networks.

3. Preliminaries

In this work, for developing a Graph Neural Network for an urban road network,
consider a weighted directed graph G. The network is made up of N nodes with M edges,
and this graph shows the connections between the primary node, an adjacency matrix A,
and a weight matrix W.

Several factors need to be taken into account when converting a road network into a
topology graph based on its physical structure in order to provide proper representation
and prevent subpar prediction accuracy. The various considerations taken in this article,
together with their consequences are as follows:

A limited range of node detectors: It becomes difficult to define the link connections
in places with poor detector coverage. This indicates that other data sources or approaches
should be taken into account throughout the graph generation process in order to correctly
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depict traffic flows and connections. The absence of node detectors in these locations can
be partially made up for by integrating data from other sensor types or from sophisticated
traffic monitoring systems.

Traffic direction and safety measures: Turning motions and safety measures cause
traffic in different crossing lanes to flow in different directions. Investigating and taking
into account the traffic direction data for each lane is needed in order to build an accurate
directed graph. This indicates that in order to accurately represent actual traffic patterns,
the graph needs include the precise traffic movements that are permitted or forbidden in
certain lanes.

Correlations in space and pointless connections: In an urban road network, not all
nearby roads exhibit robust spatial connections. Physical road network links alone may
provide a large number of unnecessary connections, which would decrease forecast ac-
curacy. The graph architecture should take into account how the traffic moves and how
cars travel between various parts of the road network to handle this. It is important to
consider proximity in space, where cars might likely reach nearby routes in close proximity.
In order to build the highway network, researchers have also used node distances, demon-
strating that the graph representation may be affected by both geographical closeness and
real distance.

It is crucial to remember that static elements like distances and nearby relationships
may fall short of adequately capturing the dynamic nature of traffic dynamics. The accuracy
and efficiency of the graph representation can be improved by including real-time traffic
data, such as traffic volumes, speeds, and congestion levels.

Problem Statement

In this article, we aim to learn a mapping function f that calculates the future traffic
volumes y(t + 1) = x1(t + 1), x2(t + 1), . . . , xN(t + 1) given the historical traffic data of the
road network with N detectors X(t) = x1(t), x2(t), . . . , xN(t) in the previous s time steps.

Then, we dissect the elements of the problem:
Traffic Volumes: The traffic volumes in the historical traffic statistics were gath-

ered from N detectors at various time steps. The data for each detector is written as
Xi(t) = xi(ts + 1), xi(ts + 2), . . . , xi(t), which indicates the traffic volumes seen at detector i in
the preceding s time steps.

Specific Graph Structure: A graph G may be used to describe the road network, with
the detectors acting as its nodes, and the edges signifying the connections or interactions
between them. Different detectors’ spatial relationships are captured by the particular
graph structure G.

Mapping Function f: The mapping function f forecasts the future traffic volumes
y (t + 1) using the graph structure G and past traffic data X(t) as inputs.

The objective is to learn this mapping function f in order for it to accurately estimate
future traffic volumes and capture the latent spatio-temporal correlations in the historical
traffic data.

In order to anticipate future traffic volumes, the traffic-flow prediction problem makes
use of previous traffic data, graph structure, and a mapping function. The aim is to uncover
the hidden spatio-temporal dependencies in the data to make accurate predictions.

4. Proposed Methodology

This article analyses the different traffic-speed prediction methods along with propos-
ing a real-time traffic-speed estimation methodology that can effectively combat the chal-
lenges of the present methods reported in the literature. The proposed methods are effective
in terms of improved prediction accuracy as well as minimising the model errors. The
major focus of real-time traffic-speed estimation is the observation of traffic speed utilising
N different sensors, and the GNN-based deep-learning model is utilised for the analysis of
mass traffic data [38]. The prediction of traffic signals is performed by the graph network;
therefore, the relationship between N sensors is visualised using different GNNs. While
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expressing the graph of traffic speed as Gt, the graphical signal is expressed as Xt where
the signal is observed over the time t. For the estimation of traffic speed, the challenge
is solved by learning a function from the historic graphical signal in order to obtain the
output future graphical signal. The detailed signal version is depicted in Figure 2.
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The input X can be expressed in terms of two different feature domains. One is in
terms of the spatial domain, where it is expressed as the collected features based on the
basic parameters of traffic speed. However, in the temporal domain, this can be expressed
as the conjunction of time-sequenced traffic-speed parameters. For defining the traffic
speed, three different input parameters are considered, which are the flow of traffic, traffic
density, and the speed of traffic vehicles. These are denoted as:

• Flow of Traffic: The complete number of vehicles expressed in terms of their passage
from a certain place in a specific time interval. It is expressed as Equation (1).

Flow rate = Dv (1)

where D is the density of traffic flow and v is the velocity of traffic vehicles.
• Traffic Density: This refers to the vehicle density at a particular date and is expressed

as Equation (2).

Density (D) =
Number o f vehicles

Road length
(2)

• Speed of Traffic vehicles: The speed of traffic vehicles is defined as the ratio of the
road segment length to the average travel time for the vehicles to pass through a
road segment. The expression for the average traffic vehicle speed is expressed as
Equation (3).

Average Tra f f ic Speed (S) =
LRS

1
n ∑n

i=1
1
vi

(3)

where LRS is the length of the road section, n is the vehicle number, and vi is the speed
of travel for the ith vehicle.

4.1. Feature Analysis for Traffic-Speed Prediction

The analysis for traffic speed in this article is performed using Pearson’s correlation
analysis for evaluating the quantitative periodicity of the traffic speed. A heatmap is utilised
to evaluate the values obtained using the Pearson correlation analysis. This analysis pro-
vides the periodic characteristic of closeness in traffic-speed data. The Pearson coefficients
are utilised to measure the degree of closeness through the correlation analysis [39]. The
Pearson coefficient (PC) is computing between the future predictions (F) and the historical
data (H). It is expressed as Equation (4).

Pearson Coe f f icient (PC) =
∑TD

i=1
(

Hi − Ȟ
)(

Fi − F̌
)√

∑TD
i=1
(

Hi − Ȟ
)2(Fi − F̌

)2
(4)

In this equation, TD represents the duration of the prediction, and the future predicted
traffic speed is indicated by F. The historical data H is utilised for traffic-speed predictions.
The mean values for both the historical and future predicted data values are represented
by Ȟ and F̌, respectively. The value of PC ranges between −1 and 1. A stronger posi-
tive correlation is indicated by values closer to 1, while PC values closer to 0 indicate a
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weaker correlation. The complete description of strong and weak correlations are provided
in Table 2.

Table 2. Correlation Coefficients (PCs) corresponding to the degree of strong-ness.

PC Values Degree of Correlation

|PC| ≥ 0.8 Higher degree of Correlation
0.5 ≤ |PC| < 0.8 Moderate degree of Correlation
0.3 ≤ |PC| < 0.5 Low degree of Correlation

|PC| < 0.3 Not Relevant

The outcomes obtained by the Pearson correlation analysis are utilised as the objective
function for confirming the intermittent constituent module. It also verifies the applicability
of the universal correctness of dataset selection. Furthermore, the second component of
the proposed model framework utilises the multi-layered spatial–temporal graph analysis.
This analysis is performed using the multi-layered Spatio-Temporal Graph Neural Network
(STGNN). This neural network module has the capability of extracting the temporal as
well as spatial characteristics for traffic-speed data prediction [40]. The three main modules
utilised in this article are depicted in Figure 3.
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The framework includes feature extraction in the first stage, followed by the aggre-
gation of spatial features so as to provide the outcomes for the deep-learning model. The
deep-learning STGNN model is utilised in the second stage of this article to obtain the ex-
tracted feature set for traffic-speed data utilisation. Furthermore, the final stage involves the
traffic-speed prediction utilising the N number of iterations. The STGNN model completely
learns the various spatial and temporal characteristics extracted from the features. The
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significantly reliable and high-dimensional feature information is utilised for the STGNN
model. Furthermore, this model utilised the spatio-temporal-based feature training, and
model parameters are adjusted through the forward proceeding of the model and the back
propagation of the error values. This improves the accuracy as well as reliability of the
proposed traffic-speed prediction framework.

Furthermore, the key components of the STGNN-based approach consider various
steps involved like the building graph representation, node and edge embeddings, message
passing, and temporal dynamics involved in it, followed by prediction and evaluation.

Building Graph Representation: Building a graph representation of the road network
is the initial stage in the GNN-based methodology. The connection between segments of a
road is modelled as edges, and each piece of the road is represented as a node. The nodes
or edges may also have other features, such as the length of the road, the posted speed
limit, and past traffic information.

Node and Edge Embeddings: To capture the characteristics and connections found
in the graph, GNNs need node and edge embeddings. Edge embeddings may depict
the spatial relationships between linked segments, whereas node embeddings can store
information about the features of individual road segments.

Message Passing: GNNs use a message-passing mechanism to collect and spread
information throughout the graph. Nodes communicate with their neighbours throughout
each iteration, updating their own representations in response to the messages they receive.
GNNs may record both local and global dependencies inside the network thanks to this
iterative approach.

Spatio-Temporal Dynamics: GNNs may be expanded to include spatio-temporal
dynamics in order to perform real-time traffic-speed estimations. GNNs may learn patterns
and trends over time by taking into account historical traffic data and the order of prior
speed measurements, allowing precise forecasts of future traffic speeds.

Prediction and evaluation: The GNN model may be used to forecast real-time traffic
speeds for various road segments in the smart city after being trained on historical data.
Utilising suitable measures, such as mean squared error or mean absolute error, the model
output may be assessed against ground-truth speed measurements.

The GNN-based approach for the real-time estimation of traffic speed offers improved
accuracy by capturing the spatial dependencies and temporal dynamics within the road
network. GNNs can provide more accurate and fine-grained predictions of traffic speed
compared with traditional methods. GNNs are capable of processing data in real-time,
enabling timely updates of traffic-speed estimations. This information can be used for
dynamic route planning, congestion management, and for optimising traffic signal timings.
These GNN-based approaches can be scaled to large road networks, making them suitable
for implementation in sustainable smart cities with extensive transportation systems. The
GNN framework can be modified to incorporate additional data sources such as weather
conditions, event information, or sensor data from vehicles to enhance the accuracy of
traffic-speed estimation. These applications of GNN-based approaches for real-time traffic-
speed estimation aligns with the goals of sustainable smart cities, promoting efficient
transportation, reducing congestion, and improving overall urban mobility. By leveraging
the power of deep learning and graph analysis, these approaches contribute to building
smarter, greener, and more sustainable cities.

4.2. Methodological Framework

The previous section provided an overview of the traffic-speed prediction analysis
and identified the research gaps in the recent literature. The objective is to estimate
the traffic speed in real-time using a GNN-based approach. This involves predicting
the speed of vehicles at different locations in the city based on historical and current
data. For this purpose, data collection is performed including the historical traffic-speed
records, sensor data (e.g., from traffic cameras or GPS devices), road network information
(e.g., road segments, intersections), and any additional contextual data (e.g., weather
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conditions, time of day). After data collection, handle any missing values and perform
any necessary transformations or feature engineering. Convert the data into a suitable
format for GNN-based models. Then, represent the network as a Spatio-Temporal Gated
Graph Attention Network (STGGAN); here, the edges between the nodes define their
connectedness based on the structure of the road network, while the nodes themselves
represent road segments or intersections.

The STGGAN model contains a Gated Recurrent Unit (GRU) layer for capturing tem-
poral correlations, a GAT layer with edge features for modelling spatial dependencies, an
RNN-based gated module for assessing attention and significance, and a residual struc-
ture for increased training effectiveness. Combining both spatio-temporal data and graph
structures, these elements allow the model to accurately estimate short-term traffic flow
on urban road networks. For the purpose of predicting traffic flow on metropolitan road
networks, the STGGAN (Spatio-Temporal Graph Attention Network) model is presented.
To identify spatio-temporal relationships and enhance the model’s functionality, it includes
a number of components. Using a GRU (Gated Recurrent Unit) layer, temporal correla-
tions are captured. The model can learn temporal patterns in the data thanks to the GRU
layer’s assistance in capturing dynamic variation features across past traffic conditions.
The self-attention mechanism in the model adds edge characteristics for modelling spatial
interactions. This feature increases the model’s capacity to capture spatial relationships
between various sections by supplying prior knowledge about the characteristics of the
road network. In order to assess the significance of various elements inside the multi-head
attention mechanism, an RNN-based gated module is presented. During the prediction
phase, this method enables the model to concentrate on pertinent information and to
distribute attention efficiently. The STGGAN model adopts the residual readout layer
structure, inspired by residual mapping, to hasten convergence and to capture minute
changes. A residual structure increases the forward speed of information by allowing
it to transcend many layers, allowing the model to efficiently optimise and capture the
identity mapping.

Thus, the proposed STGGAN model combines a GRU layer, edge features, an RNN-based
gated module, and a residual structure in contrast to the naïve GAT model. By collecting
both the geographical and temporal linkages in traffic data, this improves the model’s ca-
pacity to derive spatio-temporal dependencies. The STGGAN model’s capacity to simulate
the connections between various parts of the road network is improved by using edge
features for a directed arc to better capture spatial interactions. A directed arc in a trans-
portation network denotes a link or connection between two points or nodes. The model
may include more details about the properties of the road segment that is represented by
a directed arc by taking edge features into account. These edge features may comprise
characteristics of the road segment, such as the kind of road, the speed limit, the amount of
traffic, the state of the road, or any other pertinent data. The model may benefit from past
knowledge of the road network’s properties by including edge features for a directed arc.
The model may better comprehend the spatial interconnections and interactions between
various road segments by taking these properties into account. When a model discovers,
for instance, that some road types or situations often have a greater influence on traffic flow
than others, it may adjust its forecasts appropriately. By merging the spatial and temporal
components of the road network, edge characteristics in the STGGAN model result in a
more thorough description of the road network. The GRU layer’s dynamic changes and
the edge features’ spatial interactions are both taken into account in the model in order to
properly predict short-term traffic flow on urban road networks in real-time. Therefore,
using edge features for a directed arc in the STGGAN model facilitates the incorporation
of spatial data and improves the model’s capacity to capture the intricate relationships
between various parts of the road network, resulting in more precise traffic-flow predictions
in sustainable smart cities.

For defining the Spatio-Temporal Gated Graph Attention Network (STGGAN) archi-
tecture, use the following steps.
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• Define the node features: assign initial features to each node, such as historical traffic-
speed values or contextual information.

• Define the edge features: compute edge features based on the relationship between
nodes, such as distance or road connectivity.

• Initialise node and edge representations: assign initial representations to nodes
and edges.

• Gating Mechanism: Introduce a gating mechanism to control the flow of information
in the network. This can be achieved by using Gated Recurrent Units (GRUs) or other
gating mechanisms.

• Attention Mechanism: Implement a graph attention mechanism to capture the rank
of neighbouring nodes for each node’s representation. This can be performed using
attention coefficients that determine the relevance of neighbouring nodes during
message passing.

Furthermore, model training is performed, which involves splitting data into training,
validation, and testing sets. Initialise the model and then train it by using the training data
to optimise it to minimise the prediction error. Furthermore, tune hyperparameters and
monitor the model’s performance on the validation set to prevent overfitting. For real-time
estimation, the trained network model is continuously updated for the graph representation
and by feeding the new data into the STGGAN model to make predictions for traffic speed
at different locations and updating the predictions as new data becomes available. Also,
the model’s performance is assessed using appropriate evaluation metrics, such as mean
absolute error or root mean square error. Compare the proposed approach with baseline
methods or other relevant approaches. For the integration of the STGGAN-based traffic-
speed estimation model with other smart city systems, such as traffic management systems
or intelligent transportation systems, enable real-time monitoring and decision making
based on the estimated traffic speeds. The architecture of the proposed STGGAN-based
network designed for this research work is depicted in Figure 4.
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The proposed framework depicts the traffic speed for overcoming the shortcomings of
the existing models. The interoperability of the input data is also improved along with the
improvement in the learning ability of the deep-learned model for higher-order correlation
analysis [41]. Also, the proposed model is effectual in extracting the dynamic association
between the traffic structure networks and the nodes. The proposed model framework is
depicted in Figure 5.
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The proposed model comprises three different modules. The initial component is
responsible for feature analysis as well as the periodic prediction of the data after fusion.
The correlation analysis is performed for outputting the characteristic data determined
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after the feature analysis. Furthermore, the second component of the proposed framework
is a convolution analysis based on the spatial–temporal Graph Neural Network. For the
convolution analysis, this work utilises a multi-layered Graph Neural Network model so
as to obtain a higher dimensionality in terms of the spatio-temporal feature processing
obtained from the first component stage [42]. The feature-selection-stage mechanism is
introduced in the third component of the proposed model in order to improve the feature
reliability of the extracted set of features for traffic-speed data.

4.3. Spatial Dependency

In order to anticipate traffic flow on urban road networks, knowledge of spatial
relationships is essential. The Graph Attention Network (GAT) is used in this portion
to capture these spatial relationships. The GAT has shown success in a variety of tasks,
including recommendation systems and computer vision. The GAT offers a number of
benefits over the popular Graph Neural Network (GNN) model for predicting traffic flow:

1. Weight Allocation: The GAT can handle directed graphs and may give different
weights to various neighbours, which is useful for metropolitan road networks with
direction-specific traffic flows.

2. Node characteristics: Rather than the graph structure itself, model parameters in GAT
are tied to each node’s characteristics. The GAT may be used for inductive learning
tasks thanks to this trait, which allows the model created for one set of road networks
to be used to forecast traffic conditions on other road networks.

For the purpose of defining the GAT, we refer to the input characteristics of node i at
layer l as hi

l, where hi
l denotes the input’s prior traffic states, or Xt

i. The following is the
GAT formulation indicated in Equations (5)–(7):

yl
i = W l × hl

i (5)

where W l is the learnable weight matrix;

el
ij = Leaky ReLU

(
aT
[
yl

i

∣∣∣∣∣∣yl
j

])
(6)

where aT is a single-layer feed-forward network; and

so f tmax
(

el
ij

)
=

exp
(

el
ij

)
∑ exp

(
el

ij

) (7)

The urban road network is transformed into a weighted directed graph for the road-
network transformation method. Edge characteristics are disregarded in the aforemen-
tioned GAT layer as previous information to enhance the computation of attention weights
in order to take use of the edge features. As a result, to optimise the process of computing
the attention weights, we add the edge weights E of the created weighted directed graph as
prior knowledge. Additionally, including edge features into the GAT layer helps to lessen
the effects of unused connections brought on by mistakes during construction. Thus, the
softmax function is indication in Equation (8).

so f tmax
(

el
ij

)
=

exp
(

Eij × el
ij

)
∑ exp

(
Eij × el

ij

) (8)

where Eij is the edge weight.
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4.4. Temporal Dependency

Given that they represent the time-varying properties of network flow, temporal
dependencies are essential for effectively forecasting future traffic states. Instead of relying
only on a straightforward linear transformation in this work, we suggest using the Gated
Recurrent Unit (GRU) to properly capture these temporal connections.

A linear transformation is employed to convert the lower-level characteristics into a
high-dimensional space. However, as the input characteristics are essentially time-series
data reflecting prior traffic conditions, this technique falls short of thoroughly examining
the temporal evolution of the input features. We make use of GRU, a popular Recurrent
Neural Network (RNN) variation recognised for its capacity to represent sequential input,
to overcome this constraint.

Two essential parts make up a GRU block: a reset gate (rt) and an update gate (ut).
The update gate aids in capturing long-term dependencies in the time series, while the
reset gate is in charge of eliminating old data that is unrelated to future states. The GRU
layer may be stated as Equations (9) and (10) for an input feature it:

rt = σ (Writ + Wr Ht−1) (9)

where W is the weight matrix for reset gate and σ(x) = 1
1+exp(−X)

; and

ut = σ (Wuit + Wu Ht−1) (10)

where W is the weight matrix for update gate and σ(x) = 1
1+exp(−X)

.

4.5. Spatio-Temporal Prediction Model Framework

For the purpose of predicting short-term traffic flow on urban road networks, the
STGGAN (Spatio-Temporal Graph Attention Network) model is the output. A feature
analysis and data prediction layer, a Gated Recurrent Unit (GRU) layer, a feature selection
layer, and a GAT (Graph Attention Network)-based self-attention mechanism make up its
four primary parts. The model seeks to capture both the geographical relationships between
various road network segments and the temporal correlations in historical traffic data.

The feature analysis and data prediction layer, the initial element, is used to enhance
the model’s capability of detecting temporal correlations. A Gated Recurrent Unit (GRU)
layer aids in identifying sequential patterns in the data. Next, the GAT (Graph Attention
Network)-based Graph Neural Network (GNN) model is enhanced using edge charac-
teristics. The GAT is a Graph Neural Network design that can simulate the connections
between various graph nodes. The Spatio-Temporal STGGAN model improves the spatial
interdependence between various road network segments by including edge features,
taking into account both traffic levels and the properties of the individual road segments.
The value of various heads in the multi-head attention mechanism is assessed using the
Recurrent Neural Network (RNN)-based gated module. When producing predictions, the
model’s attention processes enable it to concentrate on pertinent portions of the data. Based
on the input data, the gated module assists in dynamically allocating priority to various
attention heads, enhancing the model’s capacity to pay attention to pertinent information.

Additionally, a readout layer with residual connections is adopted by the STGGAN
model. Residual connections speed up training and increase convergence efficiency by
allowing the model to learn from discrepancies between anticipated and actual values. This
structure aids the model’s efficient learning and gradient propagation during training.

The algorithm for the Spatio-Temporal Graph Neural Network (STGNN) model uses
a Gated Graph Attention Network-based STGGAN approach for the real-time estimation
of traffic speed in sustainable smart cities. The goal is to predict the speed of vehicles at
different locations in the city using historical and current data, taking into account the
graph structure of the road network. The algorithm for GNN modelling is indicated as
Algorithm 1:
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Algorithm 1: Spatio-Temporal Gated Graph Attention Network (STGGAN)

Input:
X: Node features (node_count × feature_dim)
A: Edge features (node_count × node_count × feature_dim)

Parameters:
K: Number of attention heads

hidden_dim: Hidden dimension
output_dim: Output dimension

Initialise weight matrices: W_node (feature_dim×hidden_dim), W_edge (feature_dim× hidden_dim),
W_att (hidden_dim×hidden_dim) for each attention head, and W_out (K ×hidden_dim×output_dim)
Initialisation:

H = zeros(node_count, hidden_dim) # Node representations
E = zeros(node_count, node_count, hidden_dim) # Edge representations

Node representation computation:
for k in range(K): # Attention heads

for i in range(node_count): # Nodes
h = GatingMechanism(H[i], X[i])
H[i] = h

Edge representation computation:
for k in range(K): # Attention heads

for i in range(node_count): # Source nodes
for j in range(node_count): # Destination nodes

e = LeakyReLU(H[i] * W_edge + H[j] * W_edge)
E[i, j] = e
Attention mechanism:
for k in range(K): # Attention heads

H = AttentionMechanism(H, E)
Output computation:

output = softmax(H * W_out)
return output

Function GatingMechanism(h, x):
# Gated Recurrent Unit (GRU) for gating mechanism
r = sigmoid(W_r * x + U_r * h)
z = sigmoid(W_z * x + U_z * h)

h_hat = tanh(W_h * x + U_h * (r * h))
h_new = (1 − z) * h + z * h_hat

return h_new
Function AttentionMechanism(h, adj):

# Graph attention mechanism
e = LeakyReLU(Attention(h * W_att, h * W_att))
alpha = softmax(e)

h_new = sum(alpha * h)
return h_new

Here, the activation functions (e.g., sigmoid, tanh, LeakyReLU, softmax) and the
weight matrices (e.g., W_node, W_edge, W_att, W_out) are assumed to be defined and
initialised appropriately. The GatingMechanism and AttentionMechanism functions are
defined separately to capture the specific computations involved in those steps.

This work provides an effective analysis of the data with traditional models. The
proposed model is better compared with the traditional models in terms of data quality
as well as input reliability. The system scalability is also improved in this proposed
model as the calculation process is simplified and the connections are enhanced between
different components. Thus, the proposed model is improved in terms of interpretability
and accuracy.
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5. Results and Analysis

The experimental analysis of the proposed STGNN-based STGGAN approach for
real-time traffic-speed estimation while implementing it for smart cities was performed in
this article using two different actual traffic datasets. The datasets utilised in this article are
the PeMSD4 [43,44] and PeMSD8 [43,44] datasets, which comprise a varying number of
samples and are sampled using a different number of sensors. The PeMSD4 dataset was
acquired using 307 sensors which resulted in a total of 16,992 sample outcomes; however,
the PeMSD8 dataset was acquired using 170 sensors and resulted in 17,856 sample sets.
Feature details of the two datasets involved in this study are depicted in Table 3.

Table 3. Feature detailing of the PeMSD4 and PeMSD8 datasets involved in this study.

PeMSD4 Dataset [43,44] PeMSD8 Dataset [43,44]

Number of Sensors: 307 Number of Sensors: 170
Total Samples: 16,992 Total Samples: 17,856

Features:The dataset likely includes various
traffic-flow measurements, such as traffic

speed, traffic volume, and occupancy, captured
by the sensors at different locations within the

road network. Additionally, it may include
temporal information to account for the time

aspect of traffic patterns.

Features: The dataset is expected to contain
similar traffic-flow measurements as the
PeMSD4 dataset, including traffic speed,

volume, and occupancy. Temporal information
might also be present to capture time-related

patterns in traffic behaviour.

A measure of traffic flow and traffic speed for a density of approx. 500 vehicles per
kilometre is depicted in Figure 6. Based on the traffic flow and traffic speed indicated in
Figure 6, further measures were computed in terms of prediction accuracy (PA), mean
square error (MSE), root mean square error (RMSE), mean absolute error (MAE), and mean
absolute percentage error (MAPE).
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Figure 6. Traffic flow and traffic speed.

For accurate prediction using the proposed STGNN-based STGGAN approach, the
network performance was tested for its prediction accuracy which was computed in terms
of True Positive (TP), True Negative (TN), False Positive (FP), and False Negative (FN)
values obtained for both the PeMSD4 and PEMSD8 datasets. TP refers to the situation when
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the STGNN correctly predicts a positive outcome. In the case of traffic-speed estimation, it
means that the STGNN accurately predicts a high traffic speed when the actual speed is
indeed high. It represents the number of correctly identified high-traffic-speed instances.
TN occurs when the GNN correctly predicts a negative outcome. In traffic-speed estimation,
it means that the STGNN accurately predicts a low traffic speed when the actual speed is
indeed low. TN represents the number of correctly identified low-traffic-speed instances.
An FP happens when the STGNN incorrectly predicts a positive outcome. In the context
of traffic-speed estimation, it means that the STGNN predicts a high traffic speed when
the actual speed is low. FP represents the number of instances where the STGNN wrongly
identifies high traffic speed. FN occurs when the STGNN incorrectly predicts a negative
outcome. In the case of traffic-speed estimation, it means that the GNN predicts a low
traffic speed when the actual speed is high. FN represents the number of instances where
the GNN fails to identify high traffic speed. These definitions are based on the concept
of binary classification, where the task is to categorise instances into two classes: high
traffic speed and low traffic speed. The GNN is trained to predict the traffic speed based
on the input graph data, and TP, TN, FP, and FN are computed by comparing the GNN’s
predictions with the actual traffic-speed labels. By analysing the values of TP, TN, FP, and
FN, various evaluation metrics can be computed to assess the performance of the GNN
model, and these metrics provide insights into the model’s ability to correctly identify high
and low traffic speeds, which are crucial for real-time traffic-speed estimation in sustainable
smart cities.

This section presents a comparative analysis of the proposed STGNN-based STGGAN
approach with some standard baseline models in order to assess the system’s performance.
Furthermore, a vast comparative study was conducted using various statistical, analytical,
machine-learning- and deep-learning-based approaches. The different evaluation criteria
used in this article are PA, MSE, RMSE, MAE and MAPE.

The formulas for all the evaluation indicators are provided in Equations (11)–(15).

PA =
TP + TN

TP + TN + FP + FN
(11)

MSE =
1
n

n

∑
i=1
|x̂− xi|2 (12)

RMSE =

√
1
n

n

∑
i=1
|x̂− xi|2 (13)

MAE =
1
n

n

∑
i=1
|x̂− xi| (14)

MAPE =
100
n

n

∑
i=1

|x̂− xi|
xi

(15)

where xi is the true value obtained, x̂ is the predicted value of the sample outcome, and
n is the total sample number.

Furthermore, in this section, the impact of traffic speed at varying spatio-temporal
locations is demonstrated and discussed using the model prediction accuracy for both
PeMSD4 and PEMSD8 datasets. The computed prediction accuracy is shown in Figure 7.
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Figure 7. Prediction accuracy obtained for the proposed STGGAN model using the PeMSD4 and
PEMSD8 datasets.

Figure 7 shows that the proposed STGGAN model is capable of improving the accuracy
of traffic-speed predictions. As the number of iterations increased from 1 to 100, the
accuracy of predictions for both the PeMSD4 and PEMSD8 datasets improved steadily.
The accuracy values for PeMSD4 increased from 86.54% to 96.67%, and those for PEMSD8
increased from 88.85% to 98.75%. The proposed STGGAN model demonstrates accurate
prediction abilities for light to moderate traffic flow. Consistently high prediction accuracy
for these traffic volumes indicates the model’s ability to accurately predict traffic speed
under such conditions. Furthermore, the error computation for the proposed STGGAN
method was performed in terms of MSE and RMSE, which is revealed in Figure 8a,b.

Sustainability 2023, 15, x FOR PEER REVIEW 21 of 27 
 

  
(a) (b) 

Figure 8. MSE values (a) and RMSE values (b) observed for the PeMSD4 and PEMSD8 datasets. 

The MSE values observed from Figure 8a shows that the error value reduces with an 
increasing iteration count, and it is still decreasing at a significant rate at the 100th iteration 
count. For the PEMSD4 dataset, an MSE value of 22.54 was observed for the 1st iteration, 
and this continued decreasing until an MSE value of 10.54 was obtained for the 100th it-
eration count. Similarly, for the PEMSD8 dataset, an MSE value of 24.95 was observed for 
the 1st iteration, which continued reducing until an MSE value of 11.43 was obtained for 
the 100th iteration count. The observations made from Figure 8b reveal that the RMSE 
error values gradually reduce with the increase in the iteration count from 1 to 100. An 
RMSE value of 4.54 was observed for the 1st iteration which continued decreasing until 
reaching an RMSE value of 3.25 for the 100th iteration count for the PEMSD4 dataset. Sim-
ilarly, for the PEMSD8 dataset, an RMSE value of 4.99 was observed for the 1st iteration 
which continued decreasing until an MSE value of 3.38 was obtained for the 100th itera-
tion count. As the iteration count increases from 1 to 100, the mean squared error (MSE), 
root mean squared error (RMSE), mean absolute error (MAE), and mean absolute percent-
age error (MAPE) values decrease progressively. With increased iterations, the proposed 
STGGAN model obtains greater accuracy in predicting traffic speed, as indicated by this 
decrease. 

Figure 9a,b depict the MAE and MAPE values observed for the PeMSD4 and 
PEMSD8 datasets, respectively. In Figure 9a, MAE values are observed from the 1st to the 
100th iteration count. For the PEMSD4 dataset, an MAE value of 30.45 was observed for 
the 1st iteration which reduced to an MAE value of 20.45 for the 100th iteration count. 
Similarly, for the PEMSD8 dataset, an MAE value of 32.48 was observed for the 1st itera-
tion which continued decreasing to 22.34 for the 100th iteration count. The observed com-
putation reveals that the MAE value decreases with the increasing iteration count, and it 
decreases to a significantly much lower value at the 100th iteration. Figure 9b depicts the 
MAPE values for the PeMSD4 and PEMSD8 datasets. Utilising the PEMSD4 datasets, an 
MAPE value of 22.56 was observed for the 1st iteration, which minimised to 12.45 for the 
100th iteration. For the PEMSD8 dataset, an MAPE value of 24.69 was observed for the 1st 
iteration while being minimised to 14.32 for the 100th iteration count. This reveals that 
MAPE error values are gradually reduced with the increasing iteration count. There are 
certain baseline models which are analysed in this work for the validation analysis of the 
proposed STGGAN approach. Several baseline models, including Genetic Algorithm 
(GA), Particle Swarm Optimisation (PSO), Artificial Neural Network (ANN), Traditional 
Convolutional Neural Network (CNN), and Multi-Layered Graph Neural Network 
(STGNN), are contrasted with the proposed STGGAN model. The comparison consists of 
prediction error, execution time, and evaluation metrics, including MSE, RMSE, MAE, and 
MAPE. 

0
5

10
15
20
25
30

0 20 40 60 80 100

M
SE

Iteration Count

MSE Values obtained for varying 
Iterations

MSE for PeMSD4 MSE for PeMSD8

0
1
2
3
4
5
6

0 20 40 60 80 100

R
M

SE

Iteration Count

RMSE Values obtained for varying 
Iterations

RMSE for PeMSD4 RMSE for PeMSD8

Figure 8. MSE values (a) and RMSE values (b) observed for the PeMSD4 and PEMSD8 datasets.

The MSE values observed from Figure 8a shows that the error value reduces with an
increasing iteration count, and it is still decreasing at a significant rate at the 100th iteration
count. For the PEMSD4 dataset, an MSE value of 22.54 was observed for the 1st iteration,
and this continued decreasing until an MSE value of 10.54 was obtained for the 100th
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iteration count. Similarly, for the PEMSD8 dataset, an MSE value of 24.95 was observed for
the 1st iteration, which continued reducing until an MSE value of 11.43 was obtained for
the 100th iteration count. The observations made from Figure 8b reveal that the RMSE error
values gradually reduce with the increase in the iteration count from 1 to 100. An RMSE
value of 4.54 was observed for the 1st iteration which continued decreasing until reaching
an RMSE value of 3.25 for the 100th iteration count for the PEMSD4 dataset. Similarly,
for the PEMSD8 dataset, an RMSE value of 4.99 was observed for the 1st iteration which
continued decreasing until an MSE value of 3.38 was obtained for the 100th iteration count.
As the iteration count increases from 1 to 100, the mean squared error (MSE), root mean
squared error (RMSE), mean absolute error (MAE), and mean absolute percentage error
(MAPE) values decrease progressively. With increased iterations, the proposed STGGAN
model obtains greater accuracy in predicting traffic speed, as indicated by this decrease.

Figure 9a,b depict the MAE and MAPE values observed for the PeMSD4 and PEMSD8
datasets, respectively. In Figure 9a, MAE values are observed from the 1st to the 100th
iteration count. For the PEMSD4 dataset, an MAE value of 30.45 was observed for the 1st
iteration which reduced to an MAE value of 20.45 for the 100th iteration count. Similarly,
for the PEMSD8 dataset, an MAE value of 32.48 was observed for the 1st iteration which
continued decreasing to 22.34 for the 100th iteration count. The observed computation
reveals that the MAE value decreases with the increasing iteration count, and it decreases to
a significantly much lower value at the 100th iteration. Figure 9b depicts the MAPE values
for the PeMSD4 and PEMSD8 datasets. Utilising the PEMSD4 datasets, an MAPE value of
22.56 was observed for the 1st iteration, which minimised to 12.45 for the 100th iteration.
For the PEMSD8 dataset, an MAPE value of 24.69 was observed for the 1st iteration while
being minimised to 14.32 for the 100th iteration count. This reveals that MAPE error values
are gradually reduced with the increasing iteration count. There are certain baseline models
which are analysed in this work for the validation analysis of the proposed STGGAN
approach. Several baseline models, including Genetic Algorithm (GA), Particle Swarm
Optimisation (PSO), Artificial Neural Network (ANN), Traditional Convolutional Neural
Network (CNN), and Multi-Layered Graph Neural Network (STGNN), are contrasted with
the proposed STGGAN model. The comparison consists of prediction error, execution time,
and evaluation metrics, including MSE, RMSE, MAE, and MAPE.
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The comparison of prediction error and execution time is provided in Figure 10 and of
MSE, RMSE, MAE and MAPE errors in Figure 11.
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Figure 10. Comparative analysis for the proposed STGGAN model with state-of-the-art ap-
proaches [12–14,25–27] in terms of prediction accuracy and execution time.
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GAN model.
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The comparative analysis demonstrates that the proposed STGGAN model obtains
greater prediction accuracy than other algorithms for both the PeMSD4 and PeMSD8
datasets. For PeMSD4, the proposed STGGAN model achieves a prediction accuracy of
96.67%, outperforming the GA algorithm (85.94%), the PSO algorithm (88.67%), the ANN
algorithm (90.34%), and the conventional CNN approach (91.45%). Similarly, for PeMSD8,
the proposed STGGAN model achieves a prediction accuracy of 98.75%, outperforming the
GA algorithm (87.59%), the PSO algorithm (89.74%), the ANN algorithm (92.45%), and the
conventional CNN approach (93.45%).

According to the execution time analysis, the proposed STGGAN method required
114 min for the PeMSD4 dataset and 120 min for the PeMSD8 dataset. These values indicate
the computational efficacy of the proposed STGGAN model, even though the execution
time is not explicitly compared with other algorithms.

The comparative analysis of the mean squared error (MSE), root mean squared error
(RMSE), mean absolute error (MAE), and mean absolute percentage error (MAPE) for both
datasets demonstrates that the proposed STGGAN model achieves better values than the
other algorithms. Lower MSE, RMSE, MAE, and MAPE values indicate greater precision
and accuracy in traffic-speed prediction. The effectiveness of the proposed STGGAN model
is further supported by the fact that all these metrics exhibited significant enhancements.
The proposed STGGAN method exploits the spatial and temporal dependencies in the data
by utilising the characteristics of a Graph Neural Network. This incorporation enables
the model to capture and exploit the intricate relationships and patterns present in traffic
data, which contributes to its enhanced performance. The technical observations emphasise
the practicability and viability of the proposed STGGAN method. Compared with other
algorithms, the model yields more accurate predictions and enhanced evaluation metrics,
demonstrating its reliability. These results validate the efficacy and applicability of the
proposed STGGAN model for predicting traffic speed.

In terms of prediction accuracy, evaluation metrics, and usability, the proposed
STGGAN model outperforms other algorithms, according to the technical observations. Its
enhanced performance is a result of the incorporation of Graph Neural Network character-
istics, making it a promising approach for traffic-speed prediction tasks.

The Spatio-Temporal Traffic Prediction Model (STGGAN) framework has a number
of significant advantages over other alternative methods for traffic prediction utilising
Graph Neural Networks (GNN) reported in the literature [25–27]. A few of the significant
advantages are listed below:

1. Comprehensive Integration: The STGGAN framework incorporates both spatio-
temporal data and graph structures, enabling an all-encompassing approach to traffic
prediction. This comprehensive integration enables the model to encompass the
complex relationships between spatial and temporal factors, resulting in more accu-
rate forecasts.

2. Capturing Temporal Correlations: The STGGAN framework includes a Gated Re-
current Unit (GRU) layer that effectively captures temporal correlations in the traffic
data. By taking into account dynamic variations across prior traffic conditions, the
model can learn and adapt to temporal patterns, thereby improving its accuracy
of prediction.

3. Modelling Spatial Dependencies: With the incorporation of a Graph Attention Net-
work (GAT) layer with edge characteristics, the STGGAN framework excels at mod-
elling spatial dependencies. This feature allows the model to utilise prior knowledge
about the road network, such as road types, speed limits, and other characteristics, in
order to capture the complex interactions between various road sections.

4. Attention Evaluation: The STGGAN framework employs an RNN-based gated mod-
ule to evaluate the attention and significance of various elements within the multi-
head attention mechanism. This mechanism enables the model to focus on pertinent
information and effectively distribute attention, thereby enhancing its overall predic-
tion performance.
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5. Residual Structure: Motivated by residual mapping, the readout layer of the STGGAN
framework employs a residual structure. This structure enables faster convergence
and the capture of minute changes in the traffic data, thereby enhancing the model’s
optimisation capabilities and allowing identity mapping to be effectively captured.

6. Real-Time Estimation: The STGGAN framework’s ability to estimate short-term traffic
flow in real time is one of its primary strengths. By integrating spatio-temporal data
and graph structures, the model is able to provide accurate predictions in a timely
manner, thereby facilitating smart city traffic management and decision making.

Thus, by integrating geographical and temporal data, using previous data, adjusting to
real-time changes, and offering scalability and interpretability, the Spatio-Temporal Traffic
Prediction Model framework offers a holistic approach to traffic prediction. It is a potential
option for precise and effective traffic forecasting using GNNs because of these bene-
fits. These benefits distinguish the STGGAN framework from alternative approaches and
demonstrate its efficacy in addressing the challenges of traffic prediction. The comprehen-
sive integration of spatio-temporal data and graph structures, as well as the incorporation
of temporal correlations, spatial dependencies, attention assessment, and residual struc-
ture, all contribute to the superior real-time traffic flow estimation performance of the
STGGAN model.

6. Conclusions

In this article, a model for predicting traffic speed based on Graph Neural Networks
(GNNs) is put forth. Inspired by GNNs, a model is presented that feeds the full road
topology graph into a neural network that can be tuned to predict traffic speeds. The
proposed model was designed by considering the characteristics and organisation of a
road network. By utilising GGAN blocks, we enhanced the performance of traditional
GNN algorithms by making sequential graphs through the conversion of input and output
vectors. The performance of the proposed model was evaluated through experimental
analysis and compared with existing state-of-art models. It was observed through ex-
perimentation that our proposed model decreases the training loss more quickly. The
extensive experimental tests were conducted using large-scale, real-world datasets. In
this article, the proposed STGGAN-based approach for real-time traffic-speed estimation
was implemented using two different actual traffic datasets, PeMSD4 and PeMSD8. For
the PeMSD4 and PeMSD8 datasets, prediction accuracy values of 96.67% and 98.75%,
respectively, were observed. It was also observed from the experimental analysis utilising
both datasets that the MSE, RMSE, MAE, and MAPE errors gradually reduces with the
increasing iteration count. A comparative analysis of the proposed STGGAN methodology
was also performed employing various statistical, analytical, and machine-learning- and
deep-learning-based approaches, which revealed the viability, reliability, and practicability
of the proposed approach.
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