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Abstract: Studying the carbon emissions resulting from digital transformation can provide a reference
for the realization of the goals of carbon peaking and carbon neutrality in the era of the digital economy.
This study calculated the value added to the digital economy and carbon emissions for 97 industry
divisions from 1997 to 2018. Using the input–output model, we estimated the carbon emissions
induced by the digital transformation of different industries, and used the structural decomposition
analysis (SDA) to identify their driving factors. The results show that the carbon emissions induced
by the digital economy in agriculture, forestry, animal husbandry, and fishery decreased in 2010, those
from mining increased year by year, and those from scientific research and technical services showed
a decreasing trend from 2011 to 2015. The induced rate of digital economy carbon emissions for
production and supply of electricity, heat, gas, and water has persistently remained high. At present,
digital economy labor productivity has not shown a promoting effect on carbon emission reduction.
China should strengthen the construction of a digital platform for ecological and environmental
governance and build a green and low-carbon industrial chain and supply chain to promote the
realization of the goals of carbon peaking and carbon neutrality.

Keywords: digital economy; carbon emissions reduction; labor productivity; input–output model;
structural decomposition analysis

1. Introduction

In September 2020, the Chinese government announced a major strategic goal to strive
for peak carbon emissions by 2030 and achieve carbon neutrality by 2060 [1,2]. China’s
14th Five-Year Plan proposes to support localities and key industries and enterprises with
the conditions to achieve a peak in carbon emissions [3,4]. The development gap caused by
different levels of technology [5], industrial structures [6], and resource endowments [7]
have led to different degrees of progress in emission reduction efforts in various industries.
In order to achieve the goals of carbon peaking and carbon neutrality on schedule, it is
crucial to understand the results of carbon reduction efforts across different industries.

Currently, a new round of Industrial Revolution, represented by the digital economy,
is sweeping across the globe at an unprecedented pace, with a very wide radiation range
and depth of impact [8,9]. The Digital Carbon Neutrality White Paper points out that
digital technology promotes the transformation of key industries towards digitization and
greenization, empowers carbon emission reduction, and accelerates the digitalization of
various sectors through information and communication technology. The potential for
carbon emission reduction in the digital economy is enormous [10,11]. Therefore, it is
particularly important to explore the effects of digital transformation on carbon emissions
across industries in China, under the background of the goals of carbon peaking and
carbon neutrality.
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However, existing studies on the relationship between digital transformation and
carbon emissions lack relevant research covering all industries of China’s national economy,
and there have been few studies analyzing the relationship between digital transformation
and carbon emissions using input–output models (IOMs) and even fewer studies carried
out from a supply-side perspective. Therefore, this study measured the value added to
the digital economy and carbon emission volume of 97 industries classified by the (GB/T
4754-2017) [12] from 1997 to 2018. Secondly, we used the Ghosh input–output model [13]
to analyze the impact of industry digital transformation on carbon emissions. Third,
we used structural decomposition analysis (SDA) to decompose the carbon emissions of
each industry into digital economy labor productivity, employment number, production
technology level, and carbon emission intensity in order to identify the main driving
factors of carbon emissions in different industries. Fourth, based on the results of the
input–output model and the decomposition analysis, this study provides reasonable policy
recommendations for carbon emissions reduction in Chinese industries.

This paper is expected to contribute in terms of the following three aspects. First, this
study analyzed the relationship between digital transformation and carbon emissions from
the supply-side using the input–output model. Replacing the value-added matrix of the
four rows (employee compensation, net production tax, fixed capital consumption, and
operating surplus) in the input–output table with the value-added matrix of two rows
(value added to the digital economy and value added to the nondigital economy), this
study used the input–output model to research the carbon emissions induced by value
added to the digital economy. Second, this study covered all industries of the Chinese
national economy and classified them into 97 industries according to the latest GB/T 4754-
2017, released by the National Bureau of Statistics. Previous studies mainly concentrated
on specific industries or sectors, but the digital economy has penetrated all industries
to varying degrees [14,15], so this study adopted a more comprehensive perspective to
research the relationship between digital transformation and carbon emissions. Third, we
constructed two indicators, digital economy labor productivity (DP) and induced rate of
digital economy carbon emissions, to explore the underlying causes of carbon emissions
induced by the digital economy, and to show the carbon emissions induced by the digital
economy per unit, respectively. Fourth, we provided value added to the digital economy
and input–output tables of 97 industries from 1997–2018.

The rest of this paper is organized as follows. Section 2 presents the literature review.
Section 3 describes the methods and data used in this study. Section 4 presents our results
on the measurement of value added to the digital economy, induced effects of carbon
emissions for digital transformation, and decomposition analysis of carbon emissions.
Section 5 provides our conclusions and policy implications.

2. Literature Review

Research on industry carbon emissions often focuses on a specific industry, and
input–output analysis (IOA) is a suitable research method for carbon emissions calculation.
However, there is limited research on carbon emissions and their effects across all industries,
with most focusing on a specific industry, such as the power industry [16,17], industrial
sector [18], heating and power industry [19], steel industry [20], and transportation indus-
try [21]. Currently, three main methods exist for calculating CO2 emissions, including life
cycle assessment (LCA) [22,23], intergovernmental Panel on Climate Change (IPCC), and
input–output analysis (IOA) [24–28]. LCA and IPCC have high data requirements, and the
accuracy of the results is difficult to guarantee. In comparison, IOA is more operable, and
it can calculate direct and indirect emissions for each industry.

There is relatively few analyses that uses input–output models to study the relationship
between digital transformation and carbon emissions, particularly from a supply-side
perspective. Existing studies on the factors affecting carbon emissions often use econometric
models [29–32], which cover population [33,34], economics [35], industry [36], space [37],
residential consumption [38], and energy consumption [39]. However, research on the
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relationship between digital transformation and carbon emissions using an input–output
model is relatively scarce [40–43], particularly from a supply-side perspective [44–47].

Regarding the impact of digital transformation on carbon emissions, there are three
viewpoints currently extant in research. The first holds that digital transformation is help-
ful in reducing carbon emissions. Scholars claim that digital transformation can promote
carbon reduction through means such as improving productivity [48], changing manage-
ment and sales approaches [49], promoting industrial transformation [50], and accelerating
human capital accumulation [51]. Gelenbe and Caseau [52] found that digital transforma-
tion can reduce energy consumption in industries such as transportation, construction,
online learning, and healthcare. The second viewpoint is that digital transformation will
exacerbate carbon emissions [53,54]. First, the widespread use of digital products di-
rectly increases carbon emissions [55]. Second, digital transformation increases energy
consumption through accelerating product updates [56] and transportation, and increasing
distribution demands [57]. The third viewpoint is that the relationship between digital
transformation and carbon emissions follows a U-shaped pattern [58–60]. On the one hand,
digital transformation will continuously increase CO2 emissions because of factors such as
digital device production [61], increases in energy consumption [62], and electronic waste
recycling [63]. On the other hand, digital transformation can decrease carbon emissions
by developing more intelligent cities [64], transportation systems [65], smart grids [66],
and energy-efficient devices [67]. The opposing effects produce a U-shaped relationship
between digital transformation and carbon emissions.

SDA is a decomposition method used for researching the driving factors of carbon
emissions through input–output analysis. The commonly used carbon emission decompo-
sition methods include structural decomposition analysis (SDA) and index decomposition
analysis (IDA). In general, the advantage of IDA lies in the flexibility of selecting indica-
tors, making it widely used in constructing comprehensive economic energy efficiency
indices [68,69]. The uniqueness of SDA lies in its usability for different IO models, like the
traditional Leontief I-O model, the semi-closed I-O model [70], the Ghosh I-O model [71,72],
and various multiregional I-O models. In recent years, the SDA decomposition method
has been widely applied to decomposing the driving factors of carbon emissions in dif-
ferent countries, such as Italy [73], China [74], Belt and Road Initiative countries [75], G20
countries [76], the UK [77], South Korea [78], and the EU [79]. For the driving factors
of carbon emissions, most studies have analyzed the impact of structure and technology
changes on energy use from the demand side. Yuan and Zhao [80] decomposed emission
changes into emission intensity, technology, and demand effects. Wei et al. [81] decomposed
emission changes into technology, sectoral links, economic structure, and economic scale.
Xu et al. [82] believed that emission changes were caused by import and export effects,
energy structure and intensity effects, technology effects, transfer effects, and investment
effects. Yu et al. [83] decomposed carbon emissions from the perspectives of input structure,
energy intensity, structural effects, and final demand effects.

In summary, in terms of research scope, few researchers have studied the relationship
between digital transformation and carbon emissions in all industries in China. In terms of
research methods, input–output models are used less frequently than econometric models,
even though input–output models have been proven to be a more suitable research method.
In terms of research perspectives, there are few studies that have explored the relationship
between digital transformation and carbon emissions from the supply-side perspective, as
opposed to the demand side. This article used the Ghosh input–output model to study the
induced effects of digital transformation on carbon emissions from 97 industries from 1997
to 2018.
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3. Materials and Methods
3.1. Ghosh Model

The Ghosh model [13] was developed as a supplement to the Leontief model. Its basic
form is:

X = v(I− B)−1 = vG (1)

In Equation (1), v is the row vector of value added, X is the total output, and I is
a suitable unitary vector. B is the direct output coefficient, representing the distribution
of outputs of the original sectors. G is the Ghosh inverse matrix, and it presents the
total output of downstream departments caused by 1 unit of initial input entering the
production system.

This paper built an environment of the extended Ghosh model by combining the
carbon emission satellite account indicator Q with the Ghosh model. Let qi denote the
carbon emission intensity vector for each industry sector i (i ∈ 1 . . . n), then q can be
defined as:

q = QX̂−1 (2)

Carbon emission intensity q for each department represents the carbon emissions
generated by the production of one unit of output in each industry sector. The element
qi = Qi/Xi. Therefore, by applying q to the entire economic system, the carbon emissions
of each industry sector can be expressed as:

Q = Xq̂ = vGq̂ (3)

The equation above shows that the carbon emissions of each industry sector can be
linked to its income through the Ghosh model. Here, Gq denotes the emission effect of the
inputs of each sector and refers to the direct and indirect carbon emissions generated by
the initial input of each sector through the entire economic system. It can be represented in
matrix form as:

Q = v̂Gq̂ =

v1
. . .

vn


G11 · · · G1n

...
. . .

...
Gn1 · · · Gnn


q1

. . .
qn


=

v1G11q1 . . . v1G1nqn
...

. . .
...

vnGn1q1 . . . vnGnnqn

.

(4)

v̂ represents the diagonalized matrix of the initial inputs, while q̂ represents the carbon
emission intensity, and its elements represent the amount of carbon emissions per unit
output produced by each sector.

Taking sector i as an example, in terms of the results, the row direction represents
the carbon emissions generated by sector i’s initial inputs. Each column of the first row
represents the carbon emissions generated in all the sectors connected to sector i′s initial
inputs, generated after running through the entire economic system. In terms of column
direction, each row of the first column represents the carbon emissions generated by sector
i, initiated by all sectors’ initial inputs.

This study mainly examined the carbon emissions generated by digital value added
from various industry sectors. Thus, we chose the sum of each industry sector’s
rows∑n

i vi ∑n
j Gijqij to represent the carbon emissions generated by their digital value added.

Therefore, the carbon emissions generated by the digital value added of sector i can
be represented as:

Qi = ∑n
j viGijqj. (5)

In order to study the socioeconomic driving factors of changes in the amount of
carbon emissions, the v in Equation (5) was decomposed into the following two influencing
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factors: digital economy labor productivity (D) and employment number (E). The SDA
model was used to decompose the changes in carbon emissions Q into the sum of various
factors, namely:

∆Q = ∆DEGq + D∆EGq + DE∆Gq + DEG∆q (6)

Among them, ∆D, ∆E, ∆G, and ∆q represent the contribution of digital economy
labor productivity, employment number, production technology level, and carbon emission
intensity to the change incarbon emissions when other variables remained unchanged.

3.2. Input–Output Tables for 97 Industries

The 97 industries input–output table is a modification of the 42 industries input–
output table [84], compiled by the Chinese Industrial Ecology Laboratory (IELab). The
refinement of the industry classification standards from 42 to 97 industries enabled the
development of the 97 industries input–output table. Harmonized matrix methods were
used for industry adjustments in the intermediate-use matrix (T), final-use matrix (Y),
and initial-input matrix (V) in the input–output table. In this paper, the employment
structures of the 97 industries were selected as the proxies for matrices T, Y, and V. The
assumption underlying the selection of the employment structures of the 97 industries as
proxies for matrices T, Y, and V was that the employment structure was consistent with
the industry division classification structure of T, Y, and V within the industry section.
This assumption was reasonable for two reasons. First, in the absence of data for industry
division, employment was the closest available indicator in proximity to the intermediate-
use, final-use, and initial-input measures. Second, this assumption did not change the
industry section structure of the T, Y, and V matrices. The use of the employment structure
for industry classification as based on the original data of different industry sections as the
control total, which avoided the change of the original industry section structure.

3.3. Measurement of Industry Value Added to the Digital Economy

According to the practice of the China Academy of Information and Communications
Technology (CAICT), this paper divided the national economy into the basic industries
of the digital economy and the convergent industries of the digital economy. Combining
the selection of the digital economy’s basic industries by BEA [85], this paper specified six
industries for the basic industries of the digital economy by the GB/T 4754-2017 standard:
computer, communication, and other electronic equipment manufacturing industries (39)
(the numbers represent the industry division codes in Table A1 of Appendix A); telecom-
munications, broadcasting, television, and satellite transmission services (63); internet and
related services (64); software and information technology services industry (65); and radio,
television, film, and video production industry (87). The convergent industries of the digital
economy were the industries other than the basic industries.

According to whether each industry belonged to the basic industries of the digital
economy or the convergent industries of the digital economy, this paper divided the
acquisition methods of the digital economy’s value added into two types. The value added
of the nondigital economy in that industry was the total value added of the industry minus
the value added of the digital economy in that industry. The first method of acquiring the
value added to the digital economy of the industry is to use the scale of the national digital
economy’s basic part as the control total. According to the industry’s digital economy scale
distribution structure under the BEA framework, the value added to the digital economy is
allocated. The scale of the national digital economy’s basic part can be directly or indirectly
obtained from the relevant data released by the CAICT. The accounting of the industry’s
digital economy scale under the BEA framework refers to the accounting framework of
the BEA. The second method of acquiring the value added to the digital economy of the
industry is to use the scale of the national convergent part of the digital economy as the
control total. Based on the distribution structure of information and communications
technology (ICT) capital services, the value added to the digital economy of the industry
is allocated. The scale data of the national convergent part of the digital economy can
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be directly or indirectly obtained from the relevant data released by the CAICT. The ICT
capital service value added of the industry is calculated by multiplying the industry value
added by the proportion of the ICT capital service to the total capital service. The value
of industry value added is provided by the 97 industries input–output table. According
to Wang an Wang [86], the proportion of ICT capital services in the total capital services
was calculated.

3.4. Measurement of Industry Carbon Emissions

The industry carbon emissions data in this paper were from the Carbon Emission
Accounts and Datasets (CEADs) in China [87–89], which provides carbon emissions data
categorized by industry in the National Industry Classification (GB/T 4754-2011) [90] standard,
with 47 industries. To unify the data of industry value added to the digital economy, this
paper adjusted the industry carbon emission data to the 97 industry classifications in the
National Industry Classification (GB/T 4754-2017) standard.

3.5. Indicator Construction
3.5.1. Digital Economy Labor Productivity

This paper constructed the digital economy labor productivity (DP) to measure the
amount of value added to the digital economy (DV) produced by each employed labor
(L). The higher the DP, the more DV each employed labor produces and vice versa. The
expression of DP is shown as Equation (7):

Digital Economy Labor Productivity =
Value− added to the Digital Economy

Labor
=

DV
L

(7)

3.5.2. Induced Rate of Digital Economy Carbon Emissions

This paper built the induced rate of digital economy carbon emissions (IR), which
refers to the carbon emissions (CE) induced by one unit of DV in the Ghosh model. The
IR represents the carbon emissions induced by one unit of DV in downstream production
processes. The higher the IR, the greater the carbon emissions induced by the input of the
digital economy, and the weaker the carbon reduction ability of the digital economy.

The expression of IR is shown as Equation (8):

Indeced Rate of Digital Economy Carbon Emission
=

Carbon Emissions Induced by Value − added to the Digital Economy
Value − added to the Digital Economy

= CE
DV

(8)

4. Results
4.1. Value Added to the Digital Economy in Different Industries
4.1.1. National Value Added to the Digital Economy

In this chapter, the scale of the digital economy from 1997 to 2018, and its proportion of
GDP, were calculated using data from the CAICT on the proportion of the digital economy
to GDP and the GDP data released by the National Bureau of Statistics (Table 1). The
proportions of the digital economy’s basic and integrated parts to the total scale of the
digital economy were also calculated.

From 1997 to 2018, China’s overall digital economy scale, basic part scale, and in-
tegrated part scale showed a rapidly increasing trend, with the integrated part’s annual
growth rate being higher than the basic part. From 1997 to 2018, China’s digital economy
scale increased rapidly from CNY 51.4 billion to CNY 16,983.3 billion, with an average
annual growth rate of 31.8%, and its proportion to GDP increased from 0.6% to 34.8%. In
21 years, the basic part of the digital economy increased from CNY 25.3 billion to CNY
3481.6 billion, at an average annual growth rate of 26.4%; the integrated part of the digital
economy increased from CNY 26.1 billion to CNY 13,501.8 billion, at an average annual
growth rate of 34.7%. The proportion of the basic part to the total scale of the digital
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economy showed an upward trend from 49.2% in 1997 to 50.9% in 2005, then decreased to
20.5% in 2018. The proportion of the integrated part to the total scale of the digital economy
showed the opposite trend.

Table 1. The scale and structure of China’s digital economy from 1997 to 2018 (1997 = 100) (1997 = 100
indicates that the price index was based on 1997).

Year
Basic Part

Scale (Billion
CNY)

Proportion of
the Basic Part in

the Digital
Economy (%)

Integrated Part
Scale (Billion

CNY)

Proportion of the
Integrated Part in

the Digital
Economy (%)

Digital
Economy Scale
(Billion CNY)

Proportion of the
Digital Economy

of GDP (%)

1997 25.3 49.2 26.1 50.8 51.4 0.6
1998 47.7 49.4 48.8 50.6 96.4 1.1
1999 89.8 49.7 91.0 50.3 180.8 2.0
2000 170.3 49.9 171.2 50.1 341.4 3.4
2001 322.3 50.1 321.3 49.9 643.6 5.9
2002 614.6 50.3 607.4 49.7 1222.1 10.3
2003 738.3 50.5 723.4 49.5 1461.7 11.2
2004 889.2 50.7 863.9 49.3 1753.1 12.2
2005 1157.9 50.9 1115.2 49.1 2273.1 14.2
2006 1251.2 47.8 1364.7 52.2 2615.9 14.5
2007 1360.2 44.9 1668.4 55.1 3028.5 14.7
2008 1448.7 42.2 1986.6 57.8 3435.3 15.2
2009 1706.4 38.1 2768.9 61.9 4475.2 18.1
2010 1810.0 34.5 3440.4 65.5 5250.4 19.2
2011 1896.4 31.2 4187.7 68.8 6084.1 20.3
2012 2070.0 29.4 4979.9 70.6 7049.9 21.8
2013 2285.2 27.7 5976.9 72.3 8262.1 23.7
2014 2546.1 26.1 7226.0 73.9 9772.1 26.1
2015 2831.4 25.7 8185.6 74.3 11,017.0 27.5
2016 2981.8 23.0 9982.4 77.0 12,964.2 30.3
2017 3400.8 22.6 11,647.1 77.4 15,047.9 32.9
2018 3481.6 20.5 13,501.8 79.5 16,983.3 34.8

4.1.2. Digital Economy Scale in Different Industries

This chapter distributed the basic and integrated digital economy components of
each year based on the scale distribution structure of the digital economy in various
industries under the BEA (Barefoot et al., 2018) accounting framework and the value-added
distribution structure of each industry’s ICT capital services. This resulted in a digital
economy scale for 20 industries from 1997 to 2018 (Because of space limitations, this paper
combined the data of 97 industry divisions into 20 industry sections, and only shows the
data of 20 industry sections) (Figure 1).

Looking at the absolute value of the digital economy scale, manufacturing (Manuf)
(limiting the space for images, we used the abbreviation instead of the full name of each
industry; the abbreviation is the first three or four letters of the full name. Abbreviations
and full names are presented in Table A1 of Appendix A) has remained at a high level,
reaching CNY 3168.2 billion in 2018, accounting for 18.7% of the total digital economy scale
that year. Other industries with large digital economy scales included construction (Const)
and financial intermediation (Finan), both of which had a scale of over CNY 2000 billion in
2018. Excluding international organizations (Inter), the industry with the smallest digital
economy scale was management of water conservancy, environment, and public facilities
(Manag), with a digital economy scale of CNY 2.2 billion in 2018, accounting for 0.01% of
the total digital economy scale that year.
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Looking at digital economy scale growth rates, the digital economy scale growth
rate of each industry was rapid, with the annual growth rate between 20% and 60% from
1997 to 2018. The national digital economy scale’s average annual growth rate was 31.8%,
with 14 of the 20 industries having an average annual growth rate above this level. The
industry with the fastest digital economy scale growth rate was the real estate industry
(RealE), with an average annual growth rate of 55.6%. Other industries experiencing
rapid growth in digital economy scale included international organization (Inter); public
management, social security, and social organization (Publi); and health and social services
(Healt), all with average annual growth rates above 50%. Industries with relatively slower
annual growth rates included leasing and business services (Leasi) and culture, sports, and
entertainment (Cultu), with annual growth rates below 25%.

4.2. Carbon Emissions Induced by the Digital Economy

With the help of the carbon emission extended Ghosh input–output model, this paper
calculated the carbon emissions induced by the digital economy in various industries
(referred to as DCE) from 1997 to 2018 (Figure 2) (because of space limitations, we placed
the carbon emissions induced by the digital economy of 97 industries in the Supplementary
Materials). Financial (Finan) and manufacturing (Manuf) have consistently maintained
high levels of DCE. In 2018, the DCE in the financial (Finan) and manufacturing (Manuf)
industries accounted for 32.9% and 20.7% of all industries’ digital carbon emissions, respec-
tively. Transport, storage, and post (Trans) was also relatively high, with DCE exceeding
300 million tons of CO2 in 2018, accounting for 11.8% of all industries. From 1990 to 2018,
the DCE in all industries maintained high-speed growth, with an average annual growth
rate of 40.2%. Among them, the real estate industry (RealE) had the fastest average annual
growth rate, reaching 64.5%.

The trends of DCE varied from industry to industry. The DCE of agriculture, forestry,
animal husbandry, and fishery (Agric) fell in 2010, probably because 2010 was a key year
for achieving the Eleventh Five-Year Plan’s energy conservation and emission reduction
goals, and agriculture, forestry, animal husbandry, and fishery (Agric), as a key industry
for carbon emissions, vigorously promoted digital transformation, eliminated poor general
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production capacity, actively promoted the development and promotion of energy-saving
technologies, and reduced the growth rate of DCE.
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The DCE of the second industry, mining (Minin) and production and supply of
electricity, heat, gas, and water (Produ) is increasing year by year. On the one hand, the
energy consumption of secondary industry is relatively high, and some enterprises have
insufficient motivation for energy conservation and emissions reduction or have been
unable to bear the cost of the surge in digital transformation for energy conservation
and emissions reduction [91]. On the other hand, because of China’s immature digital
transformation, it is difficult to transform traditional technologies into digital emissions
reduction technologies, and there are obstacles such as insufficient innovation and low
efficiency. The ability to achieve digital carbon emissions reduction needs to be further
improved [92].

The DCE of tertiary industry, represented by leasing and business services (Leasi),
scientific research and technical services (Scien); household services, repair, and other
services (House); and culture, sports, and entertainment (Cultu), showed a decreasing
trend from 2011 to 2015. This may have been because during the Twelfth Five-Year Plan
period, China vigorously developed the service industry and strategic emerging industries,
took energy conservation and emissions reduction as the starting point for transforming
the mode of economic development, and implemented a number of energy conservation
and emissions reduction measures, such as actively promoting residential electricity and
water ladder prices and implementing heat metering and charging; strengthening energy
conservation and emissions reductions in agricultural and rural, commercial and civil, and
public institutions; and encouraging financial institutions to provide credit support for
energy conservation, emissions reduction, and low-carbon projects.

Figure 3 displays the induced rate of digital economy carbon emissions (IR) for
20 industries using a heat map, where darker colors indicate a higher IR. The IR refers to
the amount of carbon emissions per unit of DV and can be used to analyze the reasons for
different DCE values in each industry.
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to 2018.

The IR for production and supply of electricity, heat, gas, and water (Produ) remains
high, followed by mining (Minin) and transport, storage, and post (Trans). In 2018, the
IR values for production and supply of electricity, heat, gas, and water (Produ); mining
(Minin); and transport, storage, and post (Trans) were 2552.3, 856.6, and 432.0 tons CO2 per
million CNY, respectively. The IR for the construction (Const), which had the lowest value,
was only 11.8 tons CO2 per million CNY. The three industries with high IR values were all of
the energy consumption type. Therefore, to achieve the goals of carbon peaking and carbon
neutrality, we must focus on the IR of energy consumption type industries. This could be
achieved through considering three aspects: First, clean energy using digital technologies,
such as big data, artificial intelligence, and cloud computing, should be developed, and it
should be applied to industry energy conservation and emissions reductions [93]. Second,
a mining environmental supply chain network using digital technologies, such as big
data and blockchain, should be designed, reducing carbon emissions throughout the
supply chain process [94]. Third, energy consumption structures should be adjusted by
formulating policies that encourage the use of clean energy. Research and development of
renewable energy power generation technology, energy storage technology, etc., should be
conducted to substantially increase the proportion of nonfossil energy use, and a new type
of renewable energy-based power system should be built as early as possible [95].

4.3. Driving Factors of Carbon Emission Changes

In this paper, the SDA method was used to decompose carbon emission changes into
four factors: digital economic labor productivity (DP), employment number, production
technology level, and carbon emission intensity (Figure 4). Among them, the product of
DP and employment number was the DV, and the industry level employment data in each
year were from Wang et al. [96].

The change in carbon emissions caused by DP was found to be basically positive;
the change in carbon emissions caused by employment number was negative after 2016;
the change in carbon emissions caused by the production technology level was basically
negative, and the change in carbon emissions caused by carbon emission intensity was
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basically negative after 2013. For the factor of DP, one of the important reasons for the
gradual improvement in carbon emissions was the introduction of a large amount of
automation equipment (i.e., industrial robots), which increased energy consumption and
pollutant emissions which, in turn, led to an increase in carbon emissions [97–99].
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For the factor of employment number, the commuting of employees [100,101], pro-
duction process [102,103], and consumption [104,105], among other links, produce carbon
emissions, but with the decline in employment in recent years, the rise of online offices, the
rise of paperless offices, etc., the change in carbon emissions caused by the employment
number has changed from positive to negative. For the factor of the production technology
level, the improvement in the production technology level can promote carbon emission
reductions while comprehensively improving productivity, indicating that China is per-
sistently promoting ecological priorities, conservation, and intensification and green and
low-carbon development. For the factor of carbon emission intensity, its impact on carbon
emission changes has been negative since 2013, indicating that carbon emissions caused by
the unit digital economy have begun to decrease. China has undertaken a series of measures
towards low-carbon development commitments, launched the 2010 China Information and
Communication Industry to Promote Low-Carbon Economic Development Summit Forum,
and announced the adoption of low-carbon development measures for the information and
communication industry.

From the above analysis, it is clear that DP is a major driver of carbon emissions.
Therefore, further analysis was conducted on the carbon emissions induced by DP in
different industries (Figure 5).

The carbon emissions induced by DP in manufacturing (Manuf) and financial interme-
diation (Finan) were found to be relatively high. In 2018, the carbon emissions induced by
DP in manufacturing (Manuf) and financial intermediation (Finan) were 152.2 and 91.8 mt,
accounting for 35.0% and 21.1% of all industries, respectively. The relatively high levels of
carbon emissions induced by DP in manufacturing (Manuf) were because of the substitu-
tion of human workers with machines [106,107]; an increasing amount of machinery and
equipment will lead to increasing energy consumption and pollutant emissions. For financial
intermediation (Finan), most of the carbon emissions induced by DP came from indirect
carbon emissions. Indirect carbon emissions from the financial intermediation (Finan) flow
from financial intermediation (Finan) to other industries through the industrial chain and



Sustainability 2023, 15, 12170 12 of 20

supply chain, such as investment and financing businesses [108], carbon market trading, and
carbon financial derivatives [109]. From 2014 to 2015, the carbon emissions induced by DP in
financial intermediation (Finan) were negative, which may have been because carbon finance
began to develop in 2014; 2015 was the first year of carbon finance, when several carbon
financial products involving asset management entered the market one after another. These
products can effectively help enterprises scientifically manage carbon assets and achieve
reasonable financing, leading to carbon emission reductions while improving DP.
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5. Conclusions

The 20th Communist Party of China National Congress Report highlighted the need
to actively and steadily promote carbon peaking and carbon neutrality. As a new engine
for high-quality development, digital transformation has brought about wide-ranging
economic and social changes and has become a crucial means of promoting low-carbon
transformation across all industries by balancing industrial and economic development
with carbon peaking and carbon neutrality. This paper calculated the induced effects
of China’s industry digital transformation on carbon emissions from 1997 to 2018 and
explored the driving factors behind carbon emissions.

This paper presents the following four findings. First, between 1997 and 2018, the
DV in manufacturing (Manuf), construction (Const), and financial intermediation (Finan)
remained at a high level, with the average annual growth rate of DV in all industries ranging
from 20% to 60%. Second, from 1997 to 2018, the trend in DCE in different industries varied.
Among them, the DCE of primary industry decreased in 2010, those from secondary
industry showed an increasing trend year by year, and those from tertiary industry showed
a decreasing trend from 2011 to 2015. Third, the induced rate of digital economy carbon
emissions (IR) for energy consumption industries was found to be relatively high, which
could be addressed by developing clean energy, designing environmentally friendly supply
chain networks, and adjusting energy consumption structures. Fourth, the decomposition
of carbon emission drivers showed that the digital economy labor productivity (DP) has
not yet shown a promoting effect on carbon emission reductions.

Based on the results of this paper, the following policy recommendations are proposed.
First, different carbon reduction policies and objectives should be formulated for different
types of industries. As can be seen from the above results, there were years when DCE
began to decline and the IR also varied among different types of industries. Therefore,
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it is crucial to issue relevant policies to achieve the goals of carbon peaking and carbon
neutrality quickly and effectively. Second, China should strengthen the construction of a
digital platform for ecological environment governance, unify data standards and technical
specifications across industries, break down technical barriers caused by monopolistic be-
havior of data platforms, and lay out a digital green technology ecosystem around existing
key core technologies. Third, we should build a green and low-carbon industrial chain and
supply chain. Under the “chain era”, all departments are closely interrelated; therefore,
carbon emission accounting standards, labeling systems, and traceability mechanisms
should be established along the industrial chain and supply chain, and a mechanism for
sharing responsibility for emission reductions between departments should be formed on
this basis to strengthen the coordinated emission reductions of multiple departments.

This study had some limitations. First, because of space constraints, we were unable to
display the complete charts for all 97 industry divisions in the main text. Second, because of
the availability of carbon emissions data, our research only covered the years 1997–2018. We
included the complete data for the DCE of all 97 industry divisions in the Supplementary
Materials and hope that future research will update the time span of the study.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/su151612170/s1, Table S1: Carbon emissions induced
by the digital economy of 97 industry divisions in China from 1997 to 2018 (mtCO2).
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Appendix A

Table A1. Industry sections and names of 97 industry divisions.

Code Abbr. Industry Section Code Industry Division

A Agric

Agriculture,
Forestry, Animal
Husbandry, and

Fishery

1 Agriculture
2 Forestry
3 Animal Husbandry
4 Fishery

5 Agricultural, Forestry, Animal Husbandry,
Fishery Specialized and Support Activities

B Minin Mining

6 Coal Mining, Washing Industry

7 Petroleum, and Natural Gas Extraction
Industry

8 Ferrous Metal Ore Mining and Dressing
Industry

9 Nonferrous Metal Ore Mining and Dressing
Industry

10 Nonmetal Mining and Dressing Industry
11 Mining Specialized and Support Activities
12 Other Mining Industries

https://www.mdpi.com/article/10.3390/su151612170/s1
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Table A1. Cont.

Code Abbr. Industry Section Code Industry Division

C Manuf Manufacturing

13 Agricultural and Sideline Food Processing
Industry

14 Food Manufacturing Industry

15 Wine, Beverage and Refined Tea
Manufacturing Industry

16 Tobacco Products Industry
17 Textile Industry
18 Textile, Clothing and Apparel Industry

19 Leather, Fur, Feather and Their Product, and
Shoe Manufacturing Industry

20 Wood Processing and Bamboo, Rattan, Palm,
Grass, and Straw Products Industry

21 Furniture Manufacturing Industry
22 Paper and Paper Products Industry

23 Printing and Recordable Media Reproduction
Industry

24 Cultural, Educational, and Sporting Goods
Manufacturing Industry

25 Petroleum, Coal, and Other Fuel Processing
Industry

26 Chemical Materials and Chemical Product
Manufacturing Industry

27 Pharmaceutical manufacturing
28 Chemical Fiber Manufacturing Industry
29 Rubber and Plastic Products Industry
30 Nonmetal Mineral Products Industry
31 Ferrous Metal Smelting and Pressing Industry

32 Nonferrous Metal Smelting and Pressing
Industry

33 Metal Product Industry
34 General Equipment Manufacturing Industry

35 Specialized Equipment Manufacturing
Industry

C Manuf Manufacturing

36 Automobile Manufacturing Industry

37
Railway, Shipbuilding, Aerospace, and Other
Transportation Equipment Manufacturing
Industry

38 Electrical Machinery and Equipment
Manufacturing Industry

39 Computer, Communication, and Other
Electronic Equipment Manufacturing Industry

40 Instrumentation Manufacturing Industry
41 Other Manufacturing Industries

42 Comprehensive Utilization of Waste Resources
Industry

43 Metal Product, Machinery, and Equipment
Repair Industry

D Produ

Production and
Supply of

Electricity, Heat,
Gas and Water

44 Electricity, Heat Production, and Supply
Industry

45 Gas Production and Supply Industry
46 Water Production and Supply Industry

E Const Construction

47 House Construction Industry
48 Civil Engineering Construction Industry
49 Construction Installation Industry

50 Building Decoration, Finishing, and Other
Building Industries



Sustainability 2023, 15, 12170 15 of 20

Table A1. Cont.

Code Abbr. Industry Section Code Industry Division

F Whole Wholesale and
Retail Trades

51 Wholesale Industry
52 Retail Industry

G Trans Transport, Storage,
and Post

53 Railway Transportation Industry
54 Road Transportation Industry
55 Water Transportation Industry
56 Aviation Transportation Industry
57 Pipeline Transportation Industry

58 Multimodal Transportation and
Transportation Agency Industry

59 Loading and Unloading, Handling, and
Storage Industry

60 Postal Industry

H Hotel
Hotels and

Catering Services
61 Accommodation Industry
62 Catering Industry

I Infor

Information
Transmission,
Software, and
Information
Technology

63 Telecommunications, Broadcasting, Television,
and Satellite Transmission Services

64 Internet and Related Services

65 Software and Information Technology Services
Industry

J Finan Financial
Intermediation

66 Currency and Financial Services
67 Capital Market Services
68 Insurance Industry
69 Other Financial Industries

K RealE Real Estate
Industry 70 Real Estate Industry

L Leasi Leasing and
Business Services

71 Leasing Industry
72 Business Service Industry

M Scien
Scientific Research

and Technical
Services

73 Research and Experimental Development
74 Professional Technical Services

75 Science and Technology Promotion and
Application Services

N Manag

Management of
Water

Conservancy,
Environment and
Public Facilities

76 Water Conservancy Management Industry

77 Ecological Protection and Environmental
Governance Industry

78 Public Facility Management Industry
79 Land Management Industry

O House
Household

Services, Repair
and Other Services

80 Residential Service Industry

81 Motor Vehicle, Electronic Product, and Daily
Product Repair Industry

82 Other Services Industry

P Educa Education 83 Education

Q Healt Health and Social
Service

84 Healthcare
85 Social Assistance

R Cultu Culture, Sports,
and Entertainment

86 News and Publishing Industry

87 Radio, Television, Film, and Video Production
Industry

88 Culture and Art Industry
89 Sports Industry
90 Entertainment Industry
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Table A1. Cont.

Code Abbr. Industry Section Code Industry Division

S Publi

Public
Management,

Social Security,
and Social

Organization

91 Organs of the Communist Party of China
92 National Institutions

93 People’s Political Consultative Conference and
Democratic Parties

94 Social Security

95 Mass Organizations, Social Organizations, and
Other Member Organizations

96 Grassroots Mass Self-Government
Organizations and Other Organizations

T Inter International
Organization 97 International Organizations
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