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Abstract: Traffic flow monitoring plays a crucial role in Intelligent Transportation Systems (ITS)
by dealing with real-time data on traffic situations and allowing effectual traffic management and
optimization. A typical approach used for traffic flow monitoring frequently depends on collection
and analysis of the data through a manual process that is not only resource-intensive, but also a
time-consuming process. Recently, Artificial Intelligence (AI) approaches like ensemble learning
demonstrate promising outcomes in numerous ITS applications. With this stimulus, the current study
proposes an Improved Artificial Rabbits Optimization with Ensemble Learning-based Traffic Flow
Monitoring System (IAROEL-TEMS) for ITS. The primary intention of the proposed IAROEL-TFMS
technique is to employ the feature subset selection process with optimal ensemble learning so as to
predict the traffic flow. In order to accomplish this, the IAROEL-TFMS technique initially designs
the IARO-based feature selection approach to elect a set of features. In addition, the traffic flow
is predicted using the ensemble model that comprises a Gated Recurrent Unit (GRU), Long Short-
term Memory (LSTM), and Bidirectional Gated Recurrent Unit (BiGRU). Finally, the Grasshopper
Optimization Algorithm (GOA) is applied for the adjustment of the optimum hyperparameters of
all three DL models. In order to highlight the improved prediction results of the proposed IAROEL-
TFMS algorithm, an extensive range of simulations was conducted. The simulation outcomes imply
the supremacy of the IAROEL-TFMS methodology over other existing approaches with a minimum
RMSE of 16.4539.

Keywords: Intelligent Transportation System; traffic flow; prediction models; deep learning; artificial
rabbits optimizer

1. Introduction

A transportation system is a massive and sophisticated system that is strongly asso-
ciated with the day-to-day life activities of human beings. Intelligent Transport Systems
(ITSs) play a significant part in leading the future approaches for transportation [1]. The
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area of research on ITSs is large and a developing one while its connotations are regularly
modernized via the consolidated and advanced fields like computer technologies, informa-
tion science, and advanced transportation theories. ITSs are intelligent systems that deploy
innovative technologies for modeling transportation systems and the regulation of traffic
flow. Thus, it offers the end users with huge information and protection, in addition to
the qualitative improvement of the interaction levels between the transport users, unlike
the traditional transportation systems [2]. The ITSs comprise the entire transportation
services of the cities containing ambulances, fire departments, traffic police, and so on [3].
The most vital mechanisms behind these systems involve two digital entities such as the
application of mathematical modeling approaches for analyzing the transport network and
the development of proposals to resolve the transportation issues such as pedestrian flows
and optimization of traffic, traffic management, public transport, investment justification
in the construction of transport infrastructure and the optimization of traffic lights [4].
Integrating the technologies with ITSs for strategic transportation planning results in the
proficient usage of the current transportation infrastructures and select the correct path for
its advancement in the future [5].

The reliance on traffic flows depends upon real-time traffic information along with the
recorded data collected from various types of sensor sources such as cameras, radars, in-
ductive loops, mobile Global Positioning Systems (GPS), social sites, and crowdsourcing [6].
Traffic data is exploding on a day-to-day basis since a huge volume of data gets generated
in conventional sensors and recent technologies [7]. In recent years, transportation con-
trol and management has become a data-driven domain. Though numerous traffic flow
prediction models and systems were used earlier, most of the models were shallow traffic
models and failed even in the case of a large number of dimensional datasets. Traffic Flow
Prediction (TFP) is categorized into long-term TFP, medium-term TFP, and short-term TFP
based on time [8]. Both medium-term and long-term prediction measures are commonly
based on years, months, weeks, and days. Because of the larger time, the data stabilities
are comparatively effective and so it can be generally utilized for prediction. However, the
short-term TFP is usually done at a time range of 5-15 min. Owing to this short time, the
data stability is comparatively insufficient while the data is highly-sophisticated and the
random variation is enormous. This scenario increases the complexity of the prediction
works [9]. In this background, it is challenging to attain highly accurate performance in
real-time traffic data detection due to the increased complexity of traffic situations and
the development of highly accurate short-term TFP [10]. As an alternative, deep learning
(DL) methods engage several researchers and manufacturers, because of their capability to
manage the motion models’ classification complexity, understand the natural languages,
reduce the dimensionality, and detect the objects. The DL techniques utilize multiple layers
of neural network approaches in order to gain the essential characteristics from low to
higher levels of information. Thus, it can recognize huge volumes of structures in the
datasets, which ultimately support imagining and creating purposeful interpretations from
the information.

The current study presents an Improved Artificial Rabbit Optimization with an En-
semble Learning-based Traffic Flow Monitoring System (IAROEL-TEMS) for the ITSs. The
ITAROEL-TEMS technique initially designs the IARO-based feature selection approach to
elect a set of features. In addition, the TFP process is executed using an ensemble model,
comprising a Gated Recurrent Unit (GRU), Long Short-term Memory (LSTM), and Bidirec-
tional Gated Recurrent Unit (BiGRU). Finally, the Grasshopper Optimization Algorithm
(GOA) is applied for optimum hyperparameter adjustment of all three DL models. In order
to highlight the improved prediction outcomes of the IAROEL-TFMS system, an extensive
range of simulations was conducted and the outcomes were evaluated.

2. Related Works

Djenouri et al. [11] developed a jointed graph optimizer and a predictor in a single
pipeline, based on the convolution graph-based NN approach, in order to predict the
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urban traffic flow in edge IoT environments. First, preprocessing was executed to get rid
of the noise from the sequence of original road network data collected from urban traffic.
Then, the outlier detection technique was implemented to effectively remove the noise
and other irrelevant patterns after which the road network data was explored further. The
new optimization method was designed for fine-tuning the hyperparameter values of the
given framework. Han and Huang [12] introduced a short-term TFP method based on
the DL approach. At first, road network data compression was introduced based on CX
decomposition and correlation study methods. Next, the traffic flow data was randomly
split into fluctuation terms and trend terms with the help of the spectral decomposition
technique. Then, the impact of the trend term on traffic prediction was removed. The
authors in [13] devised a logistic agent-based technique to analyze the data from public
transportation like trains, cars, and buses. This intelligent logistic design was constructed
on a parallel NN model called Swarm-NN (SWNN). This technique recognizes public
transportation and analyzes the sensory data.

Qi et al. [14] presented a DL architecture based on Federated learning and Asyn-
chronous GCN for accurate prediction of traffic flow on a real-time basis. The presented
technique exploits the asynchronous spatial-temporal GCN to design the spatial-temporal
dependency upon traffic data. Cheng et al. [15] proposed a short-term TFP method. Many
common DL algorithms and other shallow prediction methods were considered to compare
with the proposed method. The results demonstrate that the outcome of the proposed
model was higher than the rest of the techniques in predicting short-term TFP. Next, the
multi-feature speed prediction for the spatial location was carried out using the CNN-LSTM
module. Chan et al. [16] aimed at overcoming the problems in traffic flow prediction by
proposing three strategies: (i) a missing data handling system using a weighted historical
information system called Weighted Missing Data Imputation (WEMDI); (ii) simulation
of the live traffic models; and (iii) pheromone-based NN for traffic prediction along with
rerouting method. The authors in [17] developed a cloud-vehicle-road framework that de-
scribes the exact message content along with message generation and broadcast processes.
In this framework, the binary classifier technique was employed to evaluate the uploaded
traffic-related message so as to enhance the performance. Ma et al. [18] developed a hybrid
spatial-temporal FS approach (STFSA) involving the CNN-GRU technique. Firstly, the
STFSA approach was followed to reconstruct the spatiotemporal matrices of traffic speed
based on spatial and temporal features. Next, the non-linear fitting capability of the CNN
was used for the extraction of deep features in both pooling and convolutional layers for
the training models.

Neelakandan et al. [19] developed an Optimum-stacked Sparse Auto-encoder-based
TFP (OSSAE-TFP) approach for the ITS. The purpose of the OSSAE-TFP approach was
to define the traffic flow level in the ITS. Furthermore, the SSAE-based forecast method
was planned for TFP whereas better hyperparameters of the SSAE approach were altered
with the deployment of Water Wave Optimizer (WWO). Liang et al. [20] presented a
spatio—temporal multi-GCN (STMGCN)-based vessel TFP approach by utilizing various
kinds of inherent correlations in the created maritime graph. Xia et al. [21] examined a
short-term TFP approach that integrates community detection-based federated learning
and GCN in order to overcome the issues like time-consuming training methods, superior
communication costs, and data privacy threats faced by global GCNs, since the volume of
data increases on a daily basis. The federated community GCN (FCGCN) accomplished
accurate, timely, and safe traffic forecasts based on big traffic data, which was vital for the
effectual functioning of ITS.

In [22], a Deep Hybrid Attention (DHA) technique comprising both traffic and weather
blocks was developed. The traffic block contained the Convolutional Neural Network
(CNN) and the Gated Recurrent Unit (GRU) neural network in order to capture the
spatio—temporal rules of traffic flow data. Next, the weather block made use of the Convo-
lutional Long Short-term Memory (ConvLSTM) model to derive the relationship between
weather and traffic flow data. In this model, a self-attention mechanism was integrated
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between the blocks. In [23], the authors developed a cloud-assisted ITS and traffic control
system. The cloud server executes the traffic data and controls the efficiency of the signals.
In addition to these, the alerts are notified to the closer control room at the time of traffic
congestion. In [24], the authors proposed a deep encoder-decoder predictive model based
on variational Bayesian inference. The Bayesian neural network was developed by inte-
grating variational inference with GRU. Moreover, the variational inference was applied to
the multi-head attention mechanism in order to eliminate noise-induced deterioration of
the predictive results. In [25], an effective model named RPConvformer was presented in
which the enhanced components include 1D causal convolutional sequence embedding
and relative position encoding.

3. The Proposed Model

In the current research work, the authors have designed a novel IAROEL-TFMS
methodology for traffic flow monitoring. The major aim of the proposed IAROEL-TFMS
technique is to employ the feature subset selection process with optimal ensemble learning
in order to forecast the traffic flow. To accomplish this, the IAROEL-TFMS technique com-
prises three stages of operations, namely, IARO-based feature subset selection, ensemble
classification, and GOA-based hyperparameter tuning. Figure 1 depicts the workflow of
the proposed IAROEL-TFMS method.

Feature Selection Process
using
Improved Artificial Rabbits Optimization Algorithm
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Figure 1. Workflow of the IAROEL-TFMS algorithm.

3.1. Feature Selection using IARO Algorithm

For optimal selection of the features, the IARO algorithm is employed. The ARO tech-
nique [26] is presented based on the survival strategies followed by the rabbits. It involves
three search strategies such as the detour foraging strategy, random hiding strategy, and
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energy shrink strategy. The detour foraging strategy involves the exploration; the random
hiding strategy is dedicated to exploitation; and the energy shrink strategy enhances the
balance between the exploration and exploitation phases.

Consider that all the rabbits in the population have their territory, whereas every
region has d burrows and edible grass and the individual rabbit often visits the foraging
area in an arbitrary fashion. The mathematical modeling of the detour foraging strategy is
given herewith.

vi(z+1) = xj(z) + R-(x;(z) — xj(z)) + round(0.5-(0.05 + r1))-ny,

1
i=1, -, i @
R=L-C )
L= (e—e(zzl)z)sin(Zm’z) (©)]
1ifk=g(l -1
C(k)={ 0 Zse s k_1,... dandi=1, ..., {7322 d-‘ 4)
g = randperm (d) (5)
n1 ~ N(0,1). (6)

Let vj(z + 1) be the candidate place of the ith-rabbit at z+1 time and c indicates the
mapping vector. 11, r2, and r3 are three random numbers between (0, 1). x;(z) indicates the
location of the ith rabbit at ¢ time, n demonstrates the number of rabbits, d represents the
dimension, Z refers to the maximal iteration counts and [-| denotes the ceiling function. L
shows the step size while 111 represents the uniform distribution. A rabbit arbitrarily selects
a burrow to hide in order to reduce the probability of getting hunted. The ith rabbit stays
in the ith burrow which is mathematically expressed as follows.

bij(z) = xj(z) + Hg - xj(z),i=1,---,nandj=1, --- ,d (7)
Z—-z+1
H:7Z *Tg (8)
np ~ N(0,1) )
_f Vifk=j, .
g(k) = { A TR (10)

In order to simulate these arbitrary hiding behaviors of the rabbits, the following
mathematical equation is applied

vi(z+1) =xi(z) + R (r4 - bj,(z) —xi(2)),i=1,--- ,n (11)
gr(k)Z{(1)2;512_“5'01W k=1,---d (12)
bi(z) = xi(z) + H- g - xi(2). (13)

Here, b; , denotes a randomly chosen burrow from the d set of burrows. 74 and 5 indicate
two random integers within [0, 1]. Based on Equation (11), the ith rabbit arbitrarily chooses
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a burrow from the d set of burrows to update the location. The location of the ith rabbit is
updated, once the random hiding process and detour foraging strategy are completed.

ey = [FE) SR < f 1) )
| v(z+1) f(x6() > folz+ 1)

An energy factor should be considered for stimulating the changeover from explo-
ration to exploitation in the iteration, as given below.

z\, 1
A(z) _4(1— Z)ln;. (15)

The behavior of A over 1000 iterations. Once the energy feature A(z) > 1, then the
detour foraging process takes place. Afterward, the rabbit tends to arbitrarily explore
the area for forage during the exploration stage. When the energy aspect A(z) < 1, then
random hiding of the rabbit occurs. Afterward, the rabbit tends to arbitrarily exploit its
burrows during the exploitation stage.

The ARO technique has a few benefits such as strong optimization performance, a
simple process, and only a few parameters to be set. Further, it also contains points that can
be enhanced including local optima avoidance, an increase in the convergence accuracy,
and convergence speed. Since the population is comparatively dispersed, a large weighted
value is allocated to speed up the global search capability of the model during the earlier
phase of the iteration, using dynamic inertial weight. At the final stages, the module
may vary the weight size values based on the distribution of individuals in the existing
population. This is executed in such a manner that it can accelerate the convergence speed
and finely search around the optimum solution. The current study presents an approach
for improving the ARO techniques such as ARO with adaptive weight (IARO) based on
the development of WOA.

Inertia weight is a crucial parameter in enhancing the ARO technique. The suitable
weighted value can enhance the optimization capability of the model. Thus, the study
presents a technique to change the weight value based on the population distribution as
given below:

w=ay - (Pgumt — Pgest) + az—2 : (x?naxj - x:nin j) (16)
Tsxj:]‘ré}iﬁ}xz i=1,---,n (17)

x;naxj = jrerhi’r;]xf.'i =1,---,n (18)

a; = cos(0.5TT - 7) (19)

a,=1—ay. (20)

Here, t denotes the number of iterations of the existing population. Pjo.s; and Pipeg;
correspond to the location vectors of the worst and optimum rabbits in the existing popula-
tion. The significant difference between the weighted and the presented inertia weighted
is that this technique exploits the data of the existing population to update the upper and
lower bounds so as to adaptively alter the searching space. Furthermore, this technique
exploits two arbitrary coefficients to compromise the maximal individual distance and
distance from all the dimensions. The adaptive change for the weight of the existing rabbit,
from the arbitrary hidden upgrade location, is given herewith.

vi(z+1) =w-x;(z) + R- (14 b (2) — xi(2)). (21)
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Based on the distribution of the existing population, the model can change the weight
size, after presenting adaptive adjustment weighted strategies. At the beginning of the
iteration, when the population falls as the local optimum, there exists a slight variance

) b
best
unaffected by population distribution. This term might develop a large weight value of w,
in order to prevent getting trapped as a smaller searching range at the early stage of the
] j
ljbest
increased number of iterations and t. Further, its impact on the weight w also decreases.

between the optimum and the worst solution. The value of a; - (P?]mrst -

) remains

iteration. The value of a; - (P?]mm —

) slowly develops into a smaller value with an

The design of a5 - (x;."ax] - x?un J ) /z plays a major role in weight value w, if the algorithm
does not achieve the optimum solution, it makes the model search with a large step size.
The benefit of IARO can be defined in two parts.

Equation (13) is used to assess the quality of the received solution using the proposed
IARO approach [27].

w = aError(P) + ,B|j|| (22)

In Equation (22), P represents the group z of the inputs to the method. The importance
of the features, selected from the population, is reflected by the value of € [0,1], 3 =1 — a.
The number of features selected and described as |S| are lower than the overall number of
features present in the data and are represented as |A|. The optimum method is the one
that exploits the smallest feature to make an accurate classification.

3.2. Ensemble Learning Process

In order to predict the traffic flow, the ensemble learning process is involved and it
contains GRU, BiGRU, and the LSTM models. The LSTM model is commonly utilized to
overcome vanishing gradient problems [28]. Input, forget, and output gates are utilized for
deciding the amount of data to be maintained from the new input and historical memory.

fi = tanh (Wf”‘x(t) Wi bﬁ) (23)
it = U(Wi"x(t) Wity 4 bi) (24)
£ = U(Wf"x(t) + W=D 4 bf) (25)
o) = (T(W""x(t) + WOl (t=1) 4 bo) (26)
O — il 451 g £ @7)

h") = tanh (s(t)) @0, (28)

Here, t refers to time step ¢, i, f and 0 denotes the input, forget, and output gates
correspondingly. ® indicates element-wise multiplication. b represents the bias and W
denotes the weighted matrix. x, i, s, and h show the input, short-term memory, long-term
memory, and the output, correspondingly. The instinct of the term ‘LSTM’ is that the
presented model exploits both short- and long-term memory vectors for encoding the
in-sequence data. Further, it also exploits the gate processes to control the data flow. The
outcome of the LSTM method is remarkable because it achieves better outcomes in NLP
tasks as a backbone.

The GRU method is stimulated by the gating mechanism that is modeled by the
following equations.

20 = o (Wil 4wk 11, (29)
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rt) = U(Wrx(t) +unt 4 br> (30)
h = tanh (th“) +u” (r(t) ® h(H)) + bh) (31)
i = (1-20) o rltD 20 o h, (32)

In these expressions, z and r represent the update and reset gates correspondingly.
t denotes the time step, ® shows the element-wise multiplication. x, /1, and  indicate
the input, candidate activation vector, and output, correspondingly. W and U are weight
matrices while b shows the bias.

GRU and LSTM, the two variants of gating mechanisms, are similar to one another.
However, unlike LSTM, the GRU mechanism does not individually gate the count of
novel memory content being added. On the other hand, the GRU mechanism has lesser
parameters that result in better generalization ability and fast convergence. Further, GRU
has the ability to accomplish the best performance within a small dataset. BiIGRU has two
types of hidden layers: the former encoded data in the previous time step, whereas the
latter encoder data in the flipped direction.

) = g(whxxm £ W (=1 bh) (33)
) = U(szx(t) + Wz (1) 4 bz) (34)
7 = softmax (Wyhh(t) + Wyzz() by)- (35)

Here, h and z denote the hidden layers.

3.3. Hyperparameter Tuning

In the current research work, the GOA adjusts the hyperparameter values of the
DL models. GOA is a bio-inspired optimization algorithm that simulates the swarming
performance of grasshoppers in nature [29]. It drives by simulating the interaction and
the movement of grasshoppers from a population to search for better performance. In
this method, all the grasshoppers signify a great solution to the optimization issue. The
positions of the grasshoppers, in the searching space, always get upgraded based on
their fitness values and the stimulus of nearby grasshoppers. This combined movement
encourages the exploration of the searching space and this method dynamically adjusts to
determine the better regions with optimal fitness values.

The mathematical model of the grasshopper tends to procedure the swarms, with
the location of the grasshopper in the swarm, demonstrating a possible solution. X;,
the location of the ith grasshopper is formulated by Equation (36) as a function of wind
advection (A;), social interaction (S;), and gravity force (G;).

X =S5 +G;+ A;. (36)
After ignoring the gravity element and the wind direction near the goal, the formula

is changed to optimizer of the N grasshoppers and is formulated as given below.

N

d ubg—1bg (| 4 4
Xi=c 2#5(‘3@'_%

Xj — X ~
)|+ T (37)
g

j=1
#i
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Here, f represents the intensity of attraction, d;; denotes the distance between ith and jth
grasshoppers, s; indicates the strength of social forces, and I shows the attractive range scale.

dij = |d; — dj (38)

s(r) = feT —e™". (39)

The modification of I and f makes it feasible to model the social behaviors of the
grasshopper by modifying a set of features such as the repulsion, comfort, and attraction
zones of the swarm. The s function returns the value closer to 0 for a distance more than
10 and the distance is mapped towards the interval. ub; and ib; indicate the upper and
lower boundaries at the dth dimension s(r) = feT — e~". T, represents the value of the
dth dimension from the goal. The c parameter is the minimizing coefficient to shrink the
attraction, comfort, and repulsion zones. The ¢ parameter minimizes the comfort zone
with all the iterations, where cmax and cmin represent the maximal and minimal values
correspondingly, I shows the current value and L denotes the maximal number of iterations:

¢ = cmax — SR ¢TI (40)
L
Therefore, the grasshopper is initialized at random locations. At last, the grasshopper
reaches the stop-moving and comfort zones. The next position of the grasshoppers is a
function of its existing position, target location, and the location of other grasshoppers from
the swarm.
In this case, the GOA is utilized to find the hyperparameters present in the MABLSTM
approach. The MSE is assumed as the main function and is determined as follows.

TS 02
MSE = T];;(yjdj) . (41)

Here, M and L signify the outcome values of the layer and data correspondingly, y§
and d; imply the accomplished and suitable values to the jth unit in the outcome layer of
the network at time ¢, correspondingly.

4. Results and Discussion

In this section, the TFP results of the IAROEL-TFMS model are discussed in detail. The
proposed model was validated using the traffic data containing all 30 s raw sensor data for
30 days. The traffic data, collected during the first 10 days, was used as a training dataset the
dataset containing the data for the remaining 20 days was utilized as a testing dataset. In this
experiment, the data groups consist of 15 min of aggregated data in vehicles per 15 min (veh
per 15 min). Thereby, 96 data groups are available for each day. Before the calculation, the
data groups were normalized and the data was rendered in the range of 0 to 1.

Table 1 and Figure 2 highlight the comparative analysis results achieved by the pro-
posed IAROEL-TFMS approach in terms of MAPE. The simulation results highlight the
effectual prediction performance of the IAROEL-TEMS model. It can also be stated that the
proposed IAROEL-TEMS model achieved low MAPE values under several iterations.

Table 2 and Figure 3 exhibit the TFP outcomes of the IAROEL-TFMS approach over
varying time indices. The experimental outcomes infer the maximum performance of the
IAROEL-TEMS approach under all the time indices. For instance, with a 10-time index and
an actual value of 136, the proposed IAROEL-TFMS model obtained the prediction values
such as 129, 129, 117, 87, and 81 underruns 1-5, respectively. Simultaneously, with a 20-time
index and an actual value of 882, the IAROEL-TFMS approach attained the prediction
values such as 892, 859, 861, 923, and 917 underruns 1-5, respectively. At the same time,
with a 70-time index and an actual value of 853, the IAROEL-TFMS system attained the
prediction values such as 865, 826, 826, 879, and 886 underruns 1-5, correspondingly. Finally,
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with a 100-time index and an actual value of 136, the IAROEL-TEMS algorithm obtained
the prediction values such as 609, 629, 594, 604, and 557 underruns 1-5, correspondingly.

In Table 3, the comprehensive prediction analysis results achieved by the proposed
IAROEL-TFMS method and the existing approaches are listed [30,31]. Figure 4 shows the
RMSE results of the IAROEL-TFMS method and the existing approaches. The figure infers
the superior results of the IAROEL-TFMS model with minimal RMSE values. On Lag
1, the JAROEL-TFMS model accomplished a low RMSE of 20.5057, whereas the existing
Ga+SVM, PSO+LSSVM, FFO+LSSVM, HYBRID+LSSVM, and AST2FP+OHDBN techniques
achieved high RMSE values such as 42.6758, 39.5084, 38.0203, 32.7534, and 26.9257, cor-
respondingly. Moreover, on Lag 3, the IAROEL-TFMS system obtained the least RMSE
of 16.4539, while the existing Ga+SVM, PSO+LSSVM, FFO+LSSVM, HYBRID+LSSVM,
and AST2FP+OHDBN approaches accomplished the highest RMSE values such as 51.706,
47.4003, 45.2506, 22.8315, and 16.5139, respectively. Finally, on Lag 5, the IAROEL-TFMS
algorithm realized the least RMSE of 17.8412 while the existing Ga+SVM, PSO+LSSVM,
FFO+LSSVM, HYBRID+LSSVM, and AST2FP+OHDBN approaches producing high RMSE
values such as 58.9394, 55.5521, 53.4518, 28.7079, and 23.4312, correspondingly.

Table 1. MAPE outcomes of the IAROEL-TFMS algorithm under various iterations.

MAPE (%)
No. of Iterations Best Fitness Average Fitness Worst Fitness
0 1.36 4.84 7.34
10 0.56 2.57 6.88
20 0.18 0.71 441
30 0.36 0.77 4.08
40 0.40 1.16 4.39
50 0.22 0.93 3.76
60 0.30 0.42 3.27
70 0.20 1.06 3.05
80 0.28 0.85 2.55
90 0.13 0.16 2.66
100 0.11 0.80 2.48
9
—o- Best Fitness Worst Fitness
8 -9~ Average Fitness
7 4
6
3
E 5]
s N
< 4qY
= \
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Figure 2. MAPE analysis outcomes of the IAROEL-TEMS approach under various iterations.

No. of Iterations
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Table 2. TFP outcomes of the IAROEL-TEMS approach under varying time indices.

Traffic Flow
Time Index Actual Predicted
Runl Run2 Run3 Run4 Run5
0 188 227 232 242 235 258
10 136 129 129 117 87 81
20 882 892 859 861 923 917
30 958 965 977 977 922 936
40 722 697 657 649 653 619
50 765 801 828 797 799 783
60 955 972 989 1000 987 949
70 853 865 826 826 879 886
80 967 1015 1034 1025 1006 1045
90 1036 1033 1039 1012 960 951
100 609 629 594 604 557 545

Table 3. Comparative outcomes of the IAROEL-TFMS system and other methods.

No. of GA- PSO- FFO- Hybrid- AST2FP- IAROEL-
Lags LSSVM LSSVM LSSVM LSSVM OHDBN TFMS
Root-Mean-Square Error
Lag=1 42.6758 39.5084 38.0203 32.7534 26.9257 20.5057
Lag=2 46.9715 42.8572 41.0955 29.5013 23.6656 17.8856
Lag=3 51.706 47.4003 45.2506 22.8315 16.5139 16.4539
Lag =4 55.3336 51.0474 49.1178 279114 22.7806 22.6906
Lag=5 58.9394 55.5521 53.4518 28.7079 23.4312 17.8412
Mean Absolute Error
Lag=1 32.3363 247114 22.3607 21.8427 15.477 14.477
Lag=2 39.6895 32.0517 25.241 19.2498 12.3658 11.7658
Lag=3 45.2973 39.4341 31.6977 23.5686 17.8232 16.1232
Lag =4 51.9591 47.1757 37.1099 27.4439 20.5398 21.6398
Lag=5 57.1088 52.4225 44.582 24.4347 19.7508 18.1508
Equal Coefficient
Lag=1 95.57 95.69 95.79 97.92 98.35 99.09
Lag=2 95.37 95.55 95.74 97.88 98.49 98.95
Lag=3 95.13 95.31 95.43 98.54 98.77 99.05
Lag =4 94.93 95.13 95.26 98.39 98.63 99.15

Lag=5 94.77 94.89 95.07 97.24 98.61 99.29
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Figure 3. TFP outcomes of the IAROEL-TFMS system: (a) Run1, (b) Run2, (c) Run3, (d) Run4, and (e) Runb.
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Figure 4. RMSE outcomes of the IAROEL-TFMS system and other methods.

Figure 5 shows the MAE outcomes of the IAROEL-TFMS and other existing approaches.
The outcome implies the superior performance of the IAROEL-TFMS algorithm with mini-
mal MAE values. On Lag 1, the IAROEL-TFMS methodology accomplished the least MAE
of 14.477, while the existing Ga+SVM, PSO+LSSVM, FFO+LSSVM, HYBRID+LSSVM, and
AST2FP+OHDBN techniques produced the maximum MAE values such as 32.3363, 24.7114,
22.3607, 21.8427, and 15.477, correspondingly. Furthermore, on Lag 3, the IAROEL-TFMS
model accomplished a minimal MAE of 16.1232, while the existing Ga+SVM, PSO+LSSVM,
FFO+LSSVM, HYBRID+LSSVM, and AST2FP+OHDBN systems produced high MAE val-
ues such as 45.2973, 39.4341, 31.6977, 23.5686, and 17.8232, respectively. Lastly, on Lag 5,
the IAROEL-TFMS method achieved a low MAE of 18.1508, while the existing Ga+SVM,
PSO+LSSVM, FFO+LSSVM, HYBRID+LSSVM, and AST2FP+OHDBN methods achieved
superior MAE values such as 57.1088, 52.4225, 44.582, 24.4347, and 19.7508, correspondingly.

Figure 6 showcases the EC results achieved by the proposed IAROEL-TFMS and
other existing algorithms. The result portrays the superior outcomes of the IAROEL-
TEMS methodology with higher EC values. On Lag 1, the IAROEL-TEMS approach
reached a higher EC of 99.09, while the existing Ga+SVM, PSO+LSSVM, FFO+LSSVM, HY-
BRID+LSSVM, and AST2FP+OHDBN methods produced minimal EC values such as 95.57,
95.69, 95.79, 97.92, and 98.35, correspondingly. Moreover, on Lag 3, the IAROEL-TFMS
approach accomplished a superior EC of 99.05, while the existing Ga+SVM, PSO+LSSVM,
FFO+LSSVM, HYBRID+LSSVM, and AST2FP+OHDBN systems produced low EC val-
ues such as 95.13, 95.31, 95.43, 98.54, and 98.77, correspondingly. At last, on Lag 5, the
TAROEL-TEMS model accomplished an enhanced EC of 99.29, while the existing Ga+SVM,
PSO+LSSVM, FFO+LSSVM, HYBRID+LSSVM, and AST2FP+OHDBN methods yielded
low EC values such as 94.77, 94.89, 95.07, 97.24, and 98.61, respectively.
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Figure 5. MAE outcomes of the IAROEL-TEMS system with other methods.
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Figure 6. EC outcomes of the IAROEL-TFMS system with other methods.

Table 4 and Figure 7 demonstrate the RT analytical outcomes of the IAROEL-TFMS and
other existing approaches. The figure infers the superior results achieved by the proposed
ITAROEL-TFMS model with minimal RT values. On Lag 1, the IAROEL-TFMS approach
achieved a minimal RT of 2.09 s, while the existing Ga+SVM, PSO+LSSVM, FFO+LSSVM,
HYBRID+LSSVM, and AST2FP+OHDBN methods achieved high RT values such as 19.53 s,
11.29s,14.255,9.8 s, and 3.84 s, correspondingly. Moreover, on Lag 3, the IAROEL-TFMS
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system attained a low RT of 4.03 s, while the existing Ga+SVM, PSO+LSSVM, FFO+LSSVM,
HYBRID+LSSVM, and AST2FP+OHDBN systems accomplished the maximum RT values
such as 20.33 s, 11.67 s, 15.06 s, 10.02 s, and 5.13 s, respectively. Finally, on Lag 5, the
IAROEL-TFMS algorithm accomplished a low RT of 4.26 s, while the existing Ga+SVM,
PSO+LSSVM, FFO+LSSVM, HYBRID+LSSVM, and AST2FP+OHDBN algorithms yielded
high RT values such as 22's,12.24 s, 15.31 s, 10.44 s, and 2.07 s respectively.

Table 4. RT outcomes of the IAROEL-TEMS system with other methods.

Running Time (s)

No. of GA- PSO- FFO- Hybrid- AST2FP- IAROEL-
Lags LSSVM LSSVM LSSVM LSSVM OHDBN TFMS
Lag=1 19.53 11.29 14.25 9.8 3.84 2.09
Lag=2 20.01 11.64 14.45 9.98 3.56 2.58
Lag=3 20.33 11.67 15.06 10.02 513 4.03
Lag=4 20.52 12.18 15.28 10.03 5.05 3.69
Lag=5 22 12.24 15.31 10.44 5.07 426

0 4

Figure 7. RT outcome of IAROEL-TFMS system with other methods.

5. Conclusions

=4 GA- LSS5VM
=<1 PSO- LSSVM
=1 FFO- LSSVM

=3 Hybrid- LS5VM
E== AST2FP- OHDBN
mmm |AROEL-TFMS

ILag|= 3
No. of Lag

5

Lag=4

In the current study, the authors have designed a novel IAROEL-TFMS approach for
traffic flow monitoring. The major intention of the proposed IAROEL-TFMS technique is to
employ the feature subset selection process with an optimal ensemble learning process for
forecasting the traffic flow. To accomplish this, the IAROEL-TEMS technique comprises
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three stages of operations, namely, IARO-based feature subset selection, ensemble classi-
fication, and GOA-based hyperparameter tuning. The combination of the IARO system
with ensemble learning represents a significant advancement in traffic flow monitoring,
paving the way for a highly efficient and intelligent transportation network. In order to
highlight the improved prediction results of the IAROEL-TFMS algorithm, an extensive
range of simulations was conducted. The simulation outcomes reported the supremacy
of the IAROEL-TFMS approach over other existing approaches. Therefore, the IAROEL-
TEMS technique can be utilized for effective traffic flow monitoring. In the future, the
TAROEL-TEMS system can be extended by including outlier removal approaches.
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