
Citation: Ahmad, M.; Cheng, W.;

Zhao, X. An Outlier Detection Study

of Ozone in Kolkata India by the

Classical Statistics, Statistical Process

Control and Functional Data

Analysis. Sustainability 2023, 15,

12790. https://doi.org/10.3390/

su151712790

Academic Editor: Elena Cristina Rada

Received: 28 May 2023

Revised: 6 August 2023

Accepted: 15 August 2023

Published: 24 August 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sustainability

Article

An Outlier Detection Study of Ozone in Kolkata India by the
Classical Statistics, Statistical Process Control and Functional
Data Analysis
Mohammad Ahmad, Weihu Cheng and Xu Zhao *

Faculty of Science, Beijing University of Technology, Beijing 100124, China; mahmad.or@emails.bjut.edu.cn (M.A.);
chengweihu@bjut.edu.cn (W.C.)
* Correspondence: zhaox@bjut.edu.cn

Abstract: Air pollution is prevalent throughout the entire world due to the release of various gases
such as NOx, PM, SO2, tropospheric ozone (O3), etc. Ground-stage ozone is the predominant issue in
smog and is the product of the interplay between sunlight and emissions. The destructive impact on
the health of the populace might also still occur in cities with noticeably clean air and where ozone
levels hardly ever exceed safe limits. Therefore, the findings of small variations in air quality and
the technique of regulating air contamination are thought-provoking. The study employs various
techniques to effectively observe and assess strategies for detecting and eliminating outliers in ozone
emissions from pollution episodes. This technique helps to describe the sources and exceedance
values and enhance the value of monitoring the data. In this study, the data have some missing
observations. The method of imputation, the classical statistical technique, the statistical process
control (SPC) technique, functional data analysis (FDA), and functional process control help to fill in
the data and detect outliers, trend deviations, and changes in ozone concentration at ground level. A
comparison study is carried out using these three techniques: classical analysis, SPC, and FDA, and
the results show how the statistical process control and functional data methods performed better
than the classical technique for the detection of outliers and also in what way this methodology can
enable an additional, comprehensive method of defining air pollution control measures and water
pollution control measures.

Keywords: statistical process control; functional data analysis; outlier; air pollution; imputation

1. Introduction

Air pollution contributes to climate change by affecting humans, animals, and ecosys-
tems and causing illnesses like pneumonia, lung cancer, and influenza. It also causes
smog, aerosol formation, reduced eyesight, rising temperatures, acid rain, and early death.
According to the 2011 India census, with an urban agglomeration comprising the city
and its suburbs, Kolkata has a population of 4.5 million, making it the third most densely
populated metropolitan area in the world. Researchers used a machine learning model
to forecast air pollution and how it affects human health [1–3]. Majumdar et al. [4] pro-
jected emissions for 2030 in a business-as-usual case, revealing that existing measures and
policies are insufficient to significantly reduce PM2.5 emissions in Kolkata Metropolitan
City by 2030. Understanding the geographical distribution of PM2.5, relative humidity,
temperature, and wind speed is crucial for assessing air quality in metropolitan areas. This
helps to understand the atmospheric conditions contributing to their dispersion. Various
studies, comparable to air pollution analyses, have carried out various types of spatial
interpolations of atmospheric variables, such as PM2.5 and PM10, and their influence on
humans [5–7]. Additionally, Refs. [8–10] investigated the effects of Kolkata’s air quality
before and after the lockdown.
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Imputation is the assignation by inference of a value to something from the value of
goods or the value-filling process. In all forms of collected data, missing data is a common
concern. Many ways of managing missing data exist. Full or accessible case analysis, the
missing indicator method, and general mean imputation are the most basic and commonly
used approaches [11]. Missing attribute values in incomplete datasets hinder data mining
and machine learning efficiency. Deep learning techniques outperform previous methods
for missing value imputation [12,13].

SPC is a process that aims to maintain quality features with minimal variability.
Control of statistical processes is crucial for achieving reliability and improving capacity
by reducing variability. It involves continuous monitoring of normal variation to identify
deviations and adjust for disturbance removal. SPC is a technique for data collection,
organization, analysis, and decision-making that determines the mean, lower control limit,
and upper control limit (LCL and UCL, respectively). If the values fall, the process is not
under control.

In order to apply them to vector problems, FDA has been developed. The FDA ap-
proach was inspired by the classical technique of data mining to cope with vectorial data
treatment. The applications of FDA have also been used for environmental research [14–20],
medical research [21], and the manufacturing sector [22]. This functional model provides
two important features: First, the correlation of the data structure with time is taken into
account, and second, comparisons are made with a view of the global problem. The appli-
cation compares functional depth principal curves, a metric that reflects within a group
of curves the centrality of a given curve. By generating a new functional sample, the
model transforms the sample vectors to find functional outliers by adapting the principle
of functional depth. In order to achieve an improved air quality management solution, the
researcher compares the corresponding results with classical and functional approaches
and obtains the most suitable methodology to evaluate the dataset. Torres et al. [23] iden-
tified a solution that uses functional data analysis to discover the outliers in urban gas
emissions. Over time, the researchers considered gas emissions as curves, with outliers
found by comparing curves rather than vectors. The method identified outliers in Oviedo’s
gas omissions using the functional depth principle and compared it with traditional vector
comparison methods. A tool for outlier detection in water quality parameters was provided
by Di Blasi et al. [24] using the variables of conductivity, turbidity, and ammonium. The
methods were based on the consideration of the various parameters as a vector whose
concentration values were components. A groundbreaking approach to monitoring water
quality over time views the dataset as a time-dependent function, identifying outliers in
samples from the Miño river basin based on functional depth in NW Spain. This technique
helps identify trends in water quality over time. The approach of practical pattern recogni-
tion for the identification of fluvial valleys and topographic profiles of glaciers [25] uses a
functional method for the classification of vector machines in order to determine process
stability. Martinez et al. [26] addressed statistical process monitoring and control charts
used for outlier detection methods. The one-class peeling (OCP) method provides statistical
and machine learning techniques in multivariate data to identify multiple outliers. The
one-class peeling approach is suitable for statistical process control in high-dimensional
data sets with high outliers. However, the one-class peeling approach is more effective
and stable in high dimensions. In the additional materials, examples of R commands
and data sets determine the respective OCP distances and threshold availability. Garca-
Nieto [27] studied the foraging efficacies of aerosol elements for removal devices, including
congealing, heterogeneous nucleation, and gravitational subsidence, and examined the
health effects of the aerosols on respirable dirt fractions. The scavenging equations were
applied to three atmospheric situations: pure, cloudy, and city. The primary elimination
mechanism for respirable aerosol was gravitational settling, which is nearly six times better
than rainout. Imputation of missing data replaces missing data with values derived from
variable distribution estimation. Just one approximation is used in one single imputation.
Various projections are used in several imputations, representing the ambiguity in the
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distribution calculation. Both single and multiple imputations produce unbiased study
correlation estimates under missing-at-random and absolutely-at-random circumstances.
However, single imputation leads to small approximate standard errors, whereas multiple
imputations can result in incorrect results [28]. In this research, the imputation technique
was used to address missing data, ensuring a more complete dataset for analysis. Ad-
ditionally, the traditional statistical technique, SQC, provided a well-established method
for identifying outliers in the air pollution monitoring data. The functional approach, on
the other hand, offered a novel perspective by considering the underlying functions and
patterns in the data. By comparing and contrasting these three approaches, this research
aimed to determine the most effective method for detecting outliers and providing valuable
insights for enhancing local air quality measures.

2. Methods
2.1. Air Quality Monitoring Station, Kolkata, India

In urban areas, air pollution is very important for environmental health, especially
in developing countries. Air pollution is a major concern in Indian cities, and it affects
human health. In order to ensure pleasant breathing air in the future, Kolkata is one
of the Indian cities that desperately needs intervention policies. More areas are being
affected by air pollution from smog, industrial activity, etc. Moreover, ground-stage ozone
is the predominant issue in smog and is the product of the interplay between sunlight
and emissions. Kolkata has a number of air quality monitoring stations throughout the
country that are part of the national program for monitoring ambient air quality. The air
quality of Kolkata in relation to ozone (µg/m3) is considered to be depreciating because
measurement data indicate that it may in the future exceed the limit values and the national
emissions ceiling.

2.2. Analysis Methodology

The systems can provide valuable insights into the quality of air, water, and soil in
a given area. By analyzing these data, researchers and policymakers can make informed
decisions to improve environmental conditions and protect public health. The expected
value of the sample position and taking into account classical analysis, patterns, and
differences between neighboring stations may be used to identify particular data values
that are not usual. The pattern analysis in R-programming is an illustration of the expert
structure of the data and the validation of an environmental parameter [29]. Analyzing
data sets using mathematical models and statistical methods yields conclusions about a
population without subjective interpretation or qualitative insights. In order to extract
conclusions, the suggested approach requires using a large amount of data that already
exists, with some incomplete findings. Today, automated analysis techniques are needed
for the number of data stored in databases. The research methodology discussed here is
oriented towards the discovery of information in databases (knowledge discovery database)
(KDD) [30]. The KDD is a comprehensive data extraction procedure for preparing and
analyzing results. It offers a clear and collaborative method for identifying design and
model parameters for outlier identification, prediction, and classification. This research
paper uses steps like imputation, classical analysis, SPC, and FDA.

2.3. Imputation

Imputation is a simple technique for missing observations, replacing each observation
with a true value. Various imputation procedures fill in missing values using respondent
data. For example, when the missing value is an average replacement for pollution charac-
teristics like NO2, O3, and CO2, it is considered reasonable [31]. The method that is used
for imputation is mean substitution. The mean value of the data replaces the missing data.
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2.4. Classical Analysis

This approach allows researchers to make inferences about the larger data based on the
characteristics observed in the sample. By analyzing the data collected, classical statistics
(mean, quartiles (first quartile: Q1, second quartile: Q2, third quartile: Q3), time series, box
plot, etc.) provides insights into the behavior and patterns of the variables under study.
Additionally, it helps determine the level of confidence or uncertainty associated with the
findings, enhancing the overall reliability of the statistical analysis.

Traditional statistical analysis seeks to evaluate the empirical frequency distribution
that yields the absolute frequency of occurrence of each of the several possible results
of the frequent size of a discrete event [19]. If there is just a finite number of various
outcomes (a discrete example) and if the distribution function is utilized in the situation of
an indefinitely frequent and randomly trustworthy calculation and each result is different,
the outcome of relative frequency will not be very enlightening. This returns all values of
the absolute frequency of occurrence that are less than x in this example [32].

2.5. Statistical Process Control

By applying SPC to monitor the system, it is possible to identify the outliers. However,
in conditions where the points do not reach the defined limit, the analysis focuses on
substantially low and high measurements. To study individual observation, the techniques
can be used to study individual or average maps. It should split the dataset into logical
subgroups [33]. In such cases, it may not be feasible to form rational subgroups due to the
lack of variability. However, it is crucial to identify and address these sources of error in
order to ensure accurate measurements and reliable data.

Data collection using the rational subgroup method shows intrinsic variation, a com-
mon cause of variation, which can be ignored. The method establishes special cause
variation to avoid imperfect subgroups while determining the control chart’s border limit
based on variability within each subgroup. If the mechanism is violated, only subgroups
that duplicate the process’s common cause of variance should be collected [19].

When the data have some missing observations, the data have been imputed, and if
normality has been established, then the data are correctly structured. If the researcher
rejects the null hypothesis, then there are two methods to normalize the data: using
modified techniques for non-normal distributions or transforming the data to normal-
ize the set, and using Box–Cox transformation [34,35]. The Box–Cox transformation
is as follows:

Xω
j =

{
Xω

j
ω , i f ω 6= 0

log
(
Xj
)
, i f ω = 0

(1)

whereω denotes the maximizes profile likelihood function of the data.
Classical process analysis can be divided into two stages: the control stage, where

patterns are evaluated and conditions outside of control are encountered, and the first
stage, which removes normality and atypical measurement from the results. The average,
UCL, and LCL are specified at the first level. The average is defined precisely by the
control model and signifies the objective point. Then, the confidence interval is set to be the
standard deviation of the process [36].

Shewart’s control chart is a popular monitoring system for graphical statistical pro-
cesses, detecting major changes in processes. It is designed as a conventional control chart
when the underlying form of the distribution of processes is known. Charts using recent
samples show no significant improvement in the process. Complementary rules are needed
to identify deviations and add to the initial rules, as established by different authors [37,38].
Supplementary rules enhance the alertness and detection capacity for non-random samples
of Shewart’s control chart, improving non-random sample detection [27].

The average run length (ARL) is the most used and simple mode to measure the
capacity of a control chart with supplementary run rules. In the control charts, the run
rule is used before the warning alarm’s indication when the process is not controlled. The
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important thing to do if this happens is to identify it as soon as possible. On the other hand,
it would be reasonable to have a few false alarms when the mechanism is statistically in
a state of control. This term is defined specifically as an alpha error (type I) and a β error
(type II). The technique of sensitivity is also defined and is highly linked to the number of
outliers. It must be considered that the potential to identify out-of-control techniques is
high; for this reason, there are a lot of points that fall outside [39].

2.6. Functional Data Analysis

FDA is a method for studying curves and functions to analyze data over time [40]. It
converts vector samples into functional samples, using discrete values as starting points.
Smoothing transforms vector points into continuous functions over time, making it valuable
in air pollution research. This data composition allows for outlier detection, as days with
varying ozone values may have identical averages. Functional analysis identifies possible
outliers, making functional techniques superior for such investigations.

Let x(tj) represent the initial observations, tj ∈ R signifies the time steps, and p
represents the number of observations (j = 1, 2, . . . . . . , p). The individual value of the
function x(t) ∈ x ⊂ F, where F is a functional space, can be observed. The functional
space F = span

(
φ1, φ2, . . . . . . φp

)
is used to estimate x(t), where φk is the set of basis

functions (k = 1, 2, . . . . . . , nb) and p is the number of basis functions necessary to generate
a functional sample. In statistics, there are various types of bases, but the Fourier basis is
the most commonly employed. Furthermore, for periodic data like the ones in our study,
the Fourier basis is the best option [19].

min
xεF

∑p
j=1

(
zj − x

(
tj
))2

+ λΓ(x) (2)

zj = x
(
tj
)
+ εj, where x is the observing point at tj, εj is the random noise with zero mean,

λ is the level of regulization, and Γ is the penalized operator.

x(t) = ∑p
k=1 ckφk(t) (3)

where
{

ck}
p
k=1 is the coefficient that multiplies the basis function. This can be written the

problem of smoothing as

min
c

{
(z− φc)

T(z− φc) + λcT Rc
}

(4)

z =
(
z1, . . . . . . , zp

)T , the expansion of vector coefficient c = (c1, . . . . . ., cp)T, a (p, nb)-matrix
φ whose elements are φjk = φk

(
tj
)
, and a (p, nb)-matrix R whose elements are:

Rkl =
〈

D2φk, D2φl

〉
L2(T)

=
∫

T
D2φk, D2φldt (5)

The problem can be solved with the following equation:

c =
(
φ′φ + λR

)−1
φz (6)

Functional data help identify higher-than-mean time intervals and their differences,
allowing for the removal of outliers caused by system failure and detecting system failure.
The notion of depth allows you to sort a collection of data in Euclidian space by how close
it is to the sample core. In multivariate analysis, the concept of depth emerged and was
generated to calculate a point centrality among a cloud. This idea started to be incorporated
into practical data analysis over the course of the year. In this region, the centrality of
a certain curve xi is defined by depth, and the center of the sample is the mean curve.
The two-depth measurement of Fraiman–Muniz depth (FMD) and the H-model depth
(HMD) [19] are most usual in the sense of functional data.
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Through the estimation of depths, it is also possible to classify outliers with a practical
approach. In this case, it takes into account elements that have different behavioral designs
than the rest. Instead of summarizing the curve observations into a single point, such as the
average, the definition of depth makes it possible to deal with observations identified at a
given interval in curve types. The depth technique is used for the identification of outliers
and significance: There is a low depth of an element that is distant from the sample. Thus,
practical outliers are the curves with the least depth.

Firstly, Fn,t(xi(t)) is the cumulative empirical distribution function of the values of the
curves {xi(t)}, (i = 1, 2, . . . . . . , n) in a certain time t ε [a, b] in which it is contemplated. It
can be defined as:

Fn,t(xi(t)) =
1
n∑n

k=1 I(xk(t) ≤ xi(t)) (7)

where I(.) is an indicator function. Next, the FMD for curve xi is calculated as:

FMDn(xi(t)) =
∫ b

a
Dn(xi(t))dt (8)

where tε[a, b]. The functional mode in HMD, on the other hand, is the element or curve
that is most densely surrounded by the other curves in the dataset. HMD is written as:

HMDn(xi, h) = ∑n
k=1 K(

‖xi − xk‖
h

) (9)

In a functional space, with a kernel function K : R+ → R+ , a bandwidth parameter h
and ‖·‖ as the norm. In a vast majority of cases, norm L2, is expressed as:

∥∥xi(t)− xj(t)
∥∥ = (

∫
(xi(t)− xj(t))

2dt)
1/2

(10)

There is also a number of parameters for the kernel functions K(·). The truncated
Gaussian kernel is a popular one and can be expressed as:

K(t) =
2√
2π

exp(− t2

2
), t > 0 (11)

In this paper, the HMD depth was chosen for the identification of outliers. The value
of h is the value that leaves, below it, 15% of the data coming from the distribution of{∥∥xi(t)− xj(t)

∥∥, i, j = 1, 2, . . . . . . , n
}

, and the cut-off C is selected, especially the 1% type I
error, according to Pr(HMDn(xi(t))) < c = 0.01, i = 1, 2, . . . . . . , n.

Because the functional depth distribution is unknown, the cut-off C must be computed.
There is a variety of ways in which this estimation can be carried out. The bootstrapping
approach, on the other hand, was best suited to the study’s objectives [19]. The steps
are below:

I. Extract the substitution of the original with a new sample.
II. Via the statistics of this new sample, estimate the research parameter.
III. Repeat the steps overhead a significant number of times. The Monte-Carlo simula-

tion is often referred to as this repetition. It uses duplication to extract evidence
from the data.

IV. Determine the empirical statistical distribution.

3. Results and Discussion

In this paper, the results of the technique that applied are as follows. The whole
analysis and figure generation were carried out with R software (R 4.0.2) [41]. The complete
2018 hourly data were collected from the Central Pollution Control Board of India [42]. The
data that were collected for analysis have some missing values, so the data were imputed
by simple imputation (mean imputation).
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3.1. Classical Statistical Analysis

The classical monitoring strategy was used to evaluate the air quality within limits.
The statistical parameters of the data were also used to evaluate the trends. The statistical
techniques used to perform the classical air quality monitoring strategy are presented in the
data on O3 concentrations at the Victoria air quality monitoring station in Kolkata, India. A
summary of the statistical analysis of hourly data is presented in Table 1 for the minimum,
maximum, mean, Q1, Q2, Q3, and interquartile range.

Table 1. Statistical summary of O3 hourly concentration.

Min Q1
3.03 µg/m3 12.46 µg/m3

Max Q2
153.32 µg/m3 23.91 µg/m3

Mean Q3
32.98 µg/m3 43.84 µg/m3

Std Dev Var
27.75 µg/m3 770.06 µg/m3

N IQR
8785 31.38 µg/m3

The descriptive analysis parameter in Table 1 demonstrates that the limit values were
not exceeded. Additional steps are to analyze the hourly data from 2018 of individual
time series plots (Figure 1) ranging from a minimum value of 3.03

(
µg/m3) to a maximum

value of 153.32
(
µg/m3).
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Figure 1. Individual time series of O3 hourly concentration.

Figure 2 depicts a box plot that graphically characterizes the O3 concentration data
groupings by quartiles. The values of the first quartile Q1 (12.46 µg/m3), second quartile Q2
(23.91 µg/m3), third quartile Q3 (43.48 µg/m3), and interqurtile range IQR (31.38 µg/m3)
and some red dots that represent the outliers are shown in the picture.
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Figure 3 shows the QQ plot (normal probability plot) of the data. The null hypothesis
is that the value follows a normal distribution and the alternate hypothesis is that the value
does not follows a normal distribution.
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Other tests were applied to see whether the data resembled any of the following
distributions: normal, generalized extreme value, or Weibull and Rayleigh; however, there
was no suitable null hypothesis at the 5% significance level.

3.2. Statistical Process Control

(I) Control I-MR Chart with Individual Mean

The control chart of the I-MR hourly concentration was generated using the data
through the SPC method. In the examination of the results in Figure 4, there were some
false alarms, i.e., outliers that were significant. This challenge is attributable to the fact that
the data were non-normal, as shown in Figure 3, and that there was greater variability in
the data.
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(II) Control Chart with Hourly Rational Subgroups

The results of the hourly data as rational subgroups of the X and S chart are not under
control because there were more variations in the data.

3.3. Functional Data Analysis

In the functional methodology technique, the initial step is to generate a sample curve
based on discrete measurements taken each hour. The graph shows 365 functions derived
from 24 h data. If the data have been translated into a functional form, i.e., curves with
24 points in a day, each of which takes into consideration the correlation between the O3
readings and may be examined for outliers, the data can be analyzed.

When the depths are taken into account, the functional analysis results let us discover
days with aberrant functional points, even if there are no outliers. Despite the fact that the
daily limit values were not exceeded, the O3 absorption may have demonstrated aberrant
behavior throughout the course of the day. The functional technique, on the other hand,
detects any variation from normal daily O3 emission behavior without depending on any
distribution limits. The functional outliers found in this study. Outliers are indicated by
black and dotted lines.

The variable O3 hourly data set was studied with a box plot, X/S chart, and functional
depth. The hourly box plot (Figure 2) shows that there was a large number of outliers
because of the O3 concentration. There were 5425 points not in between the limit using
Tukey’s fences, as shown in Figure 2. The IMR and X/S chart (Figures 4–6) shows that it was
not statistically under control because there was greater variability in the O3 concentration.
The X hourly control chart cycle shows that the UCL was 50.83 (µg/m3) and the LCL
was 16.40 (µg/m3) and that the number beyond the limit was 4014, in which the smallest
number of outliers was shown in the months of January to March and October to December
and the largest number of outliers was shown in the months of April to September. This
information shows that the highest concentration was in the months of April to September
and that the minimum concentration was in the months of January to March and October
to December. The S control chart shows that 1080 values went beyond the limit. This shows
that there was a large number of concentrations beyond the standard limit (180 µg/m3),
which is defined by the Indian Pollution Control Board. Moving on to functional data
analysis, based on depth, Figure 7 represents the 365 functions (for each days) generated
with 24 hourly data and Figure 8 shows functional outliers for 365 days. There were
25 outliers (24 h per day) detected out of 365 days. The data analysis revealed functionally
significant changes on some days, which suggests that there were minimal O3 pollution
issues. The FDA technique is good at identifying days where the patterns are distinct from
those of the rest of the data. It is essential to examine pollution within permitted limits
as well as days where the levels were detected to be different from what is expected. The
functional approach detected an atypical day on the sixth day, as shown in Figure 8. The
mean was higher than that obtained through SPC (Figure 5), but within the limit values, this
day was not considered an outlier by classical analysis or SPC. The functional approach’s
strength in detecting such a day allows for the study of the reasons behind the O3 behavior
on that particular day.
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Box plots can detect outliers, but they are disproportionate in all cases and fail to
identify validation events. Additionally, the non-normality of the data makes it impossible
to detect outliers below the minimum limit of the box plot. Control charts, such as an X
chart, can detect trends but have flaws due to their initial design for industrial processes
with low variability. The rational subgroups and mean values contribute to loss of informa-
tion, preventing accurate outlier detection. Despite these flaws, control charts offer better
and more consistent results than box plots, providing a clear graphical representation of
variable changes over time. The functional approach studies the entire dataset, minimizing
information loss and enabling reliable analysis of hidden trends. The transformation from
discrete information points to functional data reduces instrumental errors detected by
classical analysis and control charts. Instead, one can focus on analyzing the patterns and
relationships within the data to gain insights. This allows for a more flexible approach
in understanding the data without relying solely on their original distribution. The FDA
approach performs well compared to classical statistics and control chart methods. Greater
traceability of major sources, including information on the weather, traffic patterns, and
industry sources, is required to comprehend aberrant O3 emissions behavior. Outlier eval-
uation can be enhanced by including meteorological factors like temperatures, daylight
hours, and precipitation. Separating the sources of common and unique variability may be
done with the use of outlier detection and air pollution events, which enable the creation
and application of efficient mitigation strategies.

4. Conclusions

This study evaluates three analytical methodologies for identifying outliers in hourly
data from a metropolitan air quality monitoring station in Victoria, Kolkata, India. Kolkata’s
air quality is worsening day by day and it is challenging to find outliers for air quality.
Traditional vectorial techniques, statistical process control, and functional data analysis
were used to analyze data, dividing them into days or hours and control charts. The mean
imputation and proposed methodology findings help to identify the air pollution events and
outliers. To effectively control air pollution and achieve pure air quality conditions, a new
strategy and new techniques are needed to measure local air pollution. The result obtained
using the classical vectorial method is simple but has weaknesses in terms of the temporal
correlation structure and recognizing true outliers. Advanced methodologies can provide
deeper insights into mitigating air pollution issues, similar to statistical process control. As
a result, the method might be unable to effectively identify patterns or trends that could
help in differentiating between true abnormalities and false alarms. The accuracy of outlier
identification might be improved and the incidence of false alarms could be decreased by
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including techniques that can record and analyze continuous data. Additionally, working
from a functional point of view may also require expertise in statistical modeling and
analysis to accurately interpret the results. Furthermore, the use of functional data analysis
techniques may not be suitable for datasets with missing or incomplete observations. To
do so, it is necessary to impute the data, as complete time units are required for analysis.
By identifying and analyzing outliers from a functional point of view, researchers can
gain valuable insights into the factors that contribute to air pollution and its control. This
information can then be used to develop targeted actions and policies that effectively
address the root causes of these distinct O3 value sets. Additionally, understanding the
O3 outliers helps with accurately quantifying the impact of air pollution on public health
and enabling better decision-making for sustainable development. Future studies aim to
eliminate percentiles for outliers by testing classification techniques like isolation forest or
k-means, identifying functions as outliers.
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