
1

SUPPLEMENTARY MATERIAL – Python Scripts

Scripts
Script 1 Script that was used to automatically assign scores for community income levels

##Name of script: Income2001.py
##Purpose: Automated allocation of scores to communities for the 2001 income levels
data
#Importing system modules
import arcpy
#Input data and input fields and their lengths
table = "E:/GIS/RayMhlaba.mdb/Income_2001"
fields = ["No_income","R1_R9600","R9601_R19200","R19201_R38400","R38401_more"]
#Adding fields to input table to store maximum and field names
maxfield = "HIGHEST"
maxname = "HIGHEST_name"
scores = "In2001_score"
arcpy.AddField_management(table, maxfield, "TEXT")
arcpy.AddField_management(table, maxname, "TEXT")
arcpy.AddField_management(table, scores, "SHORT")
#Adding created fields to the array
fields2 = fields[:] # Shallow copy
fields2.extend([maxfield, maxname, scores])
#Checking and updating of fields
with arcpy.da.UpdateCursor(table, fields2) as cursor:
 for row in cursor:
 arrayVals = [row[0], row[1], row[2], row[3], row[4]]
 highest = max(arrayVals)
 row[5] = highest
 row[6] = fields[arrayVals.index(highest)]
 if row[6] == "No_income":
 row[7] = 0
 cursor.updateRow(row)
 elif row[6] == "R1_R9600":
 row[7] = 1
 cursor.updateRow(row)
 elif row[6] == "R9601_R19200":
 row[7] = 2
 cursor.updateRow(row)
 elif row[6] == "R19201_R38400":
 row[7] = 3
 cursor.updateRow(row)
 else:
 row[7]= 4
 cursor.updateRow(row)

Script 2 Script that was used for automated creation of a new shapefile and attribute table

and joining of Age_Profile scores to the IndicatorScores table

##Name of script: ScoreInput2001.py
##Purpose: Automated creation of a new shapefile and attribute table for saving an
integration of the four indicator scores and automated joining of the remaining 3
indicator scores to the IndicatorScores table using MP_NAME as the linking field.

#Importing system modules
import arcpy
from arcpy import env
#Setting the environment
env.workspace = "E:/GIS/"
Specifying the input feature class, output location and feature classes
inFeatures = "E:/GIS/RayMhlaba.mdb/Age_2001"
outLocation = "E:/GIS/RayMhlaba.mdb"
outFeatureClass = "Ind_Scores2001"

2

Listing fields to be retained
myfields = ["MP_NAME", "A2001_score"]
Creating an empty field mapping object
mapS = arcpy.FieldMappings()
Creating an individual field map each field, and adding it to the field mapping
object
for field in myfields :
 map = arcpy.FieldMap()
 map.addInputField(inFeatures, field)
 mapS.addFieldMap(map)
 # Copying the feature class using the fields
 arcpy.FeatureClassToFeatureClass_conversion (inFeatures, outLocation,
outFeatureClass, field_mapping=mapS)
#Joining the remaining 3 indicator scores for different fields into one table
arcpy.JoinField_management("Ind_Scores2001", "MP_NAME", "Income_2001", "MP_NAME",
"In2001_score")
arcpy.JoinField_management("Ind_Scores2001", "MP_NAME", "Literacy_2001", "MP_NAME",
"Lit2001_score")
arcpy.JoinField_management("Ind_Scores2001", "MP_NAME", "Water_2001", "MP_NAME",
"W2001_score")

Script 3: Script that was used for joining of the remaining 3 indicator scores to the
IndicatorsScores table using MP_NAME as the linking field

Name of script: AD2001.py
Purpose: Automated summation and ranking of the four indicator scores for year
2001
#Importing system modules
import arcpy, math
#Importing scores from indicator attribute tables into the Adaptive capacity
shapefile
table = "E:/GIS/RayMhlaba.mdb/Ind_Scores2001"
fields = ["A2001_score","In2001_score","Lit2001_score", "W2001_score"]
Adding fields to input table to store maximum and field name
total = "AD2001_Score"
rating = "ACRating_2001"
arcpy.AddField_management(table, total, "SHORT")
arcpy.AddField_management(table, rating, "TEXT")
#Adding created fields to the array
fields2 = fields[:]
fields2.extend([total, rating])
#Classifying community-level adaptive capacity scores
with arcpy.da.UpdateCursor(table, fields2) as cursor:
 for row in cursor:
 arrayVals = [row[0], row[1], row[2], row[3]]
#Calculating adaptive capacity for each community by summing the 4 indicator scores
 summation = sum(arrayVals)
 row[4] = summation
 #Allocating the adaptive capacity rating
 if row[4] <=5:
 row[5] = 'LOW'
 cursor.updateRow(row)
 elif row[4]> 5 and row[4]<=10:
 row[5] = 'MEDIUM'
 cursor.updateRow(row)
 else:
 row[5]='HIGH'
 cursor.updateRow(row)

3

Script 4: Script that was used for joining of the remaining 3 indicator scores to the
IndicatorsScores table using MP_NAME as the linking field

Name of script: AD_Change.py
Purpose: Automated creation of a new shapefile and saving adaptive capacities
for years 2001 and 2011 into one attribute table
#Importing system modules
import arcpy
from arcpy import env
#Setting the environment
env.workspace = "E:/GIS/"
Specifying of input feature class, output location and feature classes
inFeatures = "E:/GIS/RayMhlaba.mdb/Ind_Scores2011"
outLocation = "E:/GIS/RayMhlaba.mdb"
outFeatureClass = "AD_Diff"
Listing of fields to be retained
myfields = ["MP_NAME", "AD2011_Score"]
Creating an empty field mapping object
mapS = arcpy.FieldMappings()
Creating an individual field map for each field and adding it to the field
mapping object
for field in myfields :
 map = arcpy.FieldMap()
 map.addInputField(inFeatures, field)
 mapS.addFieldMap(map)
 # Copying the feature class using the fields
 arcpy.FeatureClassToFeatureClass_conversion(inFeatures, outLocation,
outFeatureClass, field_mapping=mapS)
#Joining of Adaptive capacity 2001 field to the Adaptive capacity 2011 field to
create one table
arcpy.JoinField_management ("AD_Diff", "MP_NAME", "Ind_Scores2001", "MP_NAME",
"AD2001_Score")

Script 5 Script that was used for calculating changes in adaptive capacities between 2001
and 2011

Name of script: Diff.py
Purpose: Calculating changes in adaptive capacities between years 2001 to 2011
#Importing system modules
import arcpy, math
Selecting fields of interest from attribute table in shapefile
table = "E:/GIS/RayMhlaba.mdb/AD_Diff"
fields = ["AD2011_Score","AD2001_Score"]
Adding new fields to table to store calculated differences in adaptive capacity
difference = "AC_Resultant"
change = "AC_Change"
arcpy.AddField_management(table, difference, "SHORT")
arcpy.AddField_management(table, change, "TEXT")
#Adding created fields to the array
fields2 = fields[:]
fields2.extend([difference, change])
#Classifying the changes in adaptive capacity
with arcpy.da.UpdateCursor(table, fields2) as cursor:
 for row in cursor:
 arrayVals = [row[0], row[1]]
 #Subtracting the 2001 adaptive capacity from the 2011 adaptive capacity
 row[2] = row[0] - row[1]
 #Allocating the adaptive capacity change
 if row[2] <= -1:
 row[3] = 'DECREASE'
 cursor.updateRow(row)
 elif row[2] == 0:
 row[3] = 'NO CHANGE'
 cursor.updateRow(row)
 else:
 row[3]='INCREASE'
 cursor.updateRow(row)

4

Script 6 Script that was used for calculating the final adaptive capacity using average
soil moisture, arable lands and socio-economic data

Name of script: Final_AD.py
Purpose: Summation and ranking of the three indicators for assessing adaptive
capacity
#Importing system modules
import arcpy, math
#Importing scores from indicator attribute tables into the Adaptive capacity
#shapefile
table = " C:/RM/RM.mdb/RM6_Intersect"
fields = ["gridcode","AD_Score","ARL_Score"]
Adding fields to input table to store maximum and field name
total = " Final_Score"
rating = " Final_Rating"
arcpy.AddField_management(table, total, "SHORT")
arcpy.AddField_management(table, rating, "TEXT")
#Adding created fields to the array
fields2 = fields[:]
fields2.extend([total, rating])
#Classifying community-level indicator scores
with arcpy.da.UpdateCursor(table, fields2) as cursor:
 for row in cursor:
 arrayVals = [row[0], row[1], row[2]]
#Calculating adaptive capacity for each community by summing the 3 indicator scores
 summation = sum(arrayVals)
 row[3] = summation
 #Allocating the final adaptive capacity rating
 if row[3] <=4:
 row[4] = 'LOW'
 cursor.updateRow(row)
 elif row[3]> 4 and row[3]<=6:
 row[4] = 'MEDIUM'
 cursor.updateRow(row)
 else:
 row[4]='HIGH'
 cursor.updateRow(row)

