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Abstract: Rapid urbanization and global warming have led to a series of ecological and health
problems caused by the deterioration of urban thermal environment (UTE). Using a comprehensive
analysis of meteorological and remote sensing data for Shaanxi Province, a model of urban thermal
differentiation (UTD) was developed, and the spatio-temporal characteristics of UTE in different
regions were analyzed. Using the Geo-explore model, natural and socio-economic factors were chosen
to explain the spatio-temporal distribution changes in UTE. The results showed that the UTD and
Geo-explore models can be used to estimate spatio-temporal differentiation characteristics and change
patterns of UTE. This method can describe UTE’s spatial distribution and change characteristics well,
making it suitable for multiple-perspective evaluations. In Shaanxi Province, the spatio-temporal
distribution of UTE shows a decreasing trend from south to north and east to west. After 2000, the
UTD showed a relatively stable performance in the Southern, Central, and Northern regions. The
atmospheric temperature (AT) varied greatly across regions due to different factors. UTE mitigation
and improved urban design can be achieved using this method.

Keywords: atmospheric temperature; Spatio-temporal differentiation; Geo-explorer model; Shaanxi
Province; urban thermal environment

1. Introduction

Rapid industrialization and urbanization in the last few decades have changed the
land cover, anthropogenic heat flux, and microclimate in China [1]. These changes have
significantly impacted the microclimate, atmospheric quality, urban life quality, and human
thermal environment [2,3]. The efficient monitoring and rapid analysis of, and quick
response to UTE deterioration have become some of the primary problems of urban climate
and environment research [4]. A high AT can lead to high cooling energy consumption [5],
reduce urban thermal comfort (UTC) [6], and cause serious public health problems [7].
Previous studies have revealed that differential heating produces mesoscale winds, which
help pollutants to circulate and move upward, leading to atmospheric pollution issues [8,9].
With global warming, the UTE may worsen in the coming years. UTE is not only associated
with temperature, but also with natural and socio-economic conditions [10]. In order to
mitigate the sustained deterioration of the UTE and establish a scientific basis for risk
assessment and mitigation strategies, the spatial patterns of UTE must be analyzed using
multisource data and their influencing factors.

In several studies, observations from ground meteorological stations have been used
to evaluate UTE spatial patterns [11], and numerical simulation data from thermal infrared
satellite data have been widely used to understand land surface heat distribution [12].
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The use of meteorological observation data has several advantages, including providing
observations at multiple time scales and facilitating the in-depth analysis of the relationship
between UTE and local climate conditions. However, they are susceptible to the spatial
distribution of ground-based observation points and have certain limitations [4,13]. Ther-
mal infrared remote sensing data can, however, overcome the limitations of ground-based
stations, and provide complete region temperatures of a research area [14]. However, ther-
mal infrared remote sensing data are often affected by a variety of factors, such as spatial
and temporal resolution, which prevent continuous and real-time observational data from
being obtained [15,16], and 1.5 m atmospheric temperatures cannot be obtained directly.
As a result, these data are often used to indirectly reflect the UTE. Previous studies have
shown that land surface temperature (LST) is often positively correlated with AT [17–20],
and this is usually influenced by the type of land [21], seasonal evolution [20], etc. This
is because different materials, such as asphalt and cement, have different physical and
chemical properties [22,23], different heat storage capacities, and different abilities to reflect
and scatter heat [24]. Therefore, the LST is greatly different in the daytime. The AT is stable
within a certain area, and reflects the real situation of UTE better than LST [4,25]. Despite
all of the efforts to explain the changes in UTE characteristics, many studies have shown
that, when temperature rises clearly, the UTE changes dramatically [26,27]. However, only
a few studies have examined the characteristics of AT changes on a spatio-temporal scale
by dividing the study area into three parts according to the climate regions.

The UTE is affected by different natural and socio-economic factors, for example, wind
speed, humidity, and solar radiation [28]. The increases in population and anthropogenic
activities in urban areas have also changed the UTE distribution pattern [29]. Spatial
proximity was found to be related to land-use and urban patterns, which in turn affects
the spatial patterns of UTE [30]. Using the correlation of urban AT with city underlying
surface, it was found that the day temperature in Nankai district has a remarkable linear
relationship with the ratio of green area, water area, plot ratio, and anthropogenic heat [31].
In a study which analyzed the influence factors by using the spatial principal component
analysis (PCA) method instead of the multiple quasi-lateral judgment method in Shanghai,
the results showed that four factors, including urban building and population density,
industrial layout, and underlying surface type, are leading factors influencing the spatial
pattern of UTE [16,32]. Meanwhile, most studies have focused on specific factors, such as
rainfall [33], land use, land cover change [16], and population [34]. Only some have focused
on the causes of UTE increase based on natural and socio-economic factors [10,12,26].

We examined the spatio-temporal variation in the UTE variables and influencing
factors in Shaanxi Province, China, for three different geographical locations (Southern
Shaanxi area (SSA), Central Shaanxi area (CSA), and Northern Shaanxi area (NSA)). As
far as we are aware, no previous study has focused on the different geographical locations
of Shaanxi Province. Therefore, based on the survey data of atmospheric environmental
data, and natural and socio-economic data of Shaanxi Province, China, the objectives of this
paper are to: (1) evaluate the AT of spatio-temporal characteristics based on the UTD model;
(2) explore the main influences affecting the distribution and spatio-temporal variations in
the UTE; and (3) provide a rationale for potential AT migration. This study will enhance
our understanding of the spatio-temporal variation in UTE and provide a useful reference
for mitigating the urban heat island in Shaanxi Province.

2. Materials and Methods
2.1. Study Area

The study was conducted in Shaanxi Province (105◦29′–111◦15′ E and 31◦42′–39◦35′ N)
(Figure 1a), which is located in northwestern China, and consists of 10 cities. The permanent
resident population of Shaanxi has exceeded 38 million, including about 25 million in urban
areas, and the urbanization rate reached 64.02% in 2022. The study area has a temperate
continental climate with an annual mean temperature of 7–16 ◦C and yearly precipitation
of 300–700 mm. The study area is usually divided into three parts, including the SSA, CSA,
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and NSA, due to their characteristics of geographical difference, which cover three typical
climate zones from south to north, including a humid climate, sub-humid climate, and
semi-arid climate [35]. According to the land cover datasets from the Land and Resources
Bulletin (2019), about 7% and 20% of the area is covered by buildings and cultivated
land in Shaanxi Province, respectively. Most of the non-urban areas are covered by forest
and farmland, accounting for 61.1% and 14.4%, respectively. Among them, 81% of the
arable land is distributed in the northern Shaanxi Plateau and the Guanzhong Plain, and
54.7% of the forest land is mainly distributed in Yan’an City, Hanzhong City, and Ankang
City. Many previous studies have proved that the urban–rural differences in AT and
emissions are significant [10,13,18] (https://www.mnr.gov.cn/sj/tjgb/201807/ (accessed
on 10 September 2022)).

Sustainability 2023, 15, x FOR PEER REVIEW 3 of 15 
 

 

The study was conducted in Shaanxi Province (105°29’–111°15′ E and 31°42′–39°35′ 
N) (Figure 1a), which is located in northwestern China, and consists of 10 cities. The per-
manent resident population of Shaanxi has exceeded 38 million, including about 25 mil-
lion in urban areas, and the urbanization rate reached 64.02% in 2022. The study area has 
a temperate continental climate with an annual mean temperature of 7–16 °C and yearly 
precipitation of 300–700 mm. The study area is usually divided into three parts, including 
the SSA, CSA, and NSA, due to their characteristics of geographical difference, which 
cover three typical climate zones from south to north, including a humid climate, sub-
humid climate, and semi-arid climate [35]. According to the land cover datasets from the 
Land and Resources Bulletin (2019), about 7% and 20% of the area is covered by buildings 
and cultivated land in Shaanxi Province, respectively. Most of the non-urban areas are 
covered by forest and farmland, accounting for 61.1% and 14.4%, respectively. Among 
them, 81% of the arable land is distributed in the northern Shaanxi Plateau and the Guan-
zhong Plain, and 54.7% of the forest land is mainly distributed in Yan’an City, Hanzhong 
City, and Ankang City. Many previous studies have proved that the urban–rural differ-
ences in AT and emissions are significant [10,13,18] (https://www.mnr. gov.cn/sj/tjgb/ 
201807/ (accessed on 10 September 2022)). 

 

Figure 1. Geographic location. (a) Shaanxi Province, (b) location of meteorological observation sta-
tions. 

2.2. Data Sources and Processing 
The daily AT data, including in-situ data of AT, near-surface tem perature, pressure, 

rainfall, humidity, evaporation, sunshine duration, maximum and minimum tempera-
ture, and hourly wind speed from 1970 to 2017, were used in this study 
(http://data.cma.cn/ (accessed on 7 September 2022)). Daily AT was observed at 99 sta-
tions, including 16, 18, and 15 rural background stations, and 17, 16, and 17 urban back-
ground stations in the SSA, CSA, and NSA, respectively (Figure 1b). All meteorological 
observation stations are automatic monitoring stations, with a height of 2–10 m, usually 
including global position system (GPS), sensors, collectors, power supply, communication 
interfaces, etc., which usually continuously observe, record, and transmit data using a 
wireless network on a 24 h basis. Meanwhile, seven natural and six socio-economic fac-
tors, including population, gross domestic product (GDP), urbanization rate, built-up 
area, green coverage rate, and park area per capita (http://tjj.shaanxi.gov.cn/tjsj/ (accessed 
on8 September 2022)), were selected for the correlation analysis of the temperature change 

(a) (b) 
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2.2. Data Sources and Processing

The daily AT data, including in-situ data of AT, near-surface tem perature, pressure,
rainfall, humidity, evaporation, sunshine duration, maximum and minimum temperature,
and hourly wind speed from 1970 to 2017, were used in this study (http://data.cma.cn/
(accessed on 7 September 2022)). Daily AT was observed at 99 stations, including 16, 18,
and 15 rural background stations, and 17, 16, and 17 urban background stations in the
SSA, CSA, and NSA, respectively (Figure 1b). All meteorological observation stations are
automatic monitoring stations, with a height of 2–10 m, usually including global position
system (GPS), sensors, collectors, power supply, communication interfaces, etc., which
usually continuously observe, record, and transmit data using a wireless network on a
24 h basis. Meanwhile, seven natural and six socio-economic factors, including population,
gross domestic product (GDP), urbanization rate, built-up area, green coverage rate, and
park area per capita (http://tjj.shaanxi.gov.cn/tjsj/ (accessed on8 September 2022)), were
selected for the correlation analysis of the temperature change response in the Southern,
Central and Northern areas, respectively (Table 1). Four season observations were used,
and the analysis was conducted for the daytime in this study.

https://www.mnr.gov.cn/sj/tjgb/201807/
http://data.cma.cn/
http://tjj.shaanxi.gov.cn/tjsj/
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Table 1. The information of data collection.

Parameter Specific Elements Unit Data Data Sources

Daily AT data

Air temperature ◦C

1970–2017
http://data.cma.cn

(accessed on 8 September
2022)

Near-surface temperature ◦C
Pressure Pa
Rainfall mm

Humidity %rh
Evaporation mm

Sunshine duration h
Maximum and minimum

temperature
◦C

Hourly wind speed m/s

Natural factors

Relative humidity %

1970–2017

http:
//tjj.shaanxi.gov.cn/tjsj/
(accessed on 9 September

2022)

Surface temperature ◦C
Evaporation capacity mm

Sunshine duration h
Average wind speed m/s

Precipitation mm

Socio-economic
factors

Population NP 1960–2017 http://tjj.shaanxi.gov.cn/
tjsj/ndsj/tjnj/ (accessed on

15 September 2022)
or http://tjj.xa.gov.cn/tjsj/

tjxx/1.html (accessed on
15 September 2022)

Gross domestic product Billion
1970–2017Urbanization rate %

Built-up area Km2 1970,1980,1990–2020
Green coverage rate % 1970,1980,1990,2000–2017
Park area per capita M2/per capita 1970–2017

Firstly, as the smallest unit of analysis, the monthly atmospheric temperature (MAT)
was used. The AT was calculated by using the arithmetic mean value (AMV) of the daily
temperature data. The annual atmospheric temperature (AAT) was calculated using MAT
and AMV. Following that, a spatial and temporal distribution map of AAT in Shaanxi
Province was developed using the Kriging interpolation method, using 1970, 1980, 1990,
2000, 2010, and 2017 as time nodes. In each time period, 99 stations were counted for
statistics (Figure 2) and a change monitoring function based on ArcGIS10.5 software (State
of California, USA) was used to generate maps of spatial change. After that, the UTD model
was used to assess the changes in the spatial distribution of AAT. Finally, the Geo-explore
model was used to explain the reasons for the uneven distribution of AT in the Southern,
Central, and Northern areas of Shaanxi Province.1

2.3. Methods
2.3.1. Contagion Index

Landscape metrics are algorithms for quantifying a specific spatial configuration of
various land uses [36], and can also be used for the analysis of UTE patterns. Based on the
resampled AT maps with a resolution of 500 m × 500 m, Fragstats 4.0 was used to calculate
the contagion index (CONTAG) of UTE based on the diversity and heterogeneity of the
landscape [37].

CONTAG =
{

1 +
[
2ln (m)−1

]
∑m

i=1 ∑m
k=1

[
(Pi)

(
gik/∑m

k=1 gik

)][
ln (Pi)

(
gik/∑m

k=i gik

)]}
(100) (1)

where Pi is the proportion of landscape occupied by patch type (class) i. gik is the number
of adjacencies between pixels of path types (classes) i and k based on the double-count
method. m is the number of patch types (classes) present in the landscape. The classes stand
for the ultra-low, low, normal, high, and ultra-high temperature types, respectively, which
were calculated by adding or subtracting 1 or 2 times the standard average temperature
with a mean square error.

http://data.cma.cn
http://tjj.shaanxi.gov.cn/tjsj/
http://tjj.shaanxi.gov.cn/tjsj/
http://tjj.shaanxi.gov.cn/tjsj/ndsj/tjnj/
http://tjj.shaanxi.gov.cn/tjsj/ndsj/tjnj/
http://tjj.xa.gov.cn/tjsj/tjxx/1.html
http://tjj.xa.gov.cn/tjsj/tjxx/1.html
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2.3.2. UTD Index

Contagion index describes the degree of aggregation or extension trend of different
patch types in the landscape [38]. In order to quantitatively analyze the quantitative and
spatial distribution characteristics of UTD, the UTD model was developed based on the
contagion index. The formula is calculated as follows:

TQ = ∑m
i=1 Si × Ii /∑m

i=1 Si (2)

UTD = TQ/CONTAG (3)

I = f (t) =


−2, 0 5 t < T − 2m
−1, T − 2m 5 t < T −m
0, T −m 5 t < T + m
1, T + m 5 t < T + 2m
2, T + 2m 5 1

(4)

T = (T − Tmin)/(Tmax − Tmin) (5)

where TQ means the area ratio of different heat island types; Ii represents the different heat
island types, which can be expressed by Equation (4), in which –2, –1, 0, 1, and 2 represent
the ultra-low, low, normal, high, and ultra-high temperature areas, respectively; and T
stands for the arithmetic mean value of the normalized temperature value as determined
by Equation (5), which can be calculated by using the simple arithmetic mean model.
m represents the mean square error of normalized temperature. Si represents the area
occupied by different temperature types. i is the total number of heat island types in the
landscape. UTD index stands for the ratio of TQ to landscape contagion index. Usually,
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the lower the contagion index, the higher the ratio of UTD, which means the higher the
differentiation degree of UTE.

2.3.3. Geo-Explore Model

Spatial differentiation is one of the basic features of geographical phenomena [26].
Wang (2016) further developed a model that can be used to explain its formation reasons.
The Geo-explore model usually consists of four parts: a factor detector, risk detector,
ecological detector, and interaction detector [39]. In this study, the differentiation of UTE
was calculated based on the differentiation and factor detection model (Figure 3).
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The formula of the Geo-explore model is as follows:

q = 1− ∑L
h=1 Nhσ2

h
Nσ2 = 1− SSW

SST
(6)

SSW = ∑L
h=1 Nhσ2

h (7)

SST = Nσ2 (8)

where h (h = 1,2. . .. . .L) is the number of the layer Y or factor X; Nh and N are the layer
number and number of units in the whole study area; σ2

h and σ2 are the variance in the
variables h and Y. SSW and SST are the sum of the squares and the total squares, respectively.
q ranges from 0 to 1, where a higher number indicates that spatial differentiation of the
study area becomes more serious. When q = 1, the variable Y is completely controlled by
the factor X; when q = 0, there is no relationship between the variable Y and the factor X.
In this study, the calculation and statistical analysis were conducted by the Python and
Geo-explore models.

3. Results
3.1. Analysis of Spatio-Temporal Characteristics of AAT

During 1970−2017, the spatio-temporal distribution of the temperature was higher
in the southeast and decreased in the northwest (Figure 4). Ankang City formed a lasting
high-temperature center in the southern area. From 1970 to 2017, the temperature in the
Central area increased steadily. From east to west, the average temperature decreased
successively. The temperature decreased from east to west in the NSA.
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Figure 4. The AAT map of Shaanxi Province from 1970 to 2017; (a) 1970, (b) 1980, (c) 1990, (d) 2000,
(e) 2010, (f) 2017.

The spatio-temporal change characteristics of UTE in the SSA, CSA, and NSA were dif-
ferent during the periods of 1970−1980, 1980−1990, 1990−2000, 2000−2010, and 2010−2017
(Figure 5). The spatio-temporal changes in different stages showed that the first changes
occurred in the NSA during 1970−1980 (Figure 5a), where the maximum temperature
increased by 2.1 ◦C. the second change was located in the eastern Central area, where the
maximum temperature increased by 1.6 ◦C. The largest changes in the thermal environment
were in the southeast and northeast of Shaanxi Province during the period of 1980−1990
(Figure 5b), with an increasing trend in Shaanxi Province during the period of 1990−2000
(Figure 5c). The fastest urbanization was also observed in the period of 2000−2010
(Figure 5d). The slight temperature changes are mainly distributed in the eastern and
northern parts of Shaanxi Province (Figure 5e). The results showed that the greatest
temperature changes were mostly located in the northwest of the NSA (Figure 5f).
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Figure 5. Changes in thermal environment of Shaanxi Province; (a) 1970–1980, (b) 1980–1990,
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3.2. Analysis of the UTD Changes

The UTD index was calculated by formulas 2–4 (Table 2). According to Table 1,
the UTD index increased significantly between 1970 and 1990 and between 2000 and
2010 by 0.51 and 0.27, respectively. The UTD index for the Southern area increased by
0.56, indicating aggravation of the UTD during 1970−2017, mainly between 1970 and
1990. During 1970−1980 and 2000−2017, the UTD index for the Central area increased
significantly by 0.23 and 0.48, which was a significant increase in Shaanxi Province. As a
result of the expansion of urban built-up areas and high population density, the UTD index
of the Central area increased by 0.64 from 1970 to 2017, leading to an abnormal change.
Additionally, the UTD index of the Northern area changed significantly during 1970−1990,
with a cumulative increase of 0.66 in the past 20 years, making it the most dramatic region
in Shaanxi during this period. The correlation coefficients between the UTD and the UTE
are 0.55, 0.64, and 0.53, respectively. The below table shows that the value of the UTD is
increasing, which means that the UTD is becoming more and more serious (Figure 6).
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Table 2. The UTD of thermal environment in Shaanxi Province.

Area Southern Area Central Area Northern Area

Year UTD UTD UTD

1970 −0.09 0.08 −0.21
1980 0.11 0.31 0.26
1990 0.42 0.33 0.45
2000 0.30 0.24 0.23
2010 0.57 0.67 0.34
2017 0.47 0.72 0.45

Sustainability 2023, 15, x FOR PEER REVIEW 10 of 15 
 

 

  

Figure 6. The changes in UTD in Shaanxi Province; (a) Southern area, (b) Central area, (c) Northern 
area. 

Table 2. The UTD of thermal environment in Shaanxi Province. 

Area Southern Area Central Area Northern Area 
Year UTD UTD UTD 
1970 −0.09 0.08 −0.21 
1980 0.11 0.31 0.26 
1990 0.42 0.33 0.45 
2000 0.30 0.24 0.23 
2010 0.57 0.67 0.34 
2017 0.47 0.72 0.45 

Figure 6. The changes in UTD in Shaanxi Province.

3.3. Analysis of the Causes of Temperature Spatio-Temporal Evolution

Using the Principal Component Analysis (PCA) method, seven natural factors, includ-
ing altitude, surface temperature, precipitation, sunshine durations, average wind speed,
evaporation, and relative humidity, were selected in order to further investigate the causes
of temperature changes in different regions and times of the study area. In addition, six
socio-economic factors were selected, such as population, green coverage fate, and park
area per capita. In order to determine the correlation between the temperature change
patterns and the influencing factors in the SSA, CSA, and NSA, the spatial detection and
analysis model was used to analyze the relationship between AT change patterns and their
driving factors in different regions in 2017 (Tables 3 and 4), where their explanatory power
and significance factor are, respectively, expressed as q and p.
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Table 3. Results of seven natural factors influencing AT in different areas of Shaanxi Province in 2017.

Factors

Southern Area Central Area Northern Area

q
Value

p
Value

Sorting of
q Values

q
Value

p
Value

Sorting of
q Values

q
Value p Value Sorting of

q Values

Relative humidity 0.010 1.000 7 0.428 1.000 1 0.177 0.947 3
Surface temperature 0.128 1.000 6 0.387 1.000 2 0.061 1.000 5
Evaporation capacity 0.249 0.999 2 0.089 1.000 4 0.547 0.000 1

Sunshine duration 0.176 0.144 4 0.000 1.000 7 0.159 1.000 4
Average wind speed 0.158 1.000 5 0.056 1.000 5 0.026 1.000 6

Precipitation 0.629 0.007 1 0.023 1.000 6 0.000 1.000 7
Average elevation 0.235 1.000 3 0.355 1.000 3 0.432 0.999 2

Table 4. Results of six socio-economic factors influencing AT in different areas of Shaanxi Province in
2017.

Factor

Southern Area Central Area Northern Area

q
Value

p
Value

Sorting of
q Values

q
Value

p
Value

Sorting of
q Values

q
Value

p
Value

Sorting of
q Values

Population 0.022 1.000 5 0.085 1.000 5 0.025 1.000 6
GDP 0.003 1.000 6 0.149 1.000 4 0.322 0.627 2

Urbanization rate 0.033 1.000 4 0.046 1.000 6 0.377 0.999 1
Built-up area 0.318 0.003 2 0.200 1.000 2 0.224 1.000 3

Green coverage rate 0.078 1.000 3 0.189 1.000 3 0.031 1.000 5
Park area per capita 0.653 0.000 1 0.478 0.988 1 0.034 1.000 4

According to Table 2, precipitation was the key factor influencing the AT in the
Southern areas, followed by elevation and evaporation capacity. A key factor influencing
the AT in the Central area was relative humidity, followed by surface temperature and
elevation. The AT was most affected by evaporation in the Northern area, followed by
elevation and relative humidity. According to the geographical scope of Shaanxi Province,
there were differences in the factors influencing AT in different regions. Geographic
detection also revealed that elevation, sunshine duration, relative humidity, and surface
temperature were the four main natural factors influencing the AT in Shaanxi Province, with
q values of 0.625, 0.612, 0.538, and 0.493, respectively. As a result, the elevation determines
the regional temperature. According to Table 3, the main factor influencing the AT in the
Southern and Central areas was park area per capita, followed by built-up area. In the
Northern area, urbanization rate, GDP, and built-up area were the main factors influencing
the AT. At the same time, geographical detection was conducted in the whole study area,
and the results showed that the main socio-economic factors influencing the AT distribution
in the entire area of Shaanxi Province were park area per capita, green coverage rate, and
urbanization rate. The q values were 0.692, 0.613, and 0.517, respectively, indicating that
socio-economic factors influenced the AT changes differently across geographical and
climatic zones.

4. Discussion

As part of this study, we examined the spatio-temporal characteristics of the UTE in
different regions in Shaanxi Province, as well as the factors that drive its distribution.

Because of an important trade center in the Southern area, Ankang City has become
the second thermal center in the Southern area in terms of regional characteristics of the
terrain, such as a basin in the Qinling Mountain abdomen, and rapid urbanization and
urban population density after 2000, which contributed to the phenomenon. Located in
the south piedmont of the Qinling Mountains, China’s climate demarcation line between
north and south, Hanzhong is the gateway between Shaanxi and Sichuan Province. In the
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east of the Central area, Guanzhong plain had a larger population, was denser industry,
and had a higher AAT than other areas. According to He et al. (2011) [33], the west of
Baoji City is a mountainous area with a greater vegetation cover density than the Central
area, as well as a relatively sparse population, a weak industrial density, and a smaller land
carrying capacity, resulting in a lower AAT, which is consistent with Wang’s (2016) research
findings [4].

Second, artificial construction activities in Shaanxi Province are closely related to
the spatio-temporal variation in AAT (Figure 4), which may increase the intensity of
UTE [18,41], resulting in the deterioration of the UTE in different areas between 1970 and
2017, including the Southern, Central, and Northern regions. This is consistent with previ-
ous studies conducted in Shaanxi Province [28,33] which found that significant changes
in the UTE have been observed in the northwest and southeast of Shaanxi Province. Due
to having imperious surfaces which absorb solar radiation and releasing long-wave radia-
tion [28], which directly warms the air, vegetation reduces solar radiation.

Third, because of its relatively concentrated population distribution, large average
population density, and diversified and rapid economic development [13], the Central
area has become the largest area of UTE change in Shaanxi Province. Shaanxi Province’s
“beautiful mountains project”, implemented at the end of the last century, contributed
to the improvement of the whole environmental quality in the Northern area, not only
improving the regional ecological environment but also contributing to the improvement
of the region’s thermal environment. According to Wang et al. [4] (2016), the thermal
environments in the SSA, CSA, and NSA are quite different, and the changes in the Central
and Northern areas are significant. Considering that vegetation cools and humidifies
the UTE, while man-made surfaces have the opposite effect, in their field measurements,
Zhang [26] (2019) and Wang [4] (2016) also identified such gradients within urban land use
and land cover (LULC). It is also widely accepted that changing LULC is one of the main
factors influencing UTE change [5].

Lastly, the continuous rise of AT in Shaanxi Province over the past 47 years was a
positive response to global warming. Second, it was closely related to the high-speed
industrialization and urbanization process in Shaanxi Province. Statistics show that both
of these factors, in Shaanxi Province, increased by an average of 15.8%, and 1.34% per
year during the past 47 years. Our results revealed that the geographical latitudes of
the Southern, Central, and Northern areas increased successively, with a minimum of
31.42 ◦C, a maximum of 39.35 ◦C, and a latitude difference of 753 m. According to the
above analysis, the average AT was the highest in the SSA, followed by the CSA, and
was lowest in the NSA. Meanwhile, the average elevations of the three areas were 1583,
520, and 1050 m, with Southern Shaanxi having the highest elevation, and Shangluo City
having an elevation of 800 m; Ankang city had an elevation of 330 m, and Hanzhong City
had an elevation of 510 m. the maximum temperature in Southern Shaanxi occurred in
Ankang, and the minimum temperature occurred in the Shangluo area, which supports the
general theory that, the higher the average elevation, the lower the AT. Our results were in
accordance with MAT statistics at different stations. A linear correlation was found between
the characteristics of temperature distribution in the Central area and its economy and
industrialization. During rapid industrialization, large emissions of greenhouse gases were
released, with cumulative and average annual growth rates of 6.8% and 7.1%, respectively,
which contributed to the warming of local microclimates. The Northern area temperatures
decreased from south to north and east to west. One reason for this was the temperature
gradient characteristic, which was naturally formed by the geographical location difference;
on the other hand, it was the moreso result of the higher industrialization level in the
eastern part of the NSA than that in the western part of Shaanxi Province.

5. Conclusions

Through the use of the Geo-explore model, this study examined the spatio-temporal
differentiation characteristics’ variation in UTE and its influencing factors. There was an
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overall increase in AAT differences between the Southern, Central, and Northern areas at
different times. Spatio-temporal patterns of the AT showed a decreasing trend from south
to north and east to west, with the most obvious changes in the northern area. The UTD
performance was relatively stable, and the characteristics of mutation were demonstrated
in the SSA, CSA, and NSA, with the NSA having the largest change range, followed by the
SSA, and the CSA having the smallest change range. In Shaanxi Province, the differentiation
of the UTE has increased since 2000 in different regions. According to the Geo-explorer
model, elevation, sunshine duration, relative humidity, and surface temperature were the
main factors influencing AT changes in Shaanxi Province. The AT changes were primarily
influenced by the park area per capita, green coverage rate, and urbanization rate, with
urbanization causing most of the changes in UTE in the Central area of Shaanxi Province.
The purpose of this study is to provide a scientific basis for mitigating UTE, as well as
practical guidelines for mitigating the UTE by improving our understanding of how the AT
interacts with natural and socioeconomic factors.

However, we only conducted our study in one province using in-situ observation.
Despite the fact that observations were conducted at various stations, the data from a
limited number of stations does not represent the full range of UTE. UTD indexes calculated
using a limited number of stations may vary with the selection of stations, resulting in the
uncertainty of this study. Meanwhile, this study only analyzed the UTE characteristics
and their influencing factors during the daytime, without considering the nighttime UTE
characteristics and their influencing factors. For future studies, not only the nighttime UTE
characteristics should be considered, but also more observation stations will be needed
to increase the reliability of the results. Although our results are consistent with many
previous studies, it is possible that the UTD in other provinces may show different patterns.
In the future, relative humidity will also need to be studied. It is also necessary to conduct
a comparison among different cities.
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