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Abstract: We investigated the structure of science motivation among a nationally representative
sample of grade 8 students in the United States from the TIMSS dataset. Drawing on an integrative
conceptual model of motivation, the following constructs from situative expectancy-value theory
(SEVT) and self-determination theory (SDT) were examined through confirmatory factor analyses,
including self-concept, task value (intrinsic and utility value), and sense of relatedness, to test the
underlying factor structure of motivation. Internal validity evidence was established, which showed
that a four-factor model fits the data significantly better than a three-factor model and one-factor
model. This study contributes to the current literature by providing evidence of the four dimensions
of motivation in a manner that is theoretically aligned with SEVT and SDT, and validated using the
TIMSS dataset. The student’s sense of relatedness as a key interpersonal facet of learning motivation
is highlighted in this study.

Keywords: situative expectancy-value theory; integrative approach; model testing; self-determination
theory; science-learning motivation

1. Introduction

Student motivation, or the drive that sustains students’ attention and engagement
in learning [1] (Schunk and DiBenedetto, 2020), continues to be a major focus of national
and international research and policy. A large body of literature demonstrates motivation
as a crucial antecedent to students’ academic achievement in science [2–4] (Pintrich, 2003;
Wigfield and Eccles, 2002; and Zhang et al., 2021). Further, findings from studies using
national or international datasets to examine the link between student motivation and
desired educational outcomes provide notable value, given that large, representative
sample sizes facilitate more robust inferences about patterns at the national or global
scale e.g., [5–7] (e.g., Di Chiacchio et al., 2016; Grabau and Ma, 2017; and Liou, 2017).
Specifically, a substantial body of research, using the Trends in International Mathematics
and Science Study (TIMSS) dataset, has accumulated in the last decade that has examined
students’ motivation in science e.g., [8–12] (e.g., Berger et al., 2020; Guo et al., 2017, 2018;
and Wang and Liou, 2017, 2018). Although these findings point to statistically significant
positive relationships between student motivation factors and their science achievement,
findings from a recent systematic literature review of TIMSS motivation studies show
that items chosen to measure the motivation factors vary considerably across studies.
Specifically, studies vary in terms of the definitional alignment between the items and
the corresponding motivation construct, as well as between the constructs and theoretical
framework(s) presented [13] (Zhang and Bae, 2020).

These findings point to the need for a close examination, both empirically (e.g., internal
consistency and factor structure) and theoretically (e.g., alignment to established definitions
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and frameworks), of motivation constructs developed using items in the TIMSS dataset.
Establishing the factor structure and theoretical soundness of motivation constructs is
important in order to allow researchers to compare findings across TIMSS studies. Further,
the lack of validation of the factor structure for motivation constructs used to estimate
inferential models (e.g., multiple regression model and structural equation models) in the
current TIMSS literature is problematic because, as a prerequisite, gathering measurement
validity evidence on the internal structure is essential to performing inferential analyses [14]
(Kline, 2015).

Inspired by the need to contribute a more nuanced understanding of the empirical
and theoretical nature of motivation constructs in the context of TIMSS, we examined
the motivation factor structure of students’ ratings obtained from the TIMSS student
questionnaire by taking an integrative motivation perspective [15] (Linnenbrink-Garcia
and Wormington, 2019). In doing so, we drew upon two motivation theories prominently
cited in existing TIMSS studies [13] (Zhang and Bae, 2020). Thus, the main purpose of this
study was to test the factor structure of motivation using theoretically aligned items from
the TIMSS dataset. In the following sections, we presented the gaps among motivational
constructs in TIMSS, conceptualized motivation in an integrative approach, and reviewed
the two leading motivational frameworks used in the study.

1.1. Discrepancies in How Motivation Constructs and Theories Are Presented in TIMSS Studies

Various motivation constructs and frameworks have been cited across TIMSS studies;
however, the items used to specify the constructs and the theoretical alignment among
constructs and items vary widely across studies (see [13] Zhang and Bae, 2020 for a review).
For instance, drawing from SDT [16] (Ryan and Deci, 2000), Lay and Chandrasegaran
(2016) [17] conceptualized students’ motivation as confidence in science (i.e., self-efficacy or
self-concept), with nine items from the TIMSS questionnaire, intrinsic motivation consisting
of five items, and extrinsic motivation consisting of six items. In contrast, another TIMSS
science motivation study that also drew on SDT conceptualized motivation as science
self-efficacy specified by a different set of five items, and intrinsic motivation consisting
of 13 items (Leong et al., 2018) [18]. In addition to different constructs being used under
the same framework across studies with varying degrees of theoretical alignment, the
number and nature of items used to measure the same motivation constructs also varied
across studies. Taking self-belief-related factors as an example, science self-concept was
constructed with five (e.g., Guo et al., 2018) [10], four (e.g., Liou, 2014; and Tsai and Yang,
2015) [19,20], or nine (e.g., Wang and Liou, 2017, 2018) [11,12] different motivational items
across studies. As another example, confidence in science consisted of four (e.g., Gao,
2014) [21], six (e.g., House and Telese, 2017; and Liu and Wang, 2019) [22,23], or nine
(e.g., Akilli, 2015; and Lay and Chandrasegaran, 2016) [17,24] different items. Similar
inconsistencies also existed for other motivation constructs, such as intrinsic value, interest,
intrinsic/extrinsic motivation, attitude towards science, utility value, and general value
in science (e.g., Akilli, 2015; Liou, 2017; and Liou and Liu, 2015) [7,24,25]. Taken together,
because of the theoretical misalignment among motivational constructs and items across
TIMSS studies, there is a need to examine an integrative measurement model.

Based on a systematic literature review of motivation items, constructs, and related
frameworks in TIMSS studies [13] (Zhang and Bae, 2020), the current study aims to empiri-
cally test an integrative measurement model that draws together SDT and SEVT constructs
that are best represented by items on the TIMSS student questionnaire. This study con-
tributed to the small line of research on examining middle school students’ science-learning
motivation in the context of an international large-scale assessment. Additionally, results
from a recent study examining measurement models underlying motivational constructs
with TIMSS data from 58 countries showed that, although self-beliefs and intrinsic moti-
vation scales are assumed to be unidimensional, the single-dimension CFA model failed
to satisfactorily fit in all 58 country cases [26] (Pedrero and Manzi, 2020). Their results
also showed cultural biases in response patterns, showing that only the motivation scale
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in Science and Mathematics presents an acceptable level of invariance to produce valid
comparisons across the different countries. We extend their findings by examining the
utility value (i.e., the usefulness of learning) and sense of relatedness (i.e., belonging to
schooling), in addition to self-beliefs and intrinsic motivation (conceptualized as intrinsic
value in this study) in science learning. In doing so, we provide a more comprehensive
model of motivation.

1.2. Integrative Approach to Conceptualizing Motivation

It is important to integrate motivation frameworks that comprehensively account for
the different types of motivation in science [15] (Linnenbrink-Garcia and Wormington,
2019). Representing the complex student drives in science learning, motivation has re-
cently been conceptualized as multifaceted [27,28] (Chen et al., 2019; and Dweck, 2017).
That is, concentrating on a single motivation theory often fails to take into account how
different motivation factors influence students’ learning interactively. As a result, doing
so contributes to the mismatch between competing motivation research that is siloed by
a particular theory or tradition, and the experiences that teachers report regarding the
complex nature of student motivation in their classrooms [15] (Linnenbrink-Garcia and
Wormington, 2019).

In line with these contemporary efforts [15,27,28] (Chen et al., 2019; Dweck, 2017; and
Linnenbrink-Garcia and Wormington, 2019), to provide a more complete and nuanced
picture of how students are motivated in science learning, we integrate motivation con-
structs across SEVT and SDT in the current study. These frameworks were selected because
SEVT has been shown as the most frequently used framework in TIMSS science motivation
studies [13] (Zhang and Bae, 2020). SDT is integrated to account for student interpersonal
motivation in learning (i.e., sense of relatedness) and has also been cited in past TIMSS stud-
ies (e.g., Leong et al., 2018) [18]. These motivation theories and corresponding constructs
are reviewed next.

1.3. A Brief Review of Motivational Frameworks and Self-Beliefs
1.3.1. Situated Expectancy-Value Theory (SEVT)

As a developmental model of learning motivation, SEVT proposes that students’
competence beliefs, expectancy for success, and task values predict students’ academic
learning motivation and pursuit of achievement goals (Eccles and Wigfield, 2020; and
Wigfield and Eccles, 2002) [3,29]. Notably, we drew from SEVT throughout the study
instead of the Expectancy-Value Theory (Wigfield and Eccles, 2002) [3] to acknowledge the
situated nature of the theoretical tenets.

There are different self-belief- or competence-belief-related constructs, such as self-
concept and self-efficacy (detailed further below). With regard to the task values in SEVT,
the intrinsic value represents enjoyment when performing an assignment, and the utility
value, which is also called usefulness, refers to how a task fits into an individual’s plans
(Eccles and Wigfield, 2020; and Wigfield and Eccles, 2002) [3,29]. Several TIMSS items
in the student science questionnaire directly tap into students’ task values (e.g., intrinsic
value: “I learn many interesting things in science” and utility value: “I need to do well in
science to get the job I want”). In this study, we examined whether students value learning
science as a general task value construct (i.e., task value) or distinguish between enjoying
learning science (i.e., intrinsic value) and thinking learning science is useful and important
(i.e., utility value).

1.3.2. Self-Determination Theory (SDT)

Another leading motivational framework, SDT, proposes that competence, relatedness,
and autonomy are three basic psychological needs that underlie intrinsic motivation, or do-
ing something for one’s inherent interest and enjoyment (Ryan and Deci, 2000, 2020) [16,30].
As a broader framework of human motivation, SDT articulates intrinsic motivation and
varied extrinsic sources of motivation that play important roles in students’ learning behav-
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iors. Autonomy refers to the need to feel like one has choice and agency in one’s learning
process (Ryan and Deci, 2000) [16]. Similar to other self-belief constructs, competence
refers to a feeling or a sense of confidence and ability to accomplish a task well. Finally,
relatedness, often referred to as a sense of belongingness, is the need to feel connected
to others (Ryan and Deci, 2000) [16]. Based on the items available in the TIMSS student
questionnaire, we focus on the relatedness construct in this study. Past studies have shown
that a sense of relatedness, such as perceiving teachers as being caring or having positive
relationships with peers, facilitated students’ motivation to engage in learning science and
science achievement (Marshik et al., 2017; Martin et al., 2016a; Ryan and Grolnick, 1986;
and Zhang et al., 2021) [4,31–33]. Thus, drawing from SDT, relatedness, a fundamental
interpersonal need that supports students’ motivation to learn in school, was included and
examined in this study as a key motivation construct.

1.3.3. Self-Concept and Self-Efficacy

There are many constructs related to students’ ability, concepts or beliefs that have
been used in TIMSS science motivation studies, including confidence, self-concept, and
self-efficacy (Zhang and Bae, 2020) [13]. In the present study, self-concept was used to
represent students’ beliefs in their science-learning ability. We chose self-concept because
it refers to the evaluation of one’s own general ability in a domain (Marsh and Martin,
2011) [34], compared to self-efficacy, which represents one’s perception of one’s ability to
successfully complete a specific academic assignment or achieve an academic goal (Bong
and Skaalvik, 2003; and Pajares, 1996) [35,36]. That is, self-efficacy focuses on specific
perceptions of whether an assignment can be completed successfully or a goal can be
reached (Jansen et al., 2015) [37]. However, belief-related items in TIMSS student science
questionnaires (e.g., “I usually do well in science.”) focus more on the general science
subject domain rather than a specific assignment, such as completing an experiment. As
a more global construct referring to general ability, student self-concept in science was
included and examined in the measurement models.

1.4. Baseline vs. Three-Factor vs. Four-Factor Motivation Structure

In this study, we systematically tested a one-, three-, and four-factor structure of
motivation. The one-factor model was used as a baseline model (e.g., Ben-Eliyahu et al.,
2018; and Brown, 2015) [38,39]. We hypothesized that motivation is multidimensional.
Specifically, taking an integrative approach that draws on SEVT and SDT, we investigated
whether the science-learning motivation factor structure was best represented by four fac-
tors, including self-concept, intrinsic value, utility value, and sense of relatedness (Figure 1,
Model 1) or by three factors, in which intrinsic value and utility value was combined as a
general task value factor (Figure 1, Model 2). The theoretical foundation for the four-factor
structure (Model 1) is that separateness of task values exists, where a student completes
learning tasks either because of the enjoyment of learning (i.e., intrinsic value) or the use-
fulness of the learning (i.e., utility value). The three-factor model was based on literature in
which researchers caution against unnecessary overlap among constructs when applying
an integrative approach, thus striking a balance between capturing students’ learning
motivation as comprehensively but also as parsimoniously as possible (Linnenbrink-Garcia
and Wormington, 2019) [15]. It is possible that facets of task intrinsic and utility values
could overlap; for example, no matter which value underlies students’ motivation (i.e., the
enjoyment and/or the usefulness of the learning task), there may be a broad value that
the student holds to learn the subject that is better represented by a general value (versus
separate intrinsic and utility value) factors.
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We did not examine a two-factor solution, one with SEVT and the other with SDT, be-
cause, based on the other TIMSS motivation studies, self-concept and task values were two
factors that were widely drawn from SEVT together. Thus, from a theoretical perspective
and empirical TIMSS motivation research, we did not examine a two-factor structure in
this study.

1.5. The Present Study

This study aimed to investigate the factor structure of students’ motivation in science
learning by using theoretically aligned items from the TIMSS international database. There
are studies examining teachers’ perceptions of teaching (e.g., Cascarosa et al., 2021; and
Wardat et al., 2022) [40,41], while others focus on students’ perceptions of the learning
process (e.g., Oo et al., 2023) [42], and the current study used TIMSS student questionnaires
to examine students’ perceptions of science-learning motivation specifically. The measure-
ment model of student science motivation in the study integrated both SEVT and SDT
frameworks to include a comprehensive set of motivation constructs. We systematically
examined a baseline, three-factor, and four-factor model of science motivation to determine
the best-fitting model using confirmatory factor analysis (CFA).

The following research question guided our study: Does a four-factor motivation struc-
ture (self-concept, intrinsic value, utility value, and relatedness) fit the TIMSS data better than
a three-factor structure in which the task values are combined (self-concept, task value, and
relatedness) and a one-factor structure (baseline model) for U.S. grade 8 students’ motivation
in science learning?
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2. Materials and Methods
2.1. Dataset and Sample

Grade 8 U.S. student data from TIMSS 2015 datasets were used in this study. The
International Association for the Evaluation of Educational Achievement (IEA) has ad-
ministered TIMSS aiming to understand the impact of educational policies and practices
across different education systems since 1995 (Mullis and Martin, 2015) [43]. TIMSS em-
ployed a nested two-stage randomized cluster sampling design to account for selection
bias (LaRoche et al., 2016; and Martin et al., 2016b) [44,45]. In this study, we specifically
focused on the data collected in the United States. We took sampling weights into consid-
eration to ensure an accurate representation of the population. Sampling weights are the
number of individuals in the population each respondent in the sample is representing.
After excluding 66 completely missing cases, we retained a final sample size of 14,291
grade 8 students representing (with sampling weights) 3,656,774 students in the U.S., with
a mean age of 14.27 years (SD = 1.79). Half (50%) of the sample (N = 7147) are boys. Among
the 246 sampled schools, the number of sampled students per school ranged from 3 to
244. Around 89% of students always or almost always speak English at home, and 1.2% of
students never speak English at home at all.

2.2. Measures

Each student participating in TIMSS completed a Student Questionnaire that asked
about aspects of their home and school lives, including basic demographic information,
characteristics of their home environment, school climate for learning, and self-perception
and attitudes toward learning mathematics and science. Questionnaire items were selected
from grade 8 student data files that reflected motivation constructs in this study. Item
selection was based on definitions of constructs from the SDT and SEVT motivational
frameworks (see Zhang and Bae, 2020 for review) [13]. Selected items were used to specify
four motivation factors: self-concept, intrinsic value, utility value, and relatedness. Intrinsic
value and utility value were combined as task value in the three-factor structure. Items
measuring motivation constructs reflect students’ self-reported levels of agreement with a
4-point Likert response scale, from 1 (disagree a lot) to 4 (agree a lot), so that a higher scale
represents a higher level of agreement with the item. We followed the suggestion by Taber
(2018) [46] that Cronbach’s alpha should reach 0.70 for an instrument to have an acceptable
level of internal consistency in science education (Table 1).

Table 1. Descriptive statistics for motivational constructs and corresponding items in TIMSS data.

Factors (Alpha) # Items Factor
Loadings Mean (SD 1)

Self-concept (0.85)

1 I usually do well in science. 0.86 3.32 (0.79)

2 I learn things quickly in science. 0.86 3.04 (0.90)

3 I am good at working out difficult science problems. 0.87 2.79 (0.97)

4 My teachers tell me I am good at science. 0.79 2.75 (1.00)

Intrinsic value—task value
(0.94)

5 I enjoy learning science. 0.89 3.12 (0.94)

6 I learn many interesting things in science. 0.78 3.34 (0.84)

7 I like science. 0.87 3.13 (0.96)

8 I look forward to learning science in school. 0.88 2.97 (0.99)

9 Science is one of my favorite subjects. 0.90 2.87 (1.07)
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Table 1. Cont.

Factors (Alpha) # Items Factor
Loadings Mean (SD 1)

Utility value—task value
(0.91)

10 I think learning science will help me in my daily life. 0.83 3.11 (0.92)

11 I need to do well in science to get into the university
of my choice. 0.89 3.24 (0.91)

12 I need to do well in science to get the job I want. 0.87 3.00 (1.03)

13 It is important to learn about science to get ahead in
the world. 0.91 3.13 (0.93)

14 Learning science will give me more job opportunities
when I am an adult. 0.91 3.20 (0.93)

15 It is important to do well in science. 0.87 3.44 (0.80)

Relatedness (0.80)

16 I like being in school. 0.69 2.86 (0.88)

17 I feel safe when I am at school. 0.71 3.18 (0.85)

18 I feel like I belong to this school. 0.70 3.07 (0.95)

19 I’m proud to go to this school. 0.78 3.09 (0.95)
1: SD represents standard deviation.

Self-concept: Based on the theoretical framework of SEVT and the comparison of self-concept
versus self-efficacy in the first section, four items (items 1–4) related to competence beliefs were
selected for self-concept, for example, “I usually do well in science” and “I learn things quickly in
science”. Cronbach’s alpha reliability coefficient was 0.85 for self-concept ratings.

Task value—intrinsic value: As one of the task values in SEVT, intrinsic value consisted
of five items (items 5–9) related to students’ intrinsic enjoyment from learning science, for
example, “I enjoy learning science” and “I look forward to learning science in school”. Items
that were related to interest, but not clearly aligned to the definition of this construct, such
as “Science teaches me how things in the world work”, were excluded, as this statement
emphasizes the effect of science on the students more than students’ inner interest in science.
Cronbach’s alpha reliability coefficient was 0.94 for intrinsic value ratings.

Task value—utility value: Six items (items 10–15) reflecting students’ self-perceived
value of learning science were included to represent utility value, for example, “It is
important to learn about science to get ahead in the world” and “Learning science will give
me more job opportunities when I am an adult”. Cronbach’s alpha reliability coefficient
was 0.91 for utility value ratings.

Relatedness: Drawing from SDT, students’ sense of relatedness consisted of four items
(items 16–19) regarding a sense of belongingness, for example, “I like being in school” and
“I feel like I belong to this school”. Cronbach’s alpha reliability coefficient was 0.80 for
relatedness ratings.

2.3. Analyses

Confirmatory factor analysis (CFA) was employed using Stata Version 14.2 to examine
the factor structure of motivation in the TIMSS dataset. CFA is often used in psychometric
evaluations of instruments to determine the underlying structure of a scale and provide
supportive evidence for the construct validity of a measure. This technique can both
illuminate the number of underlying latent dimensions present in a set of items, as well
as estimate the set of item-to-factor relationships, or loadings (Brown, 2006) [47]. When
conducting a CFA, the number of factors that exist for a set of items and the extent to which
each item is related to its designated factor are all specified a priori based on theory. Thus,
in this study, the CFA tests how well the theoretical specification of motivation (three-factor
vs. four-factor) fits with the TIMSS student data.
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First, we examined a baseline model where all items are loaded on a single (one-factor)
motivation factor (Model 0). This was treated as the baseline model, and served as the
comparison point for the theoretically justified models tested next. We then compared
two alternative multidimensional models of motivation: the four-factor model (Figure 1,
Model 1) and the three-factor model (Figure 1, Model 2). The four-factor model tested
whether or not the science-learning motivation model in TIMSS is best represented by four
latent variables, including self-concept, intrinsic value, utility value, and relatedness. The
three-factor model (Model 2) tested whether or not the science-learning motivation model
in TIMSS is best represented by three latent variables, namely, self-concept, task value, and
relatedness, in which intrinsic value and utility value are encompassed by general task
value factor.

The maximum likelihood robust estimation was used to account for the non-independence
of missing data by using method (mlmv) because of the small amounts of missingness
automatically (N = 66). The CFA models were assessed using a set of absolute (fit from the
obtained and implied covariance matrix), relative (fit from model test to a null model that
specifies no latent variables), and comparative (relative fit of tested model compared with
baseline model) goodness of fit (GOF) indices to determine the best-fitting model. The Root
Mean Square Error of Approximation (RMSEA) adjusts for model complexity, making it
sensitive to the number of parameters in the model (Brown, 2006) [47], with values of less
than 0.06 considered a good fit (Hooper et al., 2008) [48]. The Comparative Fit Index (CFI:
Bentler, 1990) [49] and the Tucker–Lewis Index (TLI: Tucker and Lewis, 1973) [50] compare
the user-specified model to a baseline model, with values greater than 0.95 indicating good
fit (Hu and Bentler, 1998, 1999) [51,52]. The Standardised Root Mean Square Residual
(SRMR) is the square root of the difference between the residuals of the sample covariance
matrix and the hypothesized covariance model, with values of less than 0.06 indicating
good fit (Hu and Bentler, 1998, 1999; Kline, 2005) [51–53]. A probability value of α = 0.05
for the chi-square (χ2) test statistic is also reported but not used as a reference because
chi-squared tests of model fit are often overly sensitive in large sample sizes, resulting in
falsely rejecting an appropriate model (Gatignon, 2010) [54].

3. Results
3.1. Descriptive Statistics

Table 1 shows the descriptive statistics (mean and standard deviation) and factor
loadings for all items. Factor loadings for self-concept ranged from 0.79 to 0.87, intrinsic
value from 0.78 to 0.90, utility value from 0.83 to 0.91, and relatedness from 0.69 to 0.78. All
the standardized factor loadings of the items were above the threshold limit of 0.6 (Hair
et al., 1998, 2010) [55,56].

3.2. CFA Results for Motivation Structure Models

Below, the results of three competing measurement models of motivation are presented,
including the baseline (Model 0), four-factor (Model 1), and three-factor (Model 2) models.
Table 2 shows the results of the model GOF indices for all three models.

Table 2. Results of CFA comparing three competing models of motivation in TIMSS data.

Model # of Factors χ2 df RMSEA CFI TLI SRMR Range of Stdyx.
Factor Loadings

Model 0: Baseline 1 54,276 152 0.17 0.67 0.63 0.12 0.19–0.88
Model 1: SC, IV, UV, R 1 4 5045 146 0.05 0.97 0.97 0.04 0.61–0.92
Model 2: SC, TV, R 3 32,428 149 0.13 0.80 0.77 0.09 0.56–0.89

1: SC = self-concept; IV = intrinsic value; UV = utility value; R = relatedness; TV = task value that includes intrinsic
value and utility value.

Baseline (Model 0): The one-factor (baseline) model where all 19 items were loaded
onto a single latent construct of motivation (Figure 2, Model 0) showed a poor model fit
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to the data (RMSEA = 0.17, CFI = 0.67, TLI = 0.63, and SRMR = 0.12). An examination
of the factor loadings showed that the intrinsic value items loaded well on the one-factor
motivation latent construct (e.g., 0.85 for item 5 and 0.88 for item 7), whereas the sense of
relatedness items showed low factor loadings (e.g., 0.19 for item 17).
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 Figure 2. Motivation measurement models for baseline model, four-factor model, and three-factor model.

Four-factor (Model 1): The four-factor model included four latent variables represent-
ing self-concept (items 1–4), intrinsic value (items 5–9), utility value (items 10–15), and
relatedness (items 16–19). The results showed a good fit of the four-factor model to the data
(RMSEA = 0.05, CFI = 0.97, TLI = 0.97, and SRMR = 0.04). In addition to the substantial
improvements over the baseline model in terms of the GOF indices, an examination of the
factor loadings showed that all items loaded highly on their corresponding latent variables
(ranging from 0.61 to 0.92).

Three-factor (Model 2): The three-factor model with intrinsic value and utility value
combined together as a general task value factor also showed an improved model fit
compared to the baseline model. However, the GOF indices for Model 2 did not provide
evidence for an adequate model fit to the data (RMSEA = 0.13, CFI = 0.80, TLI = 0.77, and
SRMR = 0.09). Thus, the results do not support a three-factor model where the intrinsic
value and utility value are encompassed by a general task value factor.

4. Discussion

Drawing from SEVT and SDT, this study provides evidence for a four-factor model as
an empirically supported and theoretically sound structure of science-learning motivation
among middle school students (grade 8) using a large national dataset from TIMSS. In
terms of the theoretical alignment of items and corresponding constructs, the findings
suggest that the best-fitting science-learning motivation structure includes four unique
dimensions, including self-concept, intrinsic value, utility value, and sense of relatedness.
This examination of the motivation factor structure underlying the data from items available
in the TIMSS student questionnaire extends our understanding of the dimensions of
students’ drive to learn science during an important developmental period in which
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students are formalizing their attitudes towards academic activities and choices related to
future professional careers.

First, we found that when intrinsic value and utility value are combined to represent a
general task value factor (Model 2), the model showed a poor model fit to the data. This
provides evidence that intrinsic value and utility value should be separated when examining
students’ science-learning motivation. Theoretically speaking, the separation of the task
value components in the four-factor structural model makes students’ motivation in science
learning more specific, and further contributes to the CFA results. From the perspective
of SEVT and SDT, learning motivation comes from internal drives and external stimuli;
therefore, the four-factor structural model more accurately captures students’ intrinsic and
extrinsic aspects of science learning compared to the three-factor structural model. The
results also echoed the need for theory integration (Rosli et al., 2022) [57]. Prior TIMSS
motivation studies have also separated the intrinsic value and utility value when examin-
ing the relationship between students’ motivation and science achievement (e.g., Lay and
Chandrasegaran, 2016; Liou et al., 2020; and Wang and Liou, 2017) [11,17,58] and found that
the strength of the two task values were different in predicting the outcomes. For example,
Wang and Liou (2017) [11] found that intrinsic value (b = 5.23, p < 0.01) and utility value
(b = 3.2, p < 0.05) were separately and positively associated with science achievement at
the student level. However, some other studies that examined science-learning motivation
with TIMSS data have used a general value in science as one of the indicators for science
motivation. For instance, Leong and colleagues (2018) [18] constructed a general value in
science with items from both the intrinsic value (e.g., I enjoy learning science) and utility
value (e.g., I think learning science will help me in my daily life). Similarly, Yetisir (2014) [59]
examined motivational factors that influence students’ science achievement and used
20 items together, consisting of students’ attitudes towards science. Based on the find-
ings from our study, we recommend constructing science-learning motivation into four
dimensions that model the intrinsic value and utility value as distinct factors.

The second major finding of this study concerns the clear identification of the sense of
relatedness factor as a specific dimension of science-learning motivation among middle
school students. This finding should be highlighted because few previous TIMSS studies of
science-learning motivation have included students’ sense of relatedness, as conceptualized
in SDT. That is, although prior studies have cited SDT as a guiding framework, they used
SDT to construct intrinsic and extrinsic motivation, as well as belief-related factors (e.g.,
Lay and Chandrasegaran, 2016; and Leong et al., 2018) [17,18]. Based on a systematic
literature review, we propose that items available in the TIMSS student questionnaire align
better with one of the basic needs underlying intrinsic motivation, namely, relatedness. The
results from this study provide empirical evidence for the inclusion of this interpersonal
component of student motivation in middle school, a period when peer relationships are
shown to be more important in school learning experiences in diverse student populations
(Brown and Larson, 2009; and Longobardi et al., 2016) [60,61]. Aligned with SDT, sense
of relatedness in learning is the influence of teachers or peers in schools. Relatedness is
shown to be an important indicator of social engagement in learning among secondary
school learners. Importantly, the inclusion of relatedness is also in agreement with the
recent science education reforms in the U.S., which put weight on students’ social learning
activities such as engagement in science argumentation with peers in class.

Taken together, our integrative approach aligns with contemporary work in which
scholars argue that “students enter classrooms with myriad reasons to learn or disengage,
and these reasons are not necessarily captured by one particular motivational theory”
(Linnenbrink-Garcia and Wormington, 2019, p. 740) [15]. Our identification of motivation
structures that are multifaceted opens the way for a more nuanced investigation of the
patterns of science-learning motivation, using constructs that are empirically validated and
theoretically aligned to related frameworks.
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4.1. Practical Implications

While this study is largely aimed at advancing the understanding of the factor structure
of science-learning motivation among middle school students from available TIMSS data,
the results also have implications for practice. First, from an assessment perspective, this
study supports the reliance on subtests designed to assess specific dimensions of task
values (e.g., intrinsic value and utility value) for middle school students, as those that
do not appear to reflect specific, distinguishable task values for students showed a poor
model fit to the three-factor structure of science-learning motivation. Here, we are echoing
a point made by task value researchers (e.g., Gaspard et al., 2017; Guo et al., 2016; and
Kiuru et al., 2020) [62–64] that, for students in middle school, their learning motivation
reflects a multifaceted underlying trait, and it seems best to rely on various assessments of
science-learning motivation to explore individual differences and, potentially, to identify
students with different dimensions of motivation, warranting different attention. The
identification of unique motivation structures supports future research aiming to tease
apart which and how different motivations underlie students’ learning and achievement
in science.

Next, with respect to instructional practices, this study supports the notion that stu-
dents’ sense of relatedness reflects a distinguishable type of motivation. There is increasing
awareness of the importance of relatedness or belonging to learning motivation, and the
crucial role of educators in facilitating students’ sense of relatedness in school through posi-
tive teacher-to-student relationships and prosocial classroom climates. Previous research
has provided recommendations for how this may be addressed. For instance, practical
implications for educators to create this sense of relatedness include creating ongoing learn-
ing opportunities for students to engage in collaborative group work with clear purposes,
roles, and shared goals (Anderman, 2003) [65]; teaching students strategies to strengthen
interpersonal connections (e.g., providing constructive feedback to peers and working
together towards mastery); and modeling caring and emotionally supportive behaviors for
students to adopt towards an inquiry-based student-centered classroom climate (Moote,
2020) [66]. Our findings provide additional support for the idea that this interpersonal
dimension is an important aspect of students’ science-learning motivation.

4.2. Limitations

This study has several limitations that warrant consideration. We constructed science-
learning motivation in this study in a general science domain; therefore, for future re-
searchers conducting studies in specific science subjects, such as physics, chemistry, and
biology, the items should be verified. Next, although our results regarding the factor
structure of science-learning motivation can be considered more robust than previous
TIMSS studies examining science motivation measurement models, in terms of the latent
approach utilized in CFA analyses and the integration of multiple motivational theories,
we acknowledge that these findings may lack generalizability given that students in this
study were specific to the U.S. International large-scale datasets are always used to compare
teaching and learning outcomes among various educational systems (e.g., Messina, 2023;
Saal and Graham, 2023; and Zhang et al., 2023) [67–69], and the current study used U.S.
data specifically; therefore, cultural differences should be taken into account in further
studies. Considering the discrepancy of cultural and educational backgrounds and the com-
plex nature of student motivation as it relates to their learning ecologies, future research,
particularly studies that examine students’ science-learning motivation from Eastern cul-
tures, is warranted to generalize the findings in this study. Another limitation concerns the
cross-sectional nature of TIMSS data which has limitations in tracking students’ progress.
Further tracking design studies are suggested. While we may infer that discrepancies
existing in the factor structure of science-learning motivation could be borne out with a
longitudinal assessment, this requires additional empirical investigation.
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5. Conclusions

This study looks intensively at the dimensionality of science-learning motivation for
middle school students, corresponding to the time period in which students typically for-
malize their attitudes towards academic activities and choices related to professional careers.
Our results help us to understand more explicitly the nature of students’ science-learning
motivation during these formative years of schooling and science skill development. The
results from the CFA analyses indicate that a four-factor structure representation of science-
learning motivation emerged, comprising self-concept, intrinsic value, utility value, and
sense of relatedness.

The issue of how motivation constructs are formed from TIMSS items requires closer
examination and further explanation from both a statistical and theoretical standpoint
based on an initial systematic literature review work (Zhang and Bae, 2020) [13], and,
in view of the significance of integrating different motivational frameworks (Wigfield
and Eccles, 2020) [70], a multifaceted motivation is required. This measurement study
addresses those needs. The findings of this study contribute to the theoretical development
of motivation specific to TIMSS data, and support the consistent, valid, and theoretically
aligned use of motivation items from the TIMSS student questionnaire, that, together, can
produce knowledge with which to inform educators and policy-makers in how to support
students’ motivation for success in science.
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