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Abstract: In recent years, solar power technology and energy storage technology have advanced,
leading to the increased use of solar power devices and energy storage systems in residential areas.
Carbon management has become an important method to help the community manager guide
energy consumption in a timely manner, effectively reduce the carbon emissions of the community,
and reduce the substantial harm to the environment. This paper aims to study the issue of carbon
management and resource allocation in an intelligent community with combined heat and power
(CHP) systems and solar power. The presence of heterogeneous load demands in the power grid was
considered. The main objective was to minimize the average system cost over time, which included
the costs associated with the power grid and gas. The Lyapunov optimization theory was employed
to solve the non-convex optimization problem of carbon management and resource allocation without
energy sharing. To solve the energy-sharing problem, we designed an energy-sharing algorithm
based on the Q-learning algorithm. Lastly, we conducted extensive simulations using actual trace
data to validate the effectiveness of our proposed algorithms.

Keywords: resource allocation; carbon management; energy sharing; Lyapunov optimization; Q-learning

1. Introduction

As solar power technology advances, many solar power storage devices have emerged
in the intelligent community. The intelligent community utilizes emerging technologies
such as smartphones, embedded computers, network technology, and radio frequency
identification technology to make the entire community management more intelligent
and improve the quality of life of residents [1]. The total energy consumption of the
construction industry in China accounted for 45.5% of the national energy consumption
in 2020 according to China Building Energy Efficiency Annual Development Research
Report 2022. Considering the growing energy demand and the necessity to reduce reliance
on fossil fuels, solar power sources have gained increased attention. Combined heat
and power (CHP) systems become increasingly popular in the intelligent community
because of their ability to generate both electricity and thermal energy simultaneously, with
relatively low carbon emissions. The CHP system mentioned in this paper is the internal
combustion engine CHP system. Compared to previous methods that generate electricity
and thermal energy separately, combining them can lead to a significant improvement in
the efficiency and cost-effectiveness of energy generation. The utilization of photovoltaic-
driven generators for electricity, and micro-combined heat and power (micro-CHP) for both
electricity and heat, as well as energy storage system (ESS) and hot water storage tanks,
can help reduce the energy demand of buildings [2]. Ensuring a low-carbon and reliable
energy supply is a crucial responsibility for the development of smart cities.
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There are two types of loads in the power grid: elastic load (EL) and rigid load (RL).
Elastic loads are those whose demand can change with the electricity price. For example,
air conditioners and electric water heaters are elastic loads. Rigid loads are those whose
demand does not change with the electricity price. For example, lighting and industrial
production are rigid loads. Elastic loads can be used to adjust the balance of the power grid
by adjusting the electricity price, whereas rigid loads cannot. Therefore, the power grid
needs to have a certain proportion of elastic loads to ensure its stable operation.

In the following two paragraphs, we briefly discuss the related work about the carbon
management for intelligent community with CHP. The proximity of multiple energy vectors,
such as electricity and heat, presents opportunities for the integration of energy systems
and real-time management of multiple energy sources. There are some related works about
the energy management of CHP systems to improve the efficiency of the power system.
Song et al. [3] indicated that primary energy consumption can be significantly reduced,
with the potential for even greater performance improvements through joint coordination.
The operation strategy of the CHP system and the types of buildings have a big influence
on the benefits of energy sharing. A novel approach to heat and power management has
been devised in [4], enabling CHP systems to operate with greater flexibility, which allows
CHP systems to independently optimize their power output while taking into account
the degradation of the fuel cell, ultimately resulting in increased profitability for users.
The method of enhancing the flexibility of CHP systems is investigated in [5] through the
refinement of ramping and reserve modeling constraints. These related works did not
consider the heating compensation mechanism between CHP units and heat storage. To
achieve this, the paper suggests revised ramping constraints that take into account the
internal mechanical structure of CHP units and proposes the regulation of heat exchange
rates through the use of a heating butterfly valve. Additionally, a new model for available
reserve capacity is introduced, which considers the heating compensation mechanism
between CHP units and heat storage.

As information and communication technology continues to evolve, the communica-
tion between smart appliances and control centers has improved significantly, enabling the
implementation of demand response strategies like real-time pricing to schedule tasks and
ultimately reduce costs [6]. Smart appliances have the capability to arrange their tasks based
on spot price strategies, which allows them to avoid the peak [7]. Some related works have
designed algorithms to assist practical systems in making decisions according to energy
storage, utilization, or selling to the grid based on real-time prices (spot prices). An energy
management strategy for CHP was proposed in [8] with the demand response according
to electricity price. A combination of power units and heat exchange stations in heating
systems was proposed in [9] to improve the flexibility of system and reduce operating
costs. An optimal scheduling method for a microgrid (MG) with CHP system using model
predictive control is proposed in [10] to improve its efficiency and economic performance.
The next four papers assumed predictability of future electricity prices and load demand,
and focused solely on proposing optimal task scheduling algorithms according to consumer
convenience. The paper [11] proposes a control strategy to schedule power devices of users
in a smart microgrid, aiming to maintain smooth power balancing and ensure system
stability under uncertain generation and load conditions. A solution is proposed in [12]
to standardize and automate the tests for solar power-based generators. A three-layer
collaborative optimization model is proposed in [13] to comprehensively the relationships
among users, edge nodes, a cloud center, and a multi-edge league. The paper [14] proposed
a regulating region method to accurately describe the heating-restricted reserve capacity
of the Combined Heat and Power (CHP) units. Additionally, an integrated power and
heat dispatch approach is developed, which utilizes the regulating region to formulate
the available CHP reserve capacity. Some literature uses reinforcement learning methods
to solve energy management problems. A total cost of ownership model was established
in [15] including energy consumption and power source degradation, where the Q-learning
algorithm is proposed to determine the optimal energy management strategy. A real-time
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energy management strategy was proposed in [16] by combining the Q-Learning method
with the model predictive control method. However, these papers did not consider carbon
management with the heterogeneous load demands. This paper aims to study the issue of
carbon management and resource allocation with CHP for heterogeneous load demands in
an intelligent community to minimize the system costs associated with power grid and gas.

Three contributions of the paper are summarized as follows.

• Our study introduces an integrated model comprising a CHP system, a solar panel,
an ESS, and a boiler. The primary aim of our research is to minimize the overall
cost associated with grid usage, including expenses related to the power grid and
natural gas (natgas) consumption. To achieve this objective, we propose a non-sharing
resource allocation algorithm that utilizes the Lyapunov optimization method specifi-
cally designed for grids with EL and RL.

• Our proposed strategy focuses on cooperative energy sharing within the smart grid,
aiming to implement an effective energy-sharing approach. This approach forms
the foundation of our cooperative solar power-sharing algorithm, which utilizes the
Q-learning algorithm. Under this algorithm, each MG is required to communicate
with neighboring units through a centralized controller.

• Simulations have been conducted by using actual trace data to verify the effectiveness
of our proposed algorithms. The energy-sharing algorithm was compared with a non-
sharing resource allocation algorithm, and the results showed that our approach could
decrease the economic cost by almost 19% while still fulfilling the energy demands of
all residents.

The remainder of this article is divided into four sections. A mathematical model for a
power grid that incorporates CHP systems, solar panels, ESS, and boilers was presented
in Section 2. The solar power sharing strategy and control objectives was introduced.
Section 3 formulates an optimization problem with certain constraints in both non-sharing
and cooperative grid settings and explains the specifics of our algorithm design. In Section 4,
we do the simulation of our non-sharing and sharing algorithm with the actual data. Finally,
in Section 5, we draw conclusions based on our findings.

2. System Model and Problem Formulation

The system model of the intelligent community is shown in Figure 1, where there are
CHP, boiler, solar equipment, ESS in MG k = {1, 2, · · · , Nt} in time slot t. We depict the
power flow, information flow, and carbon flow in the different legends.
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Figure 1. The power flow, information flow, and carbon flow in the intelligent community.
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We posit that for a given time slot t, the CHP system consumes natgas denoted as uk(t).
Concurrently, the CHP system within MG k generates electric energy ηeuk(t) for the battery
and thermal energy ηhuk(t) to meet the heating demand. The conversion efficiencies from
natgas to electricity and heat are represented by ηe and ηh, respectively. Additionally, the
battery derives energy rk

s (t) from solar power, whereas the boiler dispatches energy gk(t) to
fulfill the heating requirement. The electricity price, λe(t), is constrained within the range
[λe,min, λe,max]. We maintain the assumption that the natgas price λg remains constant
across all time slots due to its relative stability. Both the electricity price λe(t) and the natgas
price λg are acquired from PG&E [17]. The algorithm aims to minimize the system cost by
focusing on the energy pk(t) sourced from the power grid and the natgas uk(t) used by the
CHP system along with gk(t) used by the boiler. In the following part, we formulate the
mathematical model of solar power, electricity, and heat demand, ESS, the energy-sharing
strategy, and the objective function.

2.1. Solar Power

Community solar refers to a solar energy system that is shared by multiple households
or businesses within a community. Instead of installing solar panels on individual rooftops,
a community solar project typically involves installing a larger solar array in a centralized
location, such as a field or parking lot, and distributing the electricity generated to multiple
subscribers. We set the solar energy from the renewable energy device as rs(t) for MG k,

rk
s (t) ≤ rk,max

s , (1)

where rk,max
s is the upper bound of the solar energy. The solar energy upper bound is the

maximum amount of power that a solar energy system can generate at a given time and
location. The solar energy upper bound depends on many factors, including the number,
size, and type of solar panels, as well as the intensity and duration of sunlight.

2.2. Power and Heat Demand

For MG k, we establish the electric power demand as ek(t) and the thermal demand
as hk(t). We operate under the assumption that tasks are continuous, with each task
consuming electricity at a steady rate represented by πt

k. The electricity demand for time
slot t is met by the joint contributions of the external grid, represented by pk(t), and the
battery, designated by bk(t). On the other hand, the CHP system can produce heat ηhuk(t)
to meet the heat demand, and the remaining heat demand ηsgk(t) is met by the boiler, with
ηs symbolizing the efficiency of heat generation from natgas consumption within the boiler.
Then we can construct the following relationship,

ek(t) = pk(t) + bk(t), (2)

hk(t) = ηhuk(t) + ηsgk(t). (3)

2.3. Elastic Load and Rigid Load

Elastic loads have emerged with the introduction of smart appliances, which enable
users to schedule loads at their convenience. For each load in microgrid (MG) k, we need to
focus on the load’s required time at

k and the load’s cutoff time dt
k. It is crucial that the load

is completed before the deadline t + dt
k. If the required time at

k equals the deadline dt
k, the

load needs to be fulfilled immediately, indicating its intolerance to delay. On the contrary,
if the load demand can be met in a time frame shorter than the deadline, it is considered
EL. The focus of our study is to discuss the optimal scheduling algorithm for EL. The delay
is denoted as st

k, to represent the time of postponement. For RL, the delay st
k is set to 0.

Additionally, we define the parameter dmax = maxt,k dt
k as the maximum deadline among

all loads and time slots.



Sustainability 2023, 15, 13257 5 of 19

2.4. Carbon Emission Constraint

Both electricity consumption from the grid and natural gas usage are associated with
carbon emissions. The electricity generated on the grid comes primarily from sources such
as coal, natural gas, nuclear, hydro, wind, and solar power. Among these sources, coal
and natural gas are the primary fuels used for electricity generation, and their combustion
releases greenhouse gases such as carbon dioxide, resulting in carbon emissions associated
with grid electricity consumption. Natural gas is a relatively clean fossil fuel, and its com-
bustion produces less carbon dioxide emissions than coal. However, it still contributes to
carbon emissions. Additionally, the extraction, processing, transportation, and combustion
of natural gas can also produce methane and other greenhouse gases, which can have
an impact on climate change. To reduce carbon emissions, we can adopt measures such
as energy conservation, using clean energy sources, and reducing natural gas usage to
mitigate the environmental impact of electricity consumption and natural gas usage. The
carbon dioxide emissions from electricity generation and that from natural gas are set as
ωp and ωg, then we have the following equation according to [18],

ωp pk(t) + ωggk(t) ≤ CEm
k , (4)

where CEm
k is the peak carbon dioxide emissions from MG k. The peak carbon dioxide

emissions from MG refer to the highest point of carbon dioxide emissions produced by the
MG during its operation. By monitoring and evaluating the peak carbon dioxide emissions
of an MG, its energy utilization efficiency and environmental impact can be assessed, and
its energy configuration and management strategies can be designed and optimized to
achieve lower carbon emissions and higher energy utilization efficiency.

2.5. Energy Storage System

We do not take into account any electricity losses during the charging and discharging
process. Figure 1 illustrates that the energy stored in the ESS during time slot t, denoted
as Bk(t) for MG k, comprises three components. The first component represents the
energy obtained from the external grid, the second component represents the energy
generated by solar power, and the last component represents the energy supplied by the
CHP system. Consequently, the battery level Bk(t) during time slot t can be calculated
using the following equation:

Bk(t + 1) = Bk(t) + rk
s (t) + ηeuk(t)− bk(t). (5)

In practical applications, the power value pk(t) is generally positive. In this context,
we observe that the battery level bk(t) is expected to be less than or equal to the energy
stored in the ESS. The constraints can be described as follows:

|bk(t)| ≤ bk
max, (6)

bk(t) ≤ min{Bk(t), ek(t)}, (7)

where bk
max represents the maximum charging rate in MG k. The constraints (6) and (7)

indicate that the amount of energy charged or discharged from ESS has the range limit.

2.6. Energy-Sharing Strategy

Interconnection between different MGs enables energy sharing. We set the energy
sharing between MG k and MG j in the time slot t as ςk

j (t). The power demand ek(t) can be
met by the energy in MG k from ESS and the neighbor MG in the following expression:

pk(t) = ek(t)− bk(t) + ∑
j 6=k

ςk
j (t). (8)
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MG k can share the electricity rk
j (t) from other nearby MG j. Energy sharing between

microgrids is an internal variable, and the total shared energy should sum up to zero. We
have ∑k ∑j 6=k ςk

j (t) = 0.

2.7. Objective Function

In each time slot t, the overall cost of our system comprises two components: the
electricity cost incurred from the power grid and the natgas cost by the CHP system and the
boiler. From time slot t to t− dmax + 1, the electricity demand ek(t) and the heat demand
hk(t) are satisfied. Our objective is to develop a scheduling algorithm that minimizes the
long-term average cost by optimizing the allocation of electricity and natural gas. We have
the following average cost in the long term,

f avg
tol = lim

T→∞

1
T

T

∑
t=1

E{
N

∑
i=1

pk(t)λe(t) + uk(t)λg + ηsgk(t)λg}. (9)

For the sake of simplicity, we have intentionally omitted certain practical factors, such
as electricity loss during transmission. The purpose of this omission is to concentrate on
minimizing electricity sourced from the grid, focusing on variables such as ESS charging
rate b(t), and the energy generated by CHP u(t). We study a non-sharing scenario where
energy is not shared with nearby MG under carbon emission constraints. Given the current
state of the system, we aim to design an optimal control strategy that is not complicated
and difficult to calculate. Elastic loads lead to dissatisfaction and the dissatisfaction will be
larger when the elastic loads delay more time. We denote the ELs’ dissatisfaction function
Ft

k(s) for the delay s in MG k. The relationship between the dissatisfaction function of elastic
loads and the time delay is that as the time delay increases, the dissatisfaction function of
elastic loads also increases. This means that the more delayed elastic loads are in receiving
service, the more dissatisfied they are. The ELs’ dissatisfaction function is limited by α.

lim
T→∞

sup
1
T

T

∑
t=1

nt

∑
k=1

Ft
k(s

t
k) ≤ α, (10)

where st
k is the delay for EL in MG k. Tasks must be completed before their deadlines, and

they are only scheduled if there is enough time, and the delay st
k has the following constraint,

0 ≤ st
k ≤ dt

k − at
k. (11)

We can simplify this optimization problem under carbon emission constraints as P1
by using Equations (2) and (3):

P1 : min
rk
s (t), st

k ,

bk (t), uk (t)

lim
T→∞

1
T

T

∑
t=1

E[(ek(t)− bk(t))λe(t) + uk(t)λg

+ (hk(t)− ηhuk(t))λg]

s.t. ωp(ek(t)− bk(t)) + ωggk(t) ≤ CEm
k , (12)

Bk(t + 1) = Bk(t) + rk
s (t) + ηeuk(t)− bk(t), (13)

|bk(t)| ≤ bk
max, (14)

bk(t) ≤ min{Bk(t), ek(t)}, (15)
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We denote that limT→∞ ∑T
t=1 ek(t)λe(t) is the total operational cost of electricity de-

mand. Then we have the following equation under carbon emission constraints:

lim
T→∞

T

∑
t=1

ek(t)λe(t) = lim
T→∞

T

∑
t=1

nt

∑
i=1

at
k−1

∑
j=0

πt
kλe(j + t + st

k), (16)

where πt
k is the electricity consumption rate. We rewrite the optimization problem P1 as

the following problem P2:

P2 : min
rk
s (t), st

k ,

bk (t), uk (t)

lim
T→∞

1
T

T

∑
t=1

E[
nt

∑
i=1

at
k−1

∑
j=0

πt
kλe(j + t + st

k)

− bk(t)λe(t) + ηeuk(t)λg + hk(t)λg]

s.t. ωp(ek(t)− bk(t)) +
ωg

ηs
(hk(t)− ηhuk(t)) ≤ CEm

k , (17)

Bk(t + 1) = Bk(t) + rk
s (t) + ηeuk(t)− bk(t), (18)

|bk(t)| ≤ bk
max, (19)

bk(t) ≤ min{Bk(t), ek(t)}, (20)

We need to solve the optimization problem P2 under the constraint of the stability of
the battery level and carbon emission constraints. We utilize the Lyapunov optimization
method. Lyapunov optimization is a technique for finding the optimal control input for
a system. It is based on the idea of finding a control input that minimizes the value of a
Lyapunov function, which is a function of the state of the system. The Lyapunov function
is used to measure the stability of the system, and the optimal control input is the one that
minimizes the value of the Lyapunov function.

Lyapunov optimization requires the creation of virtual queues. A virtual queue is an
abstract concept that can be used to describe any type of queue in a system. Virtual queues
can be used to represent physical queues or they can be used to represent logical queues.
Virtual queues can help us better understand the behavior of a system. By studying virtual
queues, we can better understand the performance bottlenecks of a system, and we can
find ways to improve those bottlenecks. By using virtual queues, we can avoid many of the
problems that can occur in physical queues, such as queue congestion and deadlocks. We
denote the following virtual queue U(t),

U(t + 1) = max{U(t) +
nt

∑
i=1

Ft
k(s

t
k)− α, 0}. (21)

We can prove that if this virtual queue U(t)meets the restriction lim supT→∞ U(T)/T = 0,
then we have

lim
T→∞

sup
1
T

T

∑
t=1

nt

∑
i=1

Ft
k(s

t
k) ≤ α. (22)

2.8. Resource Allocation Algorithm

In this part, we design the resource allocation algorithm under carbon emission
constraints based on the Lyapunov optimization method. We can stabilize the battery
level queue Bk(t) and the virtual queue Uk(t) by the Lyapunov drift. We design a function
Lk(t) = 1

2 [U
k(t)2 + (Bk(t)− θ)2]. We aim to minimize the drift of the function Lk(t), which

leads the stability of the battery level Bk(t) closer to the constant θ. We have denoted the
parameters nmax = maxt nt, Fmax = maxt,i Fi

t (d
i
t). By the Lyapunov approach, we set the

variable Zk(t) = (Uk(t), Bk(t)) and the Lyapunov drift ∆ = E{(Lk(t + 1)− Lk(t))|Zk(t)}.
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Lemma 1. The Lyapunov drift ∆ will have the following property,

∆ ≤ Uk(t)E[
nt

∑
i=1

Ft
k(s

t
k)− α|Zk(t)] +

1
2
[rk

s (t) + ηeuk(t)

− bk(t)]2 + (Bk(t)− θ)(rk
s (t) + ηeuk(t)− bk(t)) +

1
2
(n2

maxF2
max + α2).

(23)

We aim to minimize the Lyapunov drift ∆ to keep the virtual queue Uk(t) and the battery
level queue Bk(t) stable. We denote the trade-off between the electricity and gas cost and the

Lyapunov drift ∆ as V. We add f = VE[∑nt
k=1 ∑

at
k−1

j=0 πt
kλe(j+ t+ st

k)− bk(t)λe(t)+ ηeuk(t)λg +

hk(t)λg] on both sides of Equation (23). We design non-sharing resource allocation algorithm
(NRA) by minimizing the right side of ∆ + f . During time slot t, we can calculate the delay

st∗
k = arg min0≤st

k≤dt
k−at

k
U(t)Ft

k(s
t
k) + V ∑

at
k−1

j=0 πt
kλe(j + t + st

k). Let f (t) = (Bk(t)− θ)(rk
s (t)

+ηeuk(t)− bk(t)) + 1
2 (r

k
s (t) + ηeuk(t)− bk(t))2 + V(ηeuk(t)λg + hk(t)λg − bk(t)λe(t)). To

minimize the objective function E[ f (x)|Z(t)], we have the following equation,

L =
T

∑
t=1

[(Bk(t)− θ)(rk
s (t) + ηeuk(t)− bk(t)) +

1
2

ιt(rk
s (t)

+ ηeuk(t)− bk(t))2] +
T

∑
t=1

ζt(ωpek(t)−ωpbk(t) +
ωg

ηs
hk(t)−

ηhωg

ηs
uk(t)− CEm

k )

+
T

∑
t=1

µt(bk(t)− bk
max),

where ιt, ζt, µt are the Lagrange multipliers and dual variables for constraints (24b), (24c). This opti-
mization problem is convex, feasible, and satisfies Slater’s condition [19]. We solve the optimization
problem by a standard primal–dual gradient method when ζt ≥ 0 or ζt = 0, ∀t; we have,

r∗(t) = δr(
∂L

∂r(t)
) = δr(r(t) + B(t)− θ − ιt + ζt), (24a)

u∗(t) =
1
ηe

δu(
∂L

∂ηeu(t)
) =

1
ηe

δu(ηeu(t) + B(t)− θ − ιt + VCg) +
ζtηhωg

ηs
, (24b)

b∗(t) = δb(b(t)− (B(t)− θ)−VCe(t) + ιt + µt −ωpζt), (24c)

ζ∗t = δζ(ωpek(t)−ωpbk(t) +
ωg

ηs
hk(t)−

ηhωg

ηs
uk(t)− CEm

k )+ζt
, (24d)

µ∗t = δµ(b(t)− bmax)
+
µt . (24e)

where δr, δu, δb, δζ , δµ are positive parameters. We denote the maximum electricity price as λe,max
and the parameter θ = bmax + Vλe,max. We will always have θ − B(t)− λe(t) > 0 when the
battery level B(t) < bmax. ESS will draw the energy from power grid and b(t) = −bmax. ESS
discharges when the battery level B(t) > bmax. The battery level B(t) and the system cost have the
upper bound. We prove the performance of NRA in Theorem 1.

Theorem 1. We denote the parameter θ = bmax + Vλe,max and the initial battery level B(0) = θ,
then the battery level B(t) will have the following property:

0 ≤ Bk(t) ≤ θ + bk
max + rk

max. (25)

Proof. First, we prove that the battery level B(t) has the upper bound by using a mathe-
matical induction method. We set the initial situation: in the time slot t = 0, we have the
initial battery level B(0) = θ < θ + bmax + rmax. Then, we assume that the battery level
B(t) ≤ θ + bmax + rmax. We continue to prove that B(t + 1) ≤ θ + bmax + rmax. In the next
time slot t + 1, we have the following two cases:
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(1) If the battery level B(t) ≤ θ, ESS will discharge the maximum electricity when
b(t) = −bmax. Then we will obtain the battery level in the next time slot B(t + 1) ≤
θ + bmax + rmax.

(2) If the battery level B(t) > θ, we see that the charging rate b(t) > 0 from Equation (24)
and ESS discharges. Then, we will have B(t + 1) ≤ B(t) ≤ θ + rmax + bmax. Above all, we
prove that the battery level B(t + 1) ≤ θ + rmax + bmax.

Second, we prove that the battery level B(t) has a lower bound by mathematical
induction. We assume that the battery level B(t) ≥ 0 and we need to prove that B(t+ 1) ≥ 0.
In the next time slot t + 1, we have the following cases:

(1) If the battery B(t) ≤ θ, we see that the charging rate b(t) > 0 from Equation (24)
and ESS charges. Therefore, we have the battery level B(t + 1) > B(t) ≥ 0.

(2) If the battery level B(t) > θ, we have the property B(t) > bmax + Vλe,max. The
battery level B(t + 1) has the physical constraint B(t + 1) ≥ 0. Above all, we can prove
that the battery level B(t) has the lower bound and B(t + 1) ≥ 0.

Theorem 2. The electricity and gas cost with NRA will satisfy the following property,

lim
T→∞

sup
1
T

T

∑
t=1

E[
nt

∑
i=1

at
k−1

∑
j=0

πt
kλe(j + t + s∗k )− b∗(t)λe(t)

+ ηeu∗(t)λg + h(t)λg]

≤ C + λe,maxbmax +
D + (bmax + rmax)2

V
.

(26)

Proof. The constraint of charging amount b(t) in the time slot t is limited by [0, bmax] when
ESS discharges. From Theorem 1, the battery level has the property B(t) < θ + bmax + rmax,
then we can obtain the property that |θ − B(t)−VCe(t)| ≤ bmax + rmax + VCe,max.

nt

∑
i=1

E[U(t)Ft
k(s

t
k) + V

at
k−1

∑
j=0

πt
kP(j + st

k + t)|Z(t)− αU(t)

+ E[(B(t)− θ)(r(t) + ηeu(t)− b(t)) +
1
2
(r(t) + ηeu(t)

− b(t))2 + V(ηeu(t)λg + h(t)λg − b(t)λe(t))|Z(t)]
≤ VC̃ + (bmax + rmax + VCe,max)bmax.

(27)

We set C̃ as the lower bound of Ce(t), and we can obtain the average value from time
slot t = 0 to T in the following equation.

E{(L(t + 1)− L(t))|Z(t)}+ VE[
nt

∑
i=1

at
k−1

∑
j=0

πt
kλe(j + t + st

k)

− b(t)λe(t) + ηeu(t)λg + h(t)λg]

≤ TD + T(bmax + rmax)
2 + VTC + VTCe,maxbmax.

(28)

By setting the initial battery level B(0) = θ, we can figure out that L(0) = 0. We divide
by VT on both sides of Equation (28) and we have,

lim
T→∞

1
T

T

∑
t=1

E[
nt

∑
i=1

at
k−1

∑
j=0

πt
kλe(j + t + s∗k )− b∗(t)λe(t)

+ ηeu∗(t)λg + h(t)λg]

≤ C + λe,maxbmax + [D + (bmax + rmax)
2]/V.

(29)
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From Equation (29), we can see that the total energy cost will show a converging trend
with the increase in the parameter V. The Lyapunov optimization method ensures the
stability and convergence of the system by designing the Lyapunov function. In the stable
region, the value of the Lyapunov function is positive; in the unstable region, the value of
the Lyapunov function is negative. By designing the Lyapunov function, the system can be
guaranteed to be in a stable state in the stable region.

3. Energy-Sharing Algorithm

We denote the optimal total cost of the non-sharing resource allocation algorithm as
λNRA and the cost λNRA = ∑N

i=1 ∑T
t=1 Ck

tol(t). We propose the energy-sharing algorithm
(ESA) based on the Q-learning method. The total cost of the energy-sharing algorithm is
denoted as λESA. λESA = ∑N

i=1 ∑T
t=1 Ĉk

tol(t), where Ĉk
tol(t) is denoted as the electricity and

gas cost for MG k in an energy-sharing scenario. We apply the Q-learning method to handle
the resource allocation problem with energy sharing. The basic elements of Q-learning
include: state space, action space, state transition probability, reward function, and value
function. For the ESA, we define the following four elements:

(1) State Space

State space refers to the environment state where the agent is located, which can
be discrete or continuous. We discretize the electricity price into M intervals. The state
space is set as Φ including electricity price and the number of MGs N, which is denoted as
Φ = {1, ..., M} × {1, ..., N}.
(2) Action Space

Action space refers to the actions that the agent can take, which can be discrete or
continuous. The maximum electricity shared with neighbor MGs is denoted as Emax. The
action space of the energy has three choices: drawn, hold on, and sharing:

A = {−Emax, 0, Emax} (30)

We can obtain the equation Ck
NRA − Ck

ESA = (λNRA − λESA/N) by using the Nash bar-
gaining method, according to Equation (32) in [20]. We define the temporary variable
tmpk = Ck

NRA −
λNRA−λESA

N . From Algorithm 2 in [20], MG k draws energy from neighbor
MGs when ∆tmpk = tmpk −∑T

t=1 Ck
tol(t) ≤ 0 and shares energy with neighbor MGs when

∆tmpk > 0. The agent can choose one action at each time step, and draw or share energy
from the neighbor MGs. The agent’s goal is to minimize its total energy cost while satisfying
the energy constraints.

(3) Reward Function

The reward function refers to the reward that the agent will receive after taking a
given action in a given state. The reward function represents the reward received after
taking an action in a given state. The value function represents the expected total reward
received after taking an action in a given state. By continuously exploring the environment
and updating the value function based on experience, the Q-learning algorithm can find
the optimal policy. After executing an energy-sharing action with the state, a reward will
come up. We can obtain the energy shared from neighbor MGs when the electricity price is
high. We denote the reward function r ft(φ, a) in the following equation,

r ft(φ, a) = λe(t)Emax
tmpk −∑T

t=1 Ck
tol(t)

|tmpk −∑T
t=1 Ck

tol(t)|
(31)

(4) Q-learning Algorithm

The Q-learning algorithm finds the optimal policy by continuously exploring the
environment and updating the value function based on experience. We utilize Q-learning
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to propose an update policy based on the action space, state space, reward, and value
function. For each action–state pair (φk, ak), we have the following value function:

Qt+1[φk, ak] = Qt[φk, ak] + β(r ft(φ, ak) + γQt[φ
′
k, a′k]−Qt[φk, ak]), (32)

where state–action pair (φ′k, a′k) is the possible situation in MG k in next time slot t + 1.
There are two important parameters β and γ. β is the learning rate and γ is the discount
factor. The learning rate in Q-learning is a hyperparameter that controls how quickly the
Q-learning algorithm updates the Q-table. A higher learning rate means that the Q-table
will be updated more quickly, but it is also more likely to overfit. A lower learning rate
means that the Q-table will be updated more slowly, but it is also less likely to overfit. The
Q-learning algorithm typically uses a fixed learning rate. However, in some cases, using a
dynamic learning rate may be more effective. A dynamic learning rate is a learning rate
that changes over time. Dynamic learning rates can help the Q-learning algorithm avoid
overfitting and learn more effectively in different environments. The discount factor in
Q-learning is a hyperparameter that controls how much the Q-learning algorithm considers
future rewards. A higher discount factor means that the algorithm will be more concerned
with future rewards. This can help the algorithm avoid being too short-sighted and find
more long-term strategies. The discount factor is usually set to a value between 0 and 1. A
value of 0 means that the algorithm will only consider the current reward, whereas a value
of 1 means that the algorithm will consider all future rewards. In practice, a discount factor
of 0.9 or higher is often used. The discount factor is an important hyperparameter that can
have a significant impact on the performance of the Q-learning algorithm. If the discount
factor is set too low, the algorithm may be too short-sighted and unable to find effective
strategies. If the discount factor is set too high, the algorithm may be too concerned with
future rewards and unable to find balanced strategies. We summarize the energy-sharing
algorithm (ESA) based on Q-learning in Algorithm 1 and the flow chart of energy-sharing
algorithm in Figure 2.

Algorithm 1 Energy-Sharing Algorithm (ESA)

1: Initialization: Initialize the Q-table with random values:
2: for state φk in all states Φ:
3: for action ak in all actions A:
4: Q[φk, ak] = random value
5: Initialize the learning rate β = 0.6 and the discount factor γ = 0.85.
6: While True:
7: Choose the energy-sharing action ak from the state φk by using θ-greedy policy accord-

ing to value function Q;
8: Repeat (for each step of episode):
9: Obtain the close-optimal energy action ak, the reward function r ft, the state φ′k;

10: Observe a′k from φ′k by using θ-greedy policy from Q;
11: Update the value function Q(φk, ak);
12: Update the state φk ← φ′k and the action ak ← a′k ;
13: until φk is terminal.
14: end
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Figure 2. Flow chart of energy-sharing algorithm.

4. Numerical Simulation

In this section, we will evaluate the performance of the NRA algorithm and the ESA
algorithm with real-time electricity price by Matlab 2021 on Intel Core i7. We list the
parameters about the price, the capacity of ESS, the electricity, and heat demand in the
following part.

In order to simulate and evaluate our algorithm, we need the following data: electricity
prices, natural gas prices, electricity demand, and heat demand. Electricity price and natgas
price are collected from Pacific Gas and Electric Company from 24 June 2023 to 28 June
2023. We show the electricity price in Figure 3 and we set each time slot to one hour. We
calculate our total electricity consumption cost of RL loads and EL loads and draw some
conclusions. We study a community with MGs with 200 appliances of 200 h and we set
each time slot as 1 h. The overall efficiency of a CHP system in producing electricity is set
as 80% and the maximum output of the CHP system is set as uk

max = 8 kWh. The capacity
of ESS bmax is set as 6 kWh.
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The carbon dioxide emissions from electricity generation and that from natural gas
are denoted as ωp = 450 g CO2/kWh and ωg = 1.885 kg CO2/m3. We have shown the
parameter setting in Table 1.
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Figure 3. Real-time electricity price.

Table 1. Parameter setting.

Parameter Value

maximum output of CHP system uk
max 8 kWh

capacity of ESS bmax 6 kWh

carbon dioxide emissions from electricity generation ωp 450 g CO2/kWh

carbon dioxide emissions from natural gas ωg 1.885 kg CO2/m3

price of natgas λg USD5.4/MMBtu

The dissatisfaction function is a quadratic function of time, meaning that as time goes
on, dissatisfaction increases. This may be because people become more impatient as they
wait, or because they have higher expectations about the outcome of the wait. We denote
the dissatisfaction function as a quadratic function F(x) = x2. We set the price of natgas λg
as USD5.4/MMBtu.

After simulating the NRA, we have shown the electricity charged and discharged
from ESS in Figure 4. ESS charges the electricity in the range [0, bmax] and discharges the
electricity at the discharging rate bmax. The battery level B(t) in 200 time slots is shown
in Figure 5 which has a hard constraint. By setting the parameter θ = bmax + VCe,max, the
battery level of ESS B(t) has an upper bound θ + bmax + rmax. From Figure 5, we can see that
the battery level of ESS B(t) has a limit less than θ + bmax + rmax in 200 time slots. Under the
Lyapunov optimization algorithm, the battery queue and dissatisfaction virtual queue are
both stable. This means that at any given time, the number of batteries in the battery queue
will not exceed the battery capacity, and the dissatisfaction in the dissatisfaction virtual
queue will not exceed the maximum dissatisfaction. This stability is essential for ensuring
the effectiveness of the battery queue and dissatisfaction virtual queue. If the number of
batteries in the battery queue exceeds the battery capacity, then batteries may be depleted,
leading to system failure. If the dissatisfaction in the dissatisfaction virtual queue exceeds
the maximum dissatisfaction, then users may become dissatisfied with the system, leading
to them leaving the system. The Lyapunov optimization algorithm ensures the stability
of the battery queue and dissatisfaction virtual queue by using a Lyapunov function. A
Lyapunov function is a function that measures the state of the system. If the value of
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the Lyapunov function decreases over time, then the system is stable. The Lyapunov
optimization algorithm uses the Lyapunov function to calculate the control inputs, which
are used to make the value of the Lyapunov function decrease. By using the Lyapunov
optimization algorithm, it is possible to ensure that the battery queue and dissatisfaction
virtual queue are stable at any given time. This allows the system to effectively manage
batteries and user dissatisfaction.
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Figure 4. The result of electricity change in ESS.
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Figure 5. The result of battery level of ESS.
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We have displayed the percentage of reduced cost in total cost for different deadlines
with the parameter V = 6 in Figure 6. From examining Figure 6, it is evident that increasing
the deadline for EL loads results in a higher percentage of reduced cost in the total cost.
Specifically, we can observe that when we set the deadline dt

k = 14, the reduced cost of EL
loads accounts for 12.49% of the total cost. Thus, it is apparent that greater benefits can be
obtained with longer delays for EL loads. We compare the costs of RL loads and EL loads
in each time slot using our algorithm, as shown in Figure 7, for a deadline of dt

k = 5. It is
apparent that, under the same conditions, one EL load has a lower cost than one RL load.
Figure 7 depicts the percentage of cost savings versus the ratio of EL/(EL + RL) for the
deadline dt

k = 5, 10, 15 and the parameter V = 6. The percentage of cost savings increases
with the increase in the deadline dt

k. We can see that our algorithm will lead to a higher
reduced cost in the case of more EL loads. This is because the algorithm is designed to
identify and eliminate unnecessary electricity loads. When there are more EL loads, the
algorithm will have more opportunities to find and eliminate unnecessary electricity loads.
This will lead to a higher reduced cost. Our optimization algorithm works better when
there is more elastic load. This is because elastic load can be more flexibly adjusted to
meet changing demand. When demand increases, elastic load can be increased to meet
the demand. When demand decreases, elastic load can be decreased to avoid wasting
resources. Our optimization algorithm can use the flexibility of elastic load to improve the
efficiency of the system.
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Figure 6. The percentage of the reduced cost.
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Figure 8 depicts the system cost versus the parameter V for different load rate
EL/(EL + RL) = 0.2, 0.5, 1. The total cost decreases as load rate EL/(EL + RL) increases.
When the parameter V reaches 30, the total cost decreases slowly as the parameter V grows.
The system cost also decreases slowly as ESS capacity bmax increases, which eventually
tends to be a limit. From Figure 5, we can see that the battery level queue B(t) is stable. Our
optimization algorithm can allocate the elastic load to those time periods with high demand
and remove it from those time periods with low demand. This can help the system use re-
sources more efficiently and lower costs. In Figure 9, we compare our NRA algorithm with
the rolling online control (OA) algorithm according to the reference [19]. For each load rate
EL/(EL + RL), the total cost by the OA algorithm is higher than that by the NRA algorithm.
From Figure 9, we achieve the optimal system cost when V = 35. This performance result
shows that our proposed NRA can achieve the minimum system cost with the constraint of
keeping the battery level queue and ELs’ satisfaction queue stable. The simulation result
of cumulative reward has been shown in Figure 10. The simulation performance about
cumulative profit according to different discount factors γ = 0.005, 0.01, 0.05 was shown
in Figure 10. Cumulative reward plays a very important role in Q-learning. It can help
Q-learning algorithms converge to the optimal policy faster. Q-learning algorithms learn
the optimal policy by trial and error. In each trial, the Q-learning algorithm calculates a
reward for the current state and action. This reward is accumulated into a value called
the cumulative reward. The cumulative reward reflects the total reward from one state to
another. It can help Q-learning algorithms determine which actions are worth trying. If an
action has a high cumulative reward, then the Q-learning algorithm is more likely to try
that action. From Figure 11, the total system cost of a community with an energy-sharing
algorithm is lower than that of a non-sharing community. Our ESA algorithm can reduce
10% economic cost compared to the NRA Algorithm in 200 time slots. ESA algorithm works
by iteratively updating a value function that represents the expected return for taking a
particular action in a particular state. The value function is updated based on the reward
for taking different actions in different states. The complexity of the Q-learning-based
ESA algorithm mainly depends on the following factors: state space, action space, and
learning rate. The larger the state space, the greater the amount of computation involved
in the Q-learning-based algorithm. The larger the action space, the greater the amount
of computation involved in the ESA algorithm. The higher the learning rate, the more
computation-intensive the ESA algorithm will be.
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Figure 8. System cost of load rate EL/RL.
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5. Conclusions

In this paper, we address the problem of carbon management and resource alloca-
tion in an intelligent community with CHP and solar power while taking into account
unpredictable power demands and the constraint of carbon emission. We design the non-
sharing algorithm by utilizing a Lyapunov optimization approach to solve the stochastic
non-convex optimization problem. To facilitate energy sharing, we develop an energy-
sharing algorithm under carbon emission constraints based on the Q-learning algorithm.
The effectiveness of our proposed energy-sharing algorithm is demonstrated through ex-
tensive simulations, which show that it achieves lower costs compared to the non-sharing
algorithm. The NRA algorithm shows that a larger ESS maximum output and V will lead
to larger cost savings. The results show that the ESA algorithm can effectively reduce the
cost by 10% of the system, compared with the NRA algorithm. The NRA algorithm satisfies
the EL demand before user-defined deadlines and we can see that with the increase in the
deadline, the saved cost will increase. The NRA algorithm is a good choice for ESSs to
reduce the cost of the system. By the ESA algorithm, energy sharing can help reduce energy
costs by allowing producers and consumers to take advantage of economies of solar energy.
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Abbreviations
The following abbreviations are used in this manuscript:

Variables Description
uk(t) natgas consumed by the CHP system for a given time slot t
pk(t) energy sourced from the power grid
bk(t) battery level
ek(t) electric power demand
hk(t) thermal demand
st

k delay
dt

k load’s cutoff time
rk

s (t) solar power derived to the battery
gk(t) energy dispatched from the boiler to fulfil the heating requirement
λe(t) electricity price
λg natgas price
CEm

k peak carbon dioxide emissions from MG k
ωp carbon dioxide emissions from electricity generation
ωg carbon dioxide emissions from natural gas
Bk(t) energy stored in the ESS during time slot t for MG k
ςk

j (t) energy sharing between MG k and MG j in the time slot t
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