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Abstract: A vehicle exposed to flooding may lose its stability and wash away resulting in potential
injuries and fatalities. Traffic disruption, infrastructure damage, and economic losses are also addi-
tional effects of the washed vehicles. Therefore, understanding the responses of passenger vehicles
during flood events is of the utmost importance to reduce flood risks and develop accurate safety
guidelines. Previously, flooded vehicle stability was investigated experimentally, theoretically, and
numerically. However, numerical investigations are insufficient, of which only a few studies have
been published since 1967. Furthermore, coupled motion simulations have not been employed to
investigate the hydrodynamic forces on flooded vehicles. In this paper, a numerical framework was
proposed to assess the response of a full-scale medium-size passenger vehicle exposed to floodwaters
through three-dimensional computational fluid dynamic modelling. The vehicle was simulated
under subcritical and supercritical flows with the Froude number ranging between 0.09 and 2.46.
The results showed that the vehicle experienced the floating instability mode once the flow depth
reached 0.38 m, while the sliding instability mode was observed once the depth × velocity threshold
function exceeded 0.36 m2/s. In terms of hydrodynamic forces, it was noticed that the drag force
decreased with the increment of the Froude number and flow velocity. On the other hand, the
fraction and buoyancy forces are mainly governed by the flow depth at the vehicle vicinity. The
drag coefficient was noticed to be less than 1 for supercritical flows and more than 1 for subcritical
flows. The numerical results obtained through the framework introduced in this study demonstrate
favorable agreement with three different previously published experimental outcomes.

Keywords: vehicle stability; numerical simulation; floods; computational fluid dynamics; coupled
motion simulation

1. Introduction

At several locations, roads and watercourses commonly intersect in their layout. These
crossings happen through bridges or drainage works and fords. During rainy seasons,
watercourses along the roadway may flood, resulting in significant disruption for the traffic
movement [1]. Attempting to cross the flooded roadways in these circumstances can be
extremely dangerous [2,3]. According to the statistics, many drivers and passengers are
washed away in their vehicles every year when attempting to cross flooded roadways, and
many of them drown [4–6]. Enriquez-de-Salamanca (2020) [1] investigated vehicle-related
fatalities in Spain between 2008 and 2018. It was found that a total of 125 accidents were
reported for people crossing flooded roadways, of which 33 accidents were reported with
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fatalities. A total of 200 persons were consequently involved in these accidents; 45 of
them died, 137 needed rescue, and 18 managed to survive on their own [1]. Ahmed et al.
(2020) [7] analyzed vehicle-related flood fatalities in Australia over the period 2001 to 2017.
According to their results, it was noticed that among the 74 flood-related vehicle incidents,
96 people died [7]. Diakakis and Deligiannakis (2013) [4] conducted an analytical study to
understand the relationship between floods and vehicle-related fatalities between 1970 and
2010 in Greece. They reported that among the 37 flood events, a total of 60 deaths were
recorded. In this context, the danger of crossing flooded roadways and the need for proper
safety guidelines are made clear.

Essentially, moving water generates different hydrodynamic (HD) forces on the objects
that may exist along the flow direction. For the flooded stationary vehicles, the hydro-
dynamic forces are the drag (FD) and buoyancy forces (FV) [8,9]. Vehicles resist these
hydrodynamic forces through the vehicle weight (FW) and the frictional force (FR) between
the tires and ground surface [10]. Due to the generated HD forces, vehicles may lose their
stability in two common ways, namely (i) sliding instability mode which commonly occurs
when the drag force exceeds the frictional force, and (ii) floating instability mode which
mainly occurs once the buoyancy force exceeds the vehicle weight [11,12]. The flow velocity
and water depth at the vehicle vicinity are the main flow parameters that have the highest
effect on the flooded vehicle’s stability [13,14]. On the other hand, vehicle characteristics
such as weight, dimensions, ground clearance, and aerodynamic shape play main roles in
increasing or decreasing the stability limits [15]. Developing proper safety guidelines and
strategies while maintaining or enhancing the overall sustainability of communities and
ecosystems is required to minimize flood risks. Sustainable safety guidelines for flooded
vehicles are a part of the integrated flood management (IFM) plan which also requires
engaging and educating communities on the potential risks of driving through flooded
roadways, evacuation plans, and preparedness measures.

Between 1967 and 2021, several experimental studies were conducted to investigate
the vehicle response inside floodwaters, while few numerical studies were published in
this regard [16]. The earliest numerical simulation on vehicle instability was conducted in
2011 by Xia et al. (2011) [17]. The numerical runs were designed to investigate the stability
of people and vehicles exposed to flash flood events. The study was performed by using an
existing 2D hydrodynamic model which employs the finite volume method (FVM) based
on an unstructured triangular mesh and depth-averaged 2D shallow water equation to
solve the fluid flow numerically. A hazard degree (HD) expression was introduced and
used to quantify the corresponding degree of hazard. Based on the HD value, vehicles
were considered to be safe if the HD = 0, while vehicles were considered to be unsafe if the
HD approached 1.0. The hydrodynamic model was validated by simulating three actual
flood disasters, including the Glasgow, Boscastle, and Malpasset flood events. The obtained
numerical results were in line with the actual flood scenarios [17].

In 2015, Arrighi et al. (2015) [18] studied the instability scenarios of a flooded vehicle
using a numerical approach by employing the computational fluid dynamics (CFD) toolbox
in OpenFOAM. For the purpose of numerical simulation, a Ford Focus model was chosen
to represent the class medium city car which was previously tested experimentally by Shu
et al. (2011) [14]. Two different flow orientations were simulated, namely 0◦ (the front end
of the car faces the incoming flow) and 360◦ (the rear end of the car faces the incoming
flow). Hydrodynamic forces, drag, and left confections were computed at each time step.
From this numerical study, a mobility parameter called θv was presented to describe vehicle
instability modes as a function of the Froude number. The numerical model outcomes were
compared with Shu et al.’s (2011) [14] experimental outcomes, and a strong correlation
between the two studies was found. Albano et al. (2016) [19] performed three-dimensional
(3D) numerical modelling to study the groynes effects on the washed debris including
vehicles during flood events in urban areas. The numerical runs were performed by using
the Smoothed Particle Hydrodynamics (SPH) model which was reported by Amicarelli
et al. (2015) [20]. The findings demonstrated that various groynes geometrical shapes
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have various effects on the washed bodies. The results of the numerical simulation were
validated using experimental tests with the same setup and boundary conditions of the
numerical simulation and both experimental and numerical results were properly aligned
with each other.

In 2018, another numerical assessment of flooded vehicle instability was carried out
by Gomez et al. (2018) [21] and Gomariz et al. (2019) [22]. A 3D commercial software
was used to perform the numerical runs, namely FLOW-3D which employed the finite
volume method (FVM) to solve the turbulent models as well as the flow governing equa-
tions [23]. One vehicle model, namely the Mercedes Class C, was selected to be simulated.
The vehicle model was placed perpendicular to the flow direction at which the vehicle’s
longitudinal side was facing the incoming flow. The hydrodynamic forces were obtained
in all directions, and it was concluded that the vehicle slides once the drag force exceeds
the frictional force. The floating instability mode occurs when the buoyancy force exceeds
the vehicle weight. Numerical and previously published experimental [13] findings were
compared, and it was found that the two results were in good accord. Recently, in 2020,
Al-Qadami et al. (2021) [24] carried out a numerical investigation to study the floating
instability of a small-size passenger vehicle using six degrees of freedom and coupled
motion numerical simulation. However, sliding instability and horizontal and vertical
forces were not considered and measured. The results revealed that the vehicle floated at
0.38 m water depth and 9.2 KN buoyancy force. Numerical results were validated with
experimental results and good agreement was noticed.

Based on the above discussion, it can be concluded that the previously published
numerical runs either did not focus on specific vehicle models as such the studies that
were reported by Xia et al. (2011) [17] and Albano et al. (2016) [19], or did not employ
the fully coupled numerical simulation, i.e., the vehicle models were simulated as a fixed
object [18,22,23]. Al-Qadami et al. (2021) [24] adopted the fully coupled and six-degrees-
of-freedom numerical simulation; however, both studies focused only on the floating
instability mode, while the sliding instability mode and hydrodynamic forces on static
vehicles were not covered. In this study, a numerical framework is proposed to investigate
the hydrodynamic forces acting on a full-scale static flooded vehicle under subcritical and
supercritical flows. The science of computational fluid dynamics (CFD) coupled with six
degrees of freedom and coupled motion simulation tools were employed to conduct the
numerical runs. This paper firstly presents a general description of the governing equations
that were used to solve the 3D fluid flow and turbulence models. Then, meshing and
geometry creation are explained including the mesh size selection criteria, mesh block
arrangement, and mesh-independent study. Next, the numerical setup is discussed in
detail including boundary conditions, material properties, and initial conditions. Later,
the results are presented and discussed, and a comparison between the obtained results
and previously published works is performed. Finally, some conclusions are presented
regarding the proposed methodology at the end of this paper.

2. Methodology

In this study, a computational fluid dynamic (CFD) software, namely FLOW-3D
version 11.2, which employs the finite volume method (FVM) and turbulence models to
solve the continuity and Navier Stoke’s equations [25] was chosen to perform the numerical
simulation. All numerical runs in this study were conducted under coupled motion and six
degrees of freedom conditions. Such a setup allows us to detect the center of mass (COM)
of the vehicle at every time step and visualizes whether the vehicle is stable or not. One
vehicle model called Peruodu Viva was chosen to represent a medium-sized Malaysian
passenger vehicle. The vehicle model was tested under different scenarios of flow depths
and velocities with a Froude number ranging between 0.09 and 2.46.
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2.1. Governing Equations

Among the numerical setups, mass continuity (Equation (1)) and momentum equa-
tions (Equations (2)–(4)) at the Cartesian coordinate system were selected to solve fluid
flows in 3D form [26]. The k-ε turbulence model with a no-slip wall shear boundary con-
dition was selected to solve the turbulence flow. The k-ε turbulence model is counted
as an advanced and more popular model to solve turbulence flow and it can provide
reasonable and accurate approximations for a variety of flows [27,28]. The two transport
equations of the k-ε turbulence model are (i) the turbulent kinetic energy kT (Equation (5))
and (ii) its dissipation εT (Equation (6)) [26]. To detect vehicle movement and allow for
coupled modelling conditions, the general moving object model (GMO) was enabled. The
collision model was enabled as well to solve the rigid body dynamic equations. FLOW3D
was specifically designed to handle scenarios involving free surfaces, and it incorporates an
exclusive interface-tracking and free-surface-advection technique known as TruVOF which
adopts a mixed Lagrangian-Eulerian approach. This method aims to address challenges
inherent in standard volume of fluid (VOF) advection approaches such as over-filling or
over-emptying computation cells when volume fluxes are significant in all directions and
the time step is close to the local Courant stability limit [29]. TruVOF reportedly reduces
the necessity for many cells in the vicinity of the free surface, potentially leading to compu-
tational time savings in comparison to other computational fluid dynamics (CFD) software
like CFX (https://www.ansys.com/) [30]. The volume of fluid (TruVOF) function F (x, y, z)
ranging between 0 and 1, at which F = 1 refers to the cells full of fluid, F = 0 refers to the
empty cells, and 0 < F < 1 refers to cells partially full of fluid as shown in Figure 1 [23]:
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where VF is the fractional volume open to flow, ρ is the fluid density, t is the time, (u, v, w)
are the velocity components in the coordinate directions (x, y, z), RSOR is the density source
term, (Ax, Ay, Az) are the fractional areas open to flow in the (x, y, z) directions, respectively,
(Gx, Gy, Gz) are the body accelerations, (fx, fy, fz) are vicious accelerations, P is the pressure,
GT is the buoyancy production term, PT is the turbulent kinetic energy production, DiffKT
is the diffusion term, and CDIS1, CDIS2, and CDIS3 are dimensionless user-adjustable
parameters and have defaults of 1.44, 1.92, and 0.2, respectively.

Figure 2 shows the block diagram of the computational process in FLOW-3D that was
adopted in this study. The process starts by defining the initial and boundary conditions,
and then the algorithm starts to solve the velocity and pressure fields. Next, once these
parameters begin to approach convergence, the supplementary calculations begin. Later,
the next cycle of calculations begins if the simulation time does not approach the finish
time, but if the simulation timing reaches the finish time, then the post-process will be
initiated, and the simulation will be terminated.

https://www.ansys.com/
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2.2. Meshing and Geometry

FLOW-3D uses orthogonal mesh, and it can be in Cartesian or cylindrical coordinates.
In this study, a uniform orthogonal mesh with the Cartesian coordinate system was used.
The mesh’s cell size was selected based on three criteria, namely (i) geometry accuracy after
applying Fractional Area/Volume Obstacle Representation (FAVOR) solver, (ii) required
time for simulation (system capabilities), and (iii) quality of the results (mesh-independent
study). The mesh-independent study was performed by testing a total of four mesh blocks
with cell sizes of 0.1, 0.075, 0.05, and 0.025 m. The setups of the numerical modelling for
the purpose of mesh-independent study are shown in Figure 3. The inlet was defined with
velocity and depth, while the outlet was defined as a free outlet with atmospheric pressure.
One fluid history probe was used to measure the values of the flow parameters including
flow velocity and Froude number.

Table 1 shows the average values of the Froude number and flow velocity at a steady
state for the different mesh sizes. It can be seen that the mesh blocks with cell sizes of
0.100 m and 0.075 m provided readings with a noticeable difference when compared with
other mesh cell sizes (0.05 m and 0.025 m). The Froude number and flow velocity values
obtained from the mesh blocks with cell sizes of 0.05 m and 0.025 m are very close with an
average percentage difference of 1%. Therefore, by considering the computational time and
system capabilities, a mesh block with a cell size of 0.05 m was chosen to capture the fluid
domain. Later, the mesh quality in terms of its accuracy in capturing the vehicle geometry
details was checked by running the FAVOR solver [26] which is available in FLOW-3D.
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Figure 4a,b shows a comparison between the meshed and favorized geometries using a
0.05 m cell size which was generated from the mesh-independent study. It was found that
the mesh block with a cell size of 0.05 m could not capture the car model details accurately.
Therefore, a nested mesh block was defined with a cell size of 0.025 m to only capture the
vehicle domain. Figure 4b,c shows a comparison between the favorized geometries using
0.05 m and 0.025 m cell sizes, respectively.
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The vehicle’s 3D geometry model was created by SolidWorks software 2016 with the
same dimensions and shape design as the real car’s geometry. The geometry was then
converted to stereolithography (STL) file format and imported into FLOW-3D. Figure 5
shows the 3D geometry model which was created for numerical simulation purposes and
the real car model. The road 3D geometry model was created using FLOW-3D software as
a rectangle plate with dimensions of 10 m width, 12 m length, and 0.22 m height. Later, the
vehicle model was placed on the surface of the created road plate.
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2.3. Numerical Setup

The numerical simulation process was started by defining the general parameters
and physics models discussed in Section 2.1. Later, the 3D geometry vehicle model was
inserted into the FLOW-3D software interface as an STL file, then the 3D geometry model
of the road was generated using the tools incorporated in FLOW-3D. A static friction of
0.30 and a coefficient of restitution of 1.0 were used to define the interaction between
the road surface and the vehicle tires. One history probe was located 3 m ahead of the
vehicle to record the flow parameters (flow depth, flow velocity, and Froude number) as
shown in Figures 6 and 7. For each run, the time of simulation was chosen to be 16 s.
This time was adopted based on two criteria, firstly to ensure that the vehicle does not
drag outside the computational domain boundary for unstable cases, and secondly to
ensure that the flow properties at the history probe reach a steady state for stable cases.
The time step is a critical parameter that affects the stability, accuracy, and computational
efficiency of simulations. FLOW-3D incorporates an inherent stability control feature, which
automatically adapts the time step to ensure the solver operates within stability thresholds.
While users can manually designate the time step size, superior and more stable outcomes
have been observed when allowing the solver to determine the time step size during each
iteration [30]. The average time step that was used by the FLOW-3D solver was found to be
0.001 s, as shown in Figure 8. By using Equation (7), the Courant–Friedrichs–Lewy (CFL)
number that corresponds to the average time step can be calculated, and the value was
found to be 1.2:

CFL =
ux∆t
∆x

+
uy∆t
∆y

(7)

where, ux is the maximum expected velocity in the x-direction, uy is the maximum expected
velocity in the y-direction, ∆t is the time step, and ∆x and ∆y are the grid spacings in the
x-direction and y-direction, respectively.

Two mesh blocks were used, namely (i) containing mesh block and (ii) nested mesh
block, as shown in Figure 9. The containing mesh block captured both the fluid and
geometry domains with a cell size of 0.05 m in x-, y-, and z-directions. The boundary
conditions of the containing mesh block were defined for each face as follows: (i) top
was defined as a free surface with stagnation pressure and zero fluid fraction, (ii) both
sides and bottom faces were defined as walls with no slip, (iii) inlet face was defined with
flow velocity and water depth, and (v) outlet face was defined as a pressure outlet with
atmospheric pressure and zero fluid fraction. The nested mesh block was located inside the
containing mesh block with a cell size of 0.025 m. A smaller cell size was chosen for the
nested mesh block to capture all vehicle details, as discussed in Section 2.2. All sides of the
nested mesh block were defined as symmetry except the top face, which was defined as a
free surface with stagnation pressure and zero fluid fraction. The computational domain
has dimensions of 10 m in width, 12 m in length, and 1.8 m in height as shown in Figure 9.
The blockage ratio (BR) which refers to the ratio of the projected side area of the vehicle to
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the frontal area of the domain was calculated using Equation (8) [31] and it was found to
be 0.22.

BR =
Side area o f the vehicle

f rontal area o f the domain
(8)
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A total of 3,419,280 cells were accounted for both in containing and nested mesh
blocks. It is worth mentioning that the numerical runs were performed in a workstation
PC with 16 GB RAM and 64 bit CPU at which the time taken by the PC to complete one
numerical run successfully ranged between 3 and 4 days. Figure 6 shows the numerical
set-up and boundary conditions that were used to investigate the different hydrodynamic
forces on a flooded vehicle under subcritical flows. On the other hand, a hump was
designed and placed at the inlet side to simulate the supercritical flows as shown in
Figure 7. Later, different flow velocities and depths were generated through the inlet
boundary. As previously discussed, the mesh quality for each setup was checked before
running the numerical modelling using the FAVOR solver. Figure 10 shows the output
of the Favor solver for the whole solid domain (road and vehicle models). A total of
14 numerical runs were carried out to investigate the different hydrodynamic forces on
the critical vehicle orientation 90◦ [16] (i.e., the vehicle’s longitudinal side was facing the
incoming flow) under subcritical and supercritical flows. Table 2 provides a summary of
the hydraulic parameters (velocity, depth, and Froude number) measured 3.0 m ahead of
the vehicle model with the history probe for each run. Five cases were under supercritical
flows and nine were under subcritical flows. Hydrodynamic forces on the vehicle body
sides were determined from the numerical simulation and related to flow velocity, water
depth, and Froude number.

Sustainability 2023, 15, x FOR PEER REVIEW 9 of 19 
 

 
Figure 8. The time step size the FLOW3D solver used on the selected mesh size. 

 
Figure 9. Mesh blocks, (a) isometric view, (b) side view, (c) front view, and (d) top view. 

 
Figure 10. Geometry output after running FAVOR solver (a) subcritical setup (b) supercritical setup. 

Table 2. Details of numerical runs under subcritical and supercritical flows. 

Case  Water Depth 3 m ahead of 
the Vehicle (m) 

Flow Velocity 3 m ahead of 
the Vehicle (m/s) 

Froude 
Number  

Depth beside 
Vehicle (m) 

Vehicle 
Instability 

Mode 
1 0.14 2.88 2.42 0.24 Sliding  
2 0.15 0.89 0.37 0.20 Stable  
3 0.29 0.66 0.39 0.29 Stable  
4 0.16 1.70 1.36 0.26 Stable  
5 0.16 2.28 1.82 0.28 Stable  
6 0.24 0.57 0.37 0.25 Stable  
7 0.22 0.49 0.33 0.24 Stable  
8 0.20 0.40 0.28 0.21 Stable  
9 0.18 2.70 2.03 0.31 Sliding  

10 0.20 3.44 2.46 0.30 Sliding  

Figure 10. Geometry output after running FAVOR solver (a) subcritical setup (b) supercritical setup.



Sustainability 2023, 15, 13262 10 of 20

Table 2. Details of numerical runs under subcritical and supercritical flows.

Case
Water Depth

3 m ahead of the
Vehicle (m)

Flow Velocity
3 m ahead of the

Vehicle (m/s)

Froude
Number

Depth
beside

Vehicle (m)

Vehicle
Instability

Mode

1 0.14 2.88 2.42 0.24 Sliding

2 0.15 0.89 0.37 0.20 Stable

3 0.29 0.66 0.39 0.29 Stable

4 0.16 1.70 1.36 0.26 Stable

5 0.16 2.28 1.82 0.28 Stable

6 0.24 0.57 0.37 0.25 Stable

7 0.22 0.49 0.33 0.24 Stable

8 0.20 0.40 0.28 0.21 Stable

9 0.18 2.70 2.03 0.31 Sliding

10 0.20 3.44 2.46 0.30 Sliding

11 0.30 1.35 0.83 0.32 Sliding

12 0.38 0.20 0.1 0.38 Floating

13 0.39 0.17 0.09 0.39 Floating

14 0.40 0.12 0.12 0.40 Floating

3. Results and Discussion
3.1. Recognition of Sliding Instability Numerically

As mentioned earlier, the coupled motion simulation condition was used to run the
numerical modelling. This setup allows the users to notice and detect the vehicle’s center of
mass (COM) directly and identify whether the vehicle slid or not. In this study, stable and
unstable conditions were recognized and recorded. Among the 14 numerical runs, it was
found that the vehicle lost its stability under sliding mode in cases 1, 9, 10, and 11, while the
floating instability occurred in cases 12, 13, and 14, as shown in Table 2. Figures 10 and 11
show the stable and unstable conditions obtained from the numeral simulation, respectively.
From Figure 12, it can be noticed that the vehicle was dragged from its initial location,
resulting in sliding instability. On the other hand, the vehicle model remained at its initial
location in the stable condition, as shown in Figure 11. Moreover, COM in the x-direction
(flow direction) was recorded for both stable and unstable conditions. Figure 13 shows
the changes in the vehicle X-COM with time. It was clear that, for stable conditions, there
were no changes in the vehicle X-COM value with the time at which the initial and final x
coordinates were xi = 6.87 m and xf = 6.88 m, respectively. On the other hand, the vehicle
X-COM values changed significantly with time resulting in the sliding instability mode and
the initial and final x coordinates were xi = 6.87 m and xf = 24.41 m, respectively.

3.2. Streamlines Distribution

The distribution of the streamlines around the vehicle body for the steady-state condi-
tion under subcritical flows can be seen in Figure 14. It was observed that the streamlines
were redirected and became more complex near tires. resulting in reduced velocity magni-
tudes behind the tires, as shown in Figure 14. The flow velocity underneath the vehicle
increased due to the ground clearance distance.
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3.3. Hydrodynamic Forces

In FLOW-3D, the pressure magnitude on all vehicle faces including the bottom and
sides were measured and recorded at every time step. Later, the forces acting on the vehicle
were computed by integrating the pressures on the surface based on the recorded pressure
and affected area.

3.3.1. Horizontal Force, FH

The horizontal force is mainly accounted as the cause of the sliding instability mode and it
is mainly governed by the flow velocity, affected area, and drag coefficient. Figures 15 and 16
show the relationships between the drag force and flow velocity and drag force and Froude
number, respectively. From both figures, it can clearly be seen that the drag force increases
with the increment of both parameters as expected. Further, it was observed that the
increment of drag force was gradual at low flow velocity and Froude number, while at
higher values the drag force increased significantly. As mentioned earlier, the sliding
instability mode is governed by the values of drag and friction forces; thus, the vehicle will
be in more danger of sliding under supercritical flows when compared with conditions
under subcritical flows. From the results, it can be concluded that the sliding instability
mode mainly occurs under supercritical flows when Froude numbers are more than 1.
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3.3.2. Vertical Force, FV

Vertical force corresponds to the pushing-up pressure exerted by the flow against
the vehicle’s weight. It is considered as the main force causing the floating instability
modes and it is mainly governed by the water depth at the vehicle vicinity. Herein, the
relationship between water depth and buoyancy force was considered rather than other
flow parameters. Numerical results revealed that the vertical force increased gradually
with the increment of water depth, as shown in Figure 17. The vehicle was seen to float
once the water depth at the vehicle vicinity was more than 0.38 m and the buoyancy force
was 9.16 KN. From Figure 17, a power equation (Equation (9)) describing the relationship
between vertical force (Fv) and water depth (h) can be proposed as follows:

Fv = 6.5h1.98 (9)
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3.3.3. Frictional Force, FR

The frictional force exists due to the contact between the ground surface and the tires.
Among the other numerical simulation setups, the static friction coefficient of the road
was set to be 0.30 following the experimental results obtained by Bonham and Hattersley
(1967) [8], Gordon and Stone (1973) [10]. Later, the frictional force was calculated using
Equation (11) based on the measured vertical force and vehicle weight. The results showed
that the friction force decreased with the increment of flow depth, as shown in Figure 18.
The negative values in Figure 18 represent the theoretical frictional forces which were
calculated using Equation (10). The negative values indicated that the vehicle was under



Sustainability 2023, 15, 13262 14 of 20

floating instability mode and there was no more contact between the ground surface and the
vehicle tires, i.e., the upward pushing force was more than the vehicle weight (FV >> FW):

FR = µ(FW − FV) (10)

where µ is the friction coefficient, FW is the vehicle weight under dry conditions, and FV is
the upward pushing force.
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3.3.4. Drag Coefficient, CD

For a static vehicle at a 90◦ orientation, the main drag coefficient is the one calculated
from the drag force that has an effect on the vehicle’s longitudinal side (Equation (11)). The
numerical results revealed that the drag coefficient CD decreased with the increment of
the Froude number, as shown in Figure 19. At low Froude numbers (subcritical flows),
the drag coefficients were higher than 1. However, at high Froude numbers (supercritical
flows), the drag coefficients were found to be less than 1. It can then be concluded that the
drag coefficient is not constant as proposed in earlier experimental studies, but changes
with Froude numbers and flow conditions:

CD = 2
FH

ρADv2 (11)

where FH is the drag force, ρ is the water density, AD is the affected area projected normally
to the incoming flow, and v is the flow velocity.
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4. Validation of Results

For validation purposes, the obtained numerical results discussed in the present study
were compared with three previously published works. Firstly, the stable and unstable
scenarios which were predicted numerically were compared with the Australian Rainfall
and Runoff (AR&R 2011) [32] guidelines for small and medium passenger vehicles to
evaluate the reliability of the proposed numerical framework (see Section 4.1). Secondly,
the floating depth and the depth × velocity threshold function obtained in this study were
compared with the theoretical equations proposed by Martínez-Gomariz et al. (2017) [13]
(see Section 4.2). Finally, the hydrodynamic forces on the flooded vehicle obtained in the
present study were compared with the results reported by Al-Qadami et al. (2022) [33].

4.1. Australian Rainfall and Runoff (AR&R 2011) [32]

A comparison between the obtained numerical simulation results and previously
published guidelines by Australian Rainfall and Runoff (AR&R 2011) was conducted, as
shown in Figure 20. It can be seen that the obtained numerical results under six degrees
of freedom and coupled motion conditions strongly agree with the published guidelines.
The floating and sliding numerical cases obtained in this study were located above the
stability threshold at which the unstable zone was defined, while the stable cases were
located underneath the stability chart. However, there is one case that was observed as
stable according to the numerical simulation, but it was located in the unstable zone, as
shown in Figure 20.
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4.2. Martínez-Gomariz et al. (2017) [13]

The depth × velocity threshold function (Equation (12)) and floating depth equation
(Equation (13)) that was proposed by Martínez-Gomariz et al. (2017) [13]) was used to
validate the minimum threshold velocity and floating depth, respectively. It was noticed
that the minimum threshold velocity obtained from (Equation (12)) was 0.47 m2/s, while it
was 0.36 m2/s in this numerical study with a percentage difference of 25%. On the other
hand, it was found that the floating depth calculated from (Equation (13)) was 0.368 m,
while the floating depth that was obtained numerically in this study was 0.380 m. A strong
agreement between both results was noticed with a difference percentage of 3.20%:

h.v = 0.0158 × GC × Mc

PA
µ + 0.32 (12)
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hb =
Mc

ρ f lcbc
+ GC (13)

where hb is the buoyancy depth, Mc is the vehicle weight, ρ is the fluid density, lc and bc are
the length and width of the vehicle, respectively, GC is the vehicle ground clearance, PA is
the vehicle plane area, and µ is the friction coefficient.

4.3. Al-Qadami et al. (2022) [33]

The obtained numerical results were further compared with the experimental re-
sults that were introduced by Al-Qadami et al. (2022) [33]. The experimental study was
performed for the same vehicle model (Peruodu Viva) but only under subcritical flow
conditions. Figure 21 shows the comparison between the current numerical results and
the published experimental results in terms of hydrodynamic forces. It can be seen that
both results properly aligned with each other, especially the relationships between (i) drag
coefficient and Froude number, (ii) buoyancy force and water depth, and (iii) frictional
force and water depth, as shown in Figure 21b–d, respectively. However, the numerical and
experimental results trend of drag force and flow velocity (Figure 21a) was not accurately
aligned; this could be due to the limitations of the experimental study which only covered
the subcritical flow regime. Overall, this comparison process indicates that the numerical
framework proposed in this study can be considered a reliable method to be used in future
studies dealing with flooded vehicle instability.
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5. Conclusions

In this paper, numerical modelling was conducted to assess the stability of a full-scale
passenger vehicle during floodwaters. For the purpose of modelling, a medium passenger
vehicle called Peruodu Viva was selected and exposed to different combinations of flow
velocities and water depths with a Froude number range between 0.09 and 2.46. The
numerical simulation in the present study was performed under six degrees of freedom
and fully coupled motion set-ups. Based on the obtained results, the following conclusions
were drawn:

• For the tested vehicle model, it was noticed that the floating instability mode occurred
once the upward pushing forces exceeded the vehicle weight as expected. On the other
hand, the sliding instability mode occurred once the horizontal drag force exceeded
the frictional resistance between the tires and the ground surface.

• The sliding instability mode was observed in four cases with the depth × velocity
(h × v) threshold function values of 0.41, 0.40, 0.49, and 0.69 m2/s, while the floating
instability mode was observed in three cases when water depth reached more than
0.38 m.

• The threshold value of the depth × velocity (h × v) function was found to be 0.36 m2/s,
at which the vehicle was considered stable if h × v < 0.36 m2/s, while the vehicle lost
its stability if h × v > 0.36 m2/s.

• The floating instability mode was common when the flow was subcritical, while the
sliding stability mode was common when the flow was supercritical.

• Both instability modes could occur at the same time, i.e., the vehicle floated first and
then was washed away within the flow direction.

• The drag force was mainly influenced by the flow velocity while the buoyancy force
was mainly affected by the water depth at the vehicle vicinity.

• The drag coefficient was observed to be more than 1 when the flow was subcritical,
but the value was reduced to less than 1 when the flow was supercritical.

• By employing six degrees of freedom and fully coupled techniques, the vehicle center
of mass could be detected at each time step. This helped to accurately know whether
the vehicle was stable or not.

• The validation process showed that the obtained numerical results were logical, and
the proposed numerical framework was reliable in predicting the stability limits of
any other vehicles.

The authors believe that the proposed numerical framework presented in this study
can help to redirect the research approaches regarding flooded vehicle stability studies.
However, it is recommended to extend this work by conducting more numerical modelling
by adopting different road surface friction coefficients, different vehicle models, and ori-
entations against the incoming flow to confirm the accuracy of the presented numerical
framework.
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Nomenclature

VF fluid volume function
ρ fluid density (kg/m3)
t time (s)
u velocity components in the coordinate directions of x
v velocity components in the coordinate directions of y
w velocity components in the coordinate directions of z
RSOR density source term
Ax fractional area open to flow in the x direction
Ay fractional area open to flow in the y direction
Az fractional area open to flow in the z direction
Gx body acceleration in x coordinate
Gy body acceleration in y coordinate
Gz body acceleration in z coordinate
fx viscous accelerations in the x direction
fy viscous accelerations in the y direction
fz viscous accelerations in the z direction
P pressure (Pa)
GT buoyancy production term
εT energy dissipation rate
PT turbulence kinetic energy
DiffKT diffusion term
CDIS1 dimensionless user-adjustable parameters
CDIS2 dimensionless user-adjustable parameters
CDIS3 dimensionless user-adjustable parameters
hb buoyancy depth
Mc vehicle weight
Lc vehicle length
bc vehicle width
GC ground clearance,
PA vehicle plane area
µ friction coefficient
FR frictional force
FW vehicle weight
FV upward pushing force (vertical force)
CD drag coefficient
FH drag force
AD area projected normally to the incoming flow
H water depth
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