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Abstract: We developed a GNSS-assisted InSAR phase unwrapping algorithm for large-deformation
DInSAR data processing in coal mining areas. Utilizing the Markov random field (MRF) theory and
simulated annealing, the algorithm derived the energy function using MRF theory, Gibbs distribution,
and the Hammersley–Clifford theorem. It calculated an image probability ratio and unwrapped the
phase through iterative calculations of the initial integer perimeter matrix, interference phase, and
weight matrix. Algorithm reliability was confirmed by combining simulated phases with digital
elevation model (DEM) data for deconvolution calculations, showing good agreement with real
phase-value results (median error: 4.8 × 10−4). Applied to ALOS-2 data in the Jinfeng mining area,
the algorithm transformed interferometric phase into deformation, obtaining simulated deformation
by fitting GNSS monitoring data. It effectively solved meter-scale deformation variables between
single-period images, particularly for unwrapping problems due to decoherence. To improve cal-
culation speed, a coherence-based threshold was set. Points with high coherence avoided iterative
optimization, while points below the threshold underwent iterative optimization (coherence thresh-
old: 0.32). The algorithm achieved a median error of 30.29 mm and a relative error of 2.5% compared
to GNSS fitting results, meeting accuracy requirements for mining subsidence monitoring in large
mining areas.

Keywords: GNSS; InSAR; mining subsidence monitoring; ALOS-2

1. Introduction

Traditional differential interferometry synthetic aperture radar (DInSAR) monitoring
methods and time-series InSAR techniques developed from DInSAR technology face
limitations due to inconsistencies in mine monitoring. Therefore, the reliability of the
monitoring data is poor when the consistency is low. To solve these problems, external
deformation monitoring data are being used to assist in phase deconvolution.

External data, such as 3D laser scanning data and digital elevation models (DEMs),
can be involved in the process of InSAR phase unwrapping. Yue et al. (2016) used 3D
laser scanning data and an assisted network planning deconvolution algorithm to perform
phase deconvolution of ground-based InSAR and validated this with examples [1]. They
used evaluation indexes to quantitatively analyze the deconvolution results, showing
that the 3D laser scanning data-assisted network planning deconvolution algorithm can
effectively reduce the number of discontinuity points and improve the deconvolution
accuracy. Liu et al. (2017) studied a DEM-assisted phase deconvolution method to solve the
problem of difficult phase deconvolution of mountain InSAR [2]. The original interferogram
and the DEM simulated interferogram were differenced to obtain a zero-medium frequency
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interferogram. Then, the interferogram results were filtered and phase deconvolved, and
the deconvolved results and the simulated interferometric phase were summed to obtain the
deconvolved results of the original interferogram. This reduced the influence of the phase
in sampling and spectral aliasing on interferometric processing and improved the phase
deconvolution performance. The method was validated by calculating the percentage of
deconvolution, deconvolution efficiency, and mean coherence value to verify its feasibility
and effectiveness.

The most common type of external surface subsidence monitoring data is the Global
Navigation Satellite System (GNSS) monitoring data. GNSS is a collective term for satellite
positioning systems such as GPS, the Global Navigation Satellite System (GLONASS),
Galileo, and the BeiDou Navigation Satellite System (BDS). To monitor an area, a GNSS
network is generally required, which is a survey control network built using GNSS mea-
surement and positioning technology. The obtained data were processed and used for
deformation monitoring in the area [3,4]. GNSS technology is relatively inexpensive and
can be used for diurnal and long-duration continuous observations. InSAR has the advan-
tage of being less expensive than GNSS and can be used for surface deformation monitoring
because it can be used for diurnal and all-weather observations. By combining the advan-
tages of these two methods, the accuracy of surface-deformation monitoring in mining
areas can be improved. To date, research on the integration of InSAR and GNSS technolo-
gies has involved the following: using GNSS monitoring data for InSAR monitoring data
accuracy assessments, using GNSS monitoring results to assist the InSAR phase unwrap-
ping data process, using a combination of GNSS and InSAR monitoring results for surface
3D deformation extraction, and using GNSS and InSAR monitoring data for geophysical
parameter inversion [5]. In particular, the use of GNSS monitoring results to assist the
InSAR phase unwrapping data handling process can effectively improve the unwrapped
results. Gudmundsson et al. first proposed an InSAR phase deconvolution method based
on a Markov random field (MRF) model, and a simulated annealing algorithm using GNSS
data to determine an initial integer number matrix and an energy function based on the
properties of the Markov random field model [6]. This used airport model properties to
determine the energy function, which was iterated according to a simulated annealing algo-
rithm, which obtained the optimal integer perimeter matrix. Luo Binhai et al. established
an integrated branch-and-tangent phase unwinding algorithm based on the research of
the InSAR phase unwinding method, which in turn is based on the Markov random field
model and simulated annealing algorithm. Experimental results showed that the integrated
algorithm has high unwinding accuracy and a large unwinding range [7]. In addition,
Hanwen et al. used external data such as GNSS and LiDAR as the a priori constrained 2D
phase deconvolution framework to improve the consistency of phase edges [8].

The method of GNSS monitoring results to assist the InSAR phase deconvolution
data processing can effectively resolve the decorrelation. Gudmundsson et al. primarily
used it for large-scale subsidence monitoring [6]; however, it has not been utilized for
surface subsidence monitoring in mining areas. To solve the problem of low accuracy and
unreliability of deconvoluted data—owing to excessive deformation within the mines—this
study introduced a method that aims to monitor surface deformation of mines more
accurately and reliably.

2. Principle of GNSS Monitoring Point Assisted InSAR Phase Unwrapping Algorithm
2.1. Bayesian Formula

A Bayesian formula was used to describe the relationship between two conditional
probabilities according to the rule,

P(A ∩ B) = P(A)P(B|A) = P(B)P(A|B) (1)

where P(B|A) and P(A|B) are two conditional probabilities: the probability of event B
occurring after event A and the probability of event A occurring after time B. These are
referred to as the posterior probability of B and the posterior probability of A. P(A) and
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P(B) are the prior probabilities of event A occurring and event B occurring, respectively.
This can also be explained as follows.

P(A|B) = P(A)P(B|A)

P(B)
(2)

i.e.,
P(A|B) ∝ P(A)P(B|A) (3)

2.2. Markov Random Fields

For Markov random fields, given that the values of the random variables at the raster
positions of any raster are known, the probability of the random field taking values at the
raster points is related only to the neighboring points of the raster [9].

2.3. Gibbs Distribution

In the Gibbs distribution, δ is defined as a system of neighborhoods on S when and
only when the joint probability distribution of the random field X = {xs, s ∈ S} has the
following form [10]:

P(X = x) =
(

1
Z

)
exp{−U(x)} (4)

Thus, X is considered to be a Gibbs random field, where U(x) represents the
energy function.

2.4. Hammersley–Clifford Theorem

Because the Markov random field is used to describe the local properties of an image
and the Gibbs random field is described by the global properties of the random field, it
is possible to relate the two. The Hammersley–Clifford theorem establishes a connection
between them. The Hammersley–Clifford theorem states that a neighborhood system M is
in set S if the random field on airport X conforms to a Gibbs random field; then X is also a
Markov random field [11].

2.5. Simulated Annealing Algorithm

The concept of the simulated annealing algorithm (SAA) was first proposed by
Metropolis et al. in 1953 [12]. The SAA is primarily an optimization algorithm based
on the consistency between the annealing process of solids and the optimization problem.
The process of annealing a solid substance involves heating the solid substance until it melts
and then allowing the object to cool slowly. At elevated temperatures, the internal energy
of the solid substance increases, and the internal molecules assume an active state. During
the slow cooling process, the particles gradually order themselves and reach equilibrium
at each temperature until the temperature drops to room temperature. Then, the internal
energy is minimized, and the solid substance reaches its most stable state. This process
is similar for optimization problems. Each point in the solution space of an optimization
problem represents a solution, and different solutions have different cost function values.
Through optimization, we find the solution with the smallest or largest cost function value
in the solution space [13].

2.6. Algorithm Fundamentals

The MRF model is primarily used to adjust the integer–number matrix during data pro-
cessing. In the MRF model [9], the optimal matrix (image) n is interpreted as a realization of
the random variable, N. According to probabilistic statistics, the process of determining the
optimal integer perimeter matrix, n, is equivalent to the maximum likelihood of estimating
the integer perimeter matrix given that the winding interferogram, Iw, is known.
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n̂ = argmax
n

P(N = n|Y = y) (5)

where n̂ denotes the best realized image for a given image, n, and Y is related to the
observation. For convenience, P(n) is used instead of P(N = n) using the following
equation. As described about Bayes’ theorem, we obtain:

P(n|y) = P(n)P(y|n)
P(y)

∝ P(n)P(y|n) (6)

where P(n) represents the a priori expectation of the random field, N (usually a smoothing
assumption), and P(y|n) represents the likelihood of image y given image n (as a function
of the observations).

As described about Hammersley–Clifford theorem [10]:

P(n|y) = PT(n|y) ∝ exp
(
− 1

T U(n|y)
)
= exp

(
− 1

T U1(n)
)

exp
(
− 1

T U2(y|n)
)

= exp
(
− 1

T (U1(n) + U2(y|n))
) (7)

where U(n|y) is the definition of the energy function related to both the neighborhood
structure of the interferogram, U1(n), and the relationship of the image, U2(y|n), and T is
the temperature. The Hammersley–Clifford theorem provides a global definition of the
random field such that the MRF can be considered as having an energy function of

U(n|y) = U1(n) + U2(y|n). (8)

When the energy function obtains a small value, the image is considered optimal.
As T → ∞ , the distribution in Equation (4) becomes homogeneous across all possible

energy states; in contrast, as T → 0 , the distribution becomes homogeneous between the
minimum energy states. Simulated annealing optimization can be described as a sampling
of the density in Equation (4), where temperature, T, starts at a certain ‘high’ value T0 > 0
and decreases to 0 in iterative steps. If the temperature decreased sufficiently slowly,
Equation (4) assigns the maximum probability to a MAP image. A major advantage of
using the simulated annealing optimization process is that it has a relatively low risk of
encountering local minima compared to other optimization algorithms.

3. Study Area
3.1. Location of the Study Area

Figure 1 shows the study area in Jinfeng coal mine. The Jinfeng coal mine of Shenhua
Ningxia Coal Group is located in the southeast of Wuzhong City, Ningxia Hui Autonomous
Region, about 55 km from Yanchi County and 115 km from Yinchuan City. The geographic
coordinates of the mine are from 106◦49′51′′ to 106◦53′05′′ E, 37◦34′41′′ to 37◦41′50′′ N. It
is a new shaft mine invested by Shenhua Ningxia Coal Industry Group, which was built
in July 2008. The approved wellfield area is 36.0766 km2, with a design service life of
64.2 years and a production capacity of 4.00 Mt/year. The mine is one of the large mines
planned for in the Ningdong Energy Chemical Base and is a supporting project for the coal
chemical project in the Ningdong Base, mainly to meet the demand for coal from the coal
chemical project.

3.2. Natural Resources
3.2.1. Type of Land Use

The land use in Yanchi County is shown in Supplementary Material Table S1 [14]. The
land-use types in Yanchi County are mainly grassland, forestland, and arable land, with a
small proportion being used for towns, villages, industrial and mining purposes, water
and water conservation facilities, gardens, and transport.
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model (DEM) data. Note: (a) is based on a standard map with review number GS (2016) 1568, down-
loaded from the standard map service website of the National Administration of Surveying, Map-
ping, and Geographic Information; the base map has not been modified. 
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Figure 1. Location of study area. (a) China, and (b) enlargement showing study area within red
rectangle. Base map based on Shuttle Radar Topography Mission (SRTM) 30 m digital elevation
model (DEM) data. Note: (a) is based on a standard map with review number GS (2016) 1568,
downloaded from the standard map service website of the National Administration of Surveying,
Mapping, and Geographic Information; the base map has not been modified.

3.2.2. Vegetation

The climate of the study area is arid, with a paucity of surface water and groundwater,
severe sandy desertification, and low vegetation cover. The vegetation cover is higher in
the south than in the north. Desert grasslands are dominated by red sand weeds, and plant
species mainly include ice grass, cat head spurge, lamprey, needle grass, and bitter bean
seeds [15]. In summer and autumn, the grass cover is green and slightly vibrant, whereas
in spring and winter, the grass perishes. No rare or endangered plant species in this region
are under national protection.

3.3. Meteorological and Hydrological Conditions

The study area has a semi-arid continental monsoon climate in a middle temperate
zone, with a dry and hot climate with severe cold winters, hot and cold-hot summers, with
a wide temperature difference between day and night. According to the weather station
in Yanchi County, the annual average temperature is 10.2 ◦C, with an extreme maximum
of 37.4 ◦C and an extreme minimum of −27.1 ◦C. Rainfall is mostly concentrated in July,
August, and September, with a multiyear average rainfall of 227.9 mm. The frost-free period
is short, from mid-May to the end of September. The windy season is mostly concentrated
in spring and autumn, with a maximum wind force of 8, usually 4–5, mostly from the north
and northwest, and dust storms occur in spring. The main meteorological data for Yanchi
County [14] are shown in Supplementary Material Table S2. The study area is in the Yellow
River Basin, with little rainfall and no year-round surface runoff from the well field, with
wide, slow-flowing, and short seasonal gullies exist.

3.4. Terrain and Landscape

The study area is located at the southwestern edge of the Maowusu Desert, which is
mostly covered by sand dunes interspersed with weeds and is a gently sloping semi-desert
hilly landform unit. The terrain is high in the south and low in the north, and the elevation
of the ground is around 1400–1600 m, with little topographic relief within the study area.
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4. Data Sources

The data used in this chapter included radar, GNSS observations, and DEM data.

4.1. Radar Data

ALOS-2 is an L-band radar satellite with a wavelength of approximately 24.3 cm, and
has the advantages of high resolution, wide area coverage, and a short revisit cycle. With a
revisit cycle of 14 days, ALOS-2 can meet the requirements for monitoring geological haz-
ards, updating data information, monitoring changes in arable land and tropical rainforests,
and monitoring changes in sea ice and surface deformation. Table S3 in Supplementary
Material shows selected ALOS-2 images and information on the type of data product used,
data scan mode, track number, and track mode.

4.2. GNSS Data

This subsection used the GNSS monitoring points deployed at the Jinfeng mine in the
study. GNSS monitoring results were used for surface deformation acquisition. The loca-
tions of the monitoring points within the study area are shown in Figure 2, and the specific
coordinate information for each monitoring point is listed in Supplementary Material Table S4.Sustainability 2023, 15, x FOR PEER REVIEW 7 of 20 
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4.3. DEM Data

The DEM used in this subsection is the SRTM 30 m DEM, shown in Figure 1b, which
is a collaborative radar terrain mapping project between NASA and the National Mapping
Agency (NIMA) of the Department of Defense, as well as German and Italian space agencies.
The published SRTM 30 m and 90 m DEMs provide more accurate topographic data for
InSAR data processing and provide essential data support for topographic mapping efforts
and geological researchers.

5. Key Steps in GNSS Monitoring Point Assisted InSAR Phase Unwrapping
5.1. Calculating GNSS LOS Directional Deformation

GNSS monitoring results include the E, N, and U directions, but the intermediate and
results during InSAR data processing are in the LOS direction; therefore, GNSS monitoring
results need to be transformed from the ENU direction to the LOS direction.

We assume that the DInSAR interferometric image pair has a primary video imaging
date for date1 and a secondary video imaging date for date2 [16]. Corresponding to the pri-
mary video imaging date1, the GNSS monitoring result is

[
E1 N1 U1

]T , corresponding

to the secondary image imaging date2, the GNSS monitoring result is
[
E2 N2 U2

]T . Then
during the date1–date2 period, the GNSS shape variables can be shown by Equation (9).E

N
U

 =

E2
N2
U2

−
E1

N1
U1

 (9)

The conversion of the GNSS monitoring results from the ENU direction to the LOS
direction is shown in Equation (10) [17,18],

dlos = −Esinθincsin
(

αazi −
3π

2

)
− Nsinθinccos

(
αazi −

3π

2

)
+ Ucosθinc (10)

where
[
E N U

]T is the three-dimensional vector of GNSS deformation, θinc is the inci-
dence angle of the SAR satellite, and αazi is the flight azimuth of the SAR satellite, that is,
the angle between the north and flight directions of the satellite.

5.2. Calculating the Initial Matrix

The initial matrix includes the interferometric phase, initial integer perimeter, and
weight matrices. The interferometric phase matrix was obtained by interferometric pro-
cessing of the SAR images. For the acquired interferometric phase matrix, it is assumed
that the flat terrain and noise phases had been processed cleanly, and the interferometric
phase matrix could proceed directly to the next step of the operation. There are two ideas
for acquiring the initial integer number matrix. First, the GNSS LOS vector deformation
obtained in Section 5.1 is interpolated to obtain the fitted surface in the study area and the
initial integer number matrix is calculated. The interferometric phase is transformed into
an LOS-oriented distance, according to Equation (11).

LOS = − λ

4π
φ (11)

where λ is the radar wavelength. The equation used to calculate the initial integer perimeter
matrix is given by Equation (12):

n = (round)

(
iv − iw

λ
2

)
(12)

where iv is the fitted surface obtained by interpolation using the GNSS LOS-oriented defor-
mation; iw is the result of interferometric phase conversion to LOS-oriented deformation;



Sustainability 2023, 15, 13277 8 of 18

and λ is the radar wavelength. In the second method, the GNSS LOS vector deformation
is converted into a phase and interpolated to obtain the fitted surface in the study area,
according to Equation (13).

φ = −4π

λ
LOS (13)

Consistent with Equation (14), the initial integer number matrix is calculated:

n = (round)
(

φv − φw

2π

)
(14)

where φv is the fitted surface obtained by interpolation using the phase of the GNSS LOS
to deformation transformation, φw is the phase result interference, and λ is the radar
wavelength. The initial weight matrix was determined from the positions of the GNSS
points. The raster value where the GNSS was located was set to 1, and the others were set
to 0.

5.3. Simulated Annealing Algorithm

The simulated annealing algorithm flow is shown in Figure 3. The steps are as follows:
(1) prepare the initial data, including the initialization of the integer cycle number images,
interferometric phase images, and weight matrix, and initialize the relevant parameters,
including wavelength, initial temperature, cooling temperature, and cooling coefficient;
(2) read the pixels and traverse the image for the initialized integer number of weeks;
(3) once a new matrix is generated with an integer number of weeks, the specific operation
involves performing an equal probability ±1 according to the read-in pixel value, changing
the pixel value, and generating a new whole-week number matrix; and (4) the image
probability ratio is calculated by Equation (15).

r =
P(n′|y)
P(n|y) = exp

(
−U(n′|y)−U(n|y)

T

)
(15)

In Equation (15), n′ represents the newly generated whole-week number matrix,
n represents the initial whole-week number matrix, T represents the temperature, P(∗)
represents the probability, U(∗) represents the energy function, y represents the unwrapped
phase matrix calculated from the whole-week number matrix and the interferometric phase
matrix, and the calculation is shown in Equation (16).

y = iw + n
λ

2
(16)

In Equation (16), iw is the interferometric phase result, λ is the radar wavelength, and
n is the whole-week number matrix. The energy function calculation formulae are shown
in Equations (17)–(19).

U(n|y) = U1(n) + U2(y|n) (17)

U1(n) = γ1∑
i∈u

∑
j∈v

(
yi+1,j + yi−1,j + yi,j+1 + fi,j−1 − 4yi,j

)
(18)

U2(y|n) = γ2∑
i∈u

∑
j∈v

((
yi+1,j − yi,j

)2Wi+1,j +
(
yi−1,j − yi,j

)2Wi−1,j +
(
yi,j+1 − yi,j

)2Wi,j+1 +
(
yi,j−1 − yi,j

)2Wi,j−1

)
(19)

In these equations, γ1 and γ2 are two constants in the energy function, U1 and U2,
formulas, respectively. W is the weight matrix of the image. The grid value of the GNSS
grid is set to 1, and the others are set to 0. After each pixel traversal is completed, it will
expand along the direction of the four neighborhoods to reduce the value of calculation.
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Step (5) is to determine whether the newly generated whole-week number matrix is
superior. According to the image probability ratio calculated in step (4), we compared it
with a random number between [0, 1] to judge whether the newly generated whole-week
number matrix is better. If the calculated image probability ratio is greater than a random
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number between [0, 1], the newly generated whole-week number matrix is considered
to be better. Otherwise, the initial whole-week number matrix is better. The judgment
equation is (20).

nnew =

{
n′, r > µ[0, 1]
n, r < µ[0, 1]

(20)

In the equation, nnew is the integer cycle number result storage matrix, n′ represents
the newly generated whole-week number matrix, n represents the initial whole-week
number matrix, r represents the image probability ratio, and µ[0, 1] represents the randomly
generated random number between [0, 1]. In step (6) it needs to be determined if a pixel
has been traversed. If the pixel has been completely traversed, the simulation continues to
judge whether the temperature condition meets the requirements; otherwise, the next pixel
is calculated. Step (7) determines whether the temperature conditions of the program reach
the cooling temperature; otherwise, the current temperature is multiplied by the cooling
coefficient, and the next cycle continues. This is calculated using Equation (21):

Tnew = T ∗ cool (21)

where Tnew represents the new temperature after cooling, T represents the temperature
when the program is running, and cool represents the cooling coefficient, which is less
than one.

5.4. Calculating Deformation Variables

Using the whole-week number matrix optimized by the simulated annealing algorithm
and the LOS direction deformation calculated by the interferometric phase, we obtained
the deformation of the study area according to Equation (22):

iU = iW + nU
λ

2
(22)

where iU is the unwrapped shape variable, iW is the LOS direction deformation calculated
by the interferometric phase, nU is the result of the entire week number matrix after iterative
optimization of the simulated annealing algorithm, and λ is the image wavelength.

5.5. Method Improvement Using Thresholding

To improve the accuracy of the GNSS monitoring point-assisted InSAR phase unwrap-
ping algorithm based on the simulated annealing algorithm, the calculation threshold can
be set using the coherence coefficient. For points with a higher coherence, no iterative opti-
mization was performed, whereas for points below a certain coherence threshold, iterative
optimization was performed. Commonly used coherence threshold determination methods
include empirical methods; for example, when using Sentinel-1 data, the commonly used
coherence threshold is 0.3. For the ALOS-2 data, a higher coherence threshold can be set
owing to its longer wavelength. Coherence data calculated based on the vegetation index
in the study area were used to estimate the study area and determine a more appropriate
coherence threshold.

6. Results and Discussion
6.1. Simulation Experiment Verification Results

The digital elevation model (DEM) of the study area is shown in Figure 4a. The DEM
was converted into a phase using an equation for the terrain phase and elevation. The
real phase of the DEM is shown in Figure 4b. Using this as the real phase result with the
unwrapped phase result, the formula for calculating the terrain phase and elevation is
shown in Equation (23).

φ = −4πB⊥h
λRsinθ

(23)
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where B⊥ is the vertical baseline, λ is the radar wavelength, R is the distance from the
satellite to the target, θ is the incident angle of the radar wave emitted by the satellite, and
h is the elevation.
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(c) calculated winding phase, and (d) calculated initial whole-cycle number matrix.

In signal processing, phase information is an important physical quantity. In most
cases, the absolute phase values are always wrapped in a non-linear manner into the
range of [−π, π], forming the principal phase or wrapped phase values. According to the
principle of phase unwrapping in

φwrap = φtrue + 2nπ (24)

In the equation, n is an integer. φwrap is the winding phase, where the value is between
[−π, π], and φtrue is the real phase. Thus, the winding phase of the DEM was calculated.
The winding phase of the DEM is shown in Figure 4c.

Several points were taken from the real phase as known points and used to calculate
the initial integer number. The coordinate information and real phase values of the selected
points are listed in Table S5. Interpolation was performed according to the coordinates of
the selected points and the real phase information. The initial whole-week number matrix
was calculate using the generated interpolation results and winding phase of the DEM.
The initial integer matrix is shown in Figure 4d. A weight matrix was generated using the
coordinates of the selected points. The position information and phase values of the known
points in the experimental area are listed in Supplementary Material Table S5, and their
geographical locations are shown in Figure 5.
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Figure 5. Simulation experiment with known point location map. The number in the picture is
serial number.

After data processing, the modified whole-week number matrix and unwrapped phase
were obtained. The results for the unwrapped phase are shown in Figure 6 where the
overall unwrapping result was relatively smooth. However, green, blue, or red darkened
zones appeared on the edge of the unwrapping result where the numerical unwrapping
results were abnormal. The sampling points and profiles from the study area were ran-
domly selected to verify the results. The sampling point information and results are
listed in Supplementary Material Table S6. The profile was observed from 5:00 to 11:00
(Figure 7). From Supplementary Material Table S6 and Figures 6 and 7, it can be seen that
the difference between the real and unwrapped phase values was not large. The median
error was 4.8 × 10−4 (Supplementary Material Table S6). Therefore, this approach was
effective. However, at the edge of the image, the real and unwrapped phase values were
significantly different.
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6.2. Test Results of ALOS2 Data

Figure 8 shows the experimental data information of ALOS-2. After data processing,
the modified whole-week number matrix and unwrapped distance were obtained. Addi-
tionally, the scope of the working face in the research area was added. The unwrapping
displacement results are shown in Figure 9. The deformation area was above the range of
the working surface. There was a large deformation area on the right side of the working
surface, which may have been due to a concentration of GNSS points on both sides of the
working surface, which resulted in excessive deformation of the image-edge fitting. Using
the working face information, this is the working face in the Jinfeng mining area. The
mining time was from December 2017 to August 2019, and the InSAR monitoring time was
from 7 July 2018 to 6 July 2019. During mining, the deformation above the working face
was more evident.
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Figure 8. ALOS-2 experimental data information: (a) the LOS distance calculated from the interference
phase, (b) the interference phase obtained by InSAR data processing, (c) the LOS deformation fitting
result of the GNSS monitoring data points, and (d) the initial whole-week number matrix calculated
from (a,c).

As shown in Figure 10a, the coherence above the working surface was poor, and the
coherence coefficient was γ < 0.2. The deformation in the LOS direction obtained through
the unwrapping calculation was missing data above the working surface (Figure 10b). The
reference value of the data on the working surface was lacked. However, the unwrapping
results obtained in the experiment and the data above the working surface were complete,
so the data had a certain reference value. In addition, the deformation level of the unwrap-
ping results in this experiment was larger than the traditional InSAR unwrapping results.
Therefore, the method had better application in areas where unwrapping was impossible
or the unwrapping accuracy was low due to poor coherence. In addition, the calculated
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unwrapping deformation was compared with the GNSS LOS deformation-fitting results
(Supplementary Material Table S7). The median and relative errors were 53.4 mm and 4.4%,
respectively. The calculated unwrapping deformation was close to the fitting result of the
GNSS LOS-direction deformation.
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The study area was recalculated using the threshold method. As shown in Figure 11,
the NDVI ranged between [0.02, 0.93]. According to the model calculation established in
Section 3, it can be inferred that the range of coherence in the study area was [0.20, 1.00]. Be-
cause the time interval between the main and auxiliary images was long—at one year—the
coherence range of the study area was [0.02, 0.38]. Therefore, the threshold was set at 0.32.
The results of calculating the study area after introducing the threshold into the calcu-
lation are shown in Figure 12. The median and relative errors were 30.3 mm and 2.5%
when comparing the calculated unwrapping deformation with the GNSS LOS direction
deformation fitting results (Supplementary Material Table S8). The calculated unwrapping
deformation was closer to the fitting result of the GNSS LOS deformation than it was
before optimization.
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In the future, based on the MRF random field model, multiple phase unwinding algo-
rithm fusion models can be constructed to optimize the edge unwinding results of the model
and further improve the reliability of the model. Otherwise, deep learning algorithms can
also improve the efficiency and accuracy of InSAR phase unwrapping. In the future, a
variety of deep learning algorithms [19,20], including feedforward neural network (FNN),
recurrent neural network (RNN), convolutional neural network (CNN), and generative
adversarial network (GAN), can be deeply integrated with the InSAR phase unwrapping
algorithm, which can effectively improve the InSAR phase unwrapping efficiency.
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7. Conclusions

This study focused on research based on the MRF random field theory and GNSS
monitoring data-assisted InSAR phase unwrapping.

This study presents the following results: First, a GNSS-assisted InSAR phase unwrap-
ping algorithm is developed, utilizing MRF random field theory and simulated annealing.
Second, the algorithm’s reliability is verified through unwrapping calculations on simu-
lated DEM data. Third, the algorithm is applied to ALOS-2 data in the Jinfeng mining
area, demonstrating its effectiveness in handling meter-level deformation variables and
performing well in areas with poor coherence. The median and relative errors were 53.4 mm
and 4.4%. Finally, the threshold method is employed to further enhance accuracy com-
pared to the unimproved model. The median and relative errors were 30.3 mm and 2.5%
when comparing the calculated unwrapping deformation with the GNSS LOS direction
deformation fitting results.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/su151713277/s1, Table S1: Land use table for Yanchi County;
Table S2: Meteorological data for Yanchi County; Table S3: ALOS-2 satellite acquisition date infor-
mation; Table S4: GNSS monitoring points information; Table S5: Known point information for
simulated experiments; Table S6: Simulation experiment sampling point information table; Table S7:
Sample point information; Table S8: Improved sample point information.

https://www.mdpi.com/article/10.3390/su151713277/s1
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