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Abstract: In this study, a novel Fe3O4/Ag3PO4/g-C3N4 magnetic composite photocatalyst was
successfully synthesized, tailored specifically for the visible light-driven photocatalytic degrada-
tion of sulfonamide antibiotics, more precisely, sulfamethazine (SMZ). To analyze the fabricated
samples, characterization techniques such as X-ray diffraction (XRD), scanning electron microscope
(SEM), X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FT-IR),
photoluminescence spectroscopy (PL), and UV-vis diffuse reflectance spectra (UV-vis) were systemat-
ically employed. The composite showcased efficient visible-light absorption and charge separation,
with its peak photocatalytic performance recorded at a solution pH value of 6.0. Significantly, the
Fe3O4/Ag3PO4/g-C3N4 magnetic composite photocatalyst displayed excellent stability and recycla-
bility, consistently maintaining a high degradation efficiency of over 97% even after five consecutive
cycles. Further experimentation with radical scavengers confirmed a significant decrease in photocat-
alytic activity, establishing that superoxide radicals (•O2

−) and photo-generated holes (h+) are the
primary active species during the degradation of SMZ. Overall, it provides a crucial understanding
regarding the photocatalytic decomposition of sulfonamide antibiotics using magnetic composite
photocatalysts. It also emphasizes the promising potential of the Fe3O4/Ag3PO4/g-C3N4 composite
for tangible applications in environmental remediation.
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1. Introduction

The prevalence of antibiotics in the environment, particularly sulfonamides, is an
emerging issue of global concern [1–3]. These substances are extensively employed in both
human and veterinary medicine owing to their broad-spectrum antibacterial efficacy [4,5].
Nevertheless, the ubiquity of these pollutants, driven by their persistent nature and ex-
tensive usage, is becoming a growing environmental and public health threat [6–8]. Con-
ventional water treatment processes often fail to effectively remove these compounds,
underscoring the urgent need for innovative and efficient strategies [9–11]. One such
approach is photocatalytic degradation, an advanced oxidation process that promises to
offer a robust solution to this challenge [12–14].

In recent years, the development of novel photocatalysts has been a hot research topic.
Among various photocatalysts, graphitic carbon nitride (g-C3N4) has attracted considerable
attention due to its unique properties, such as suitable band gap, excellent chemical stability,
and non-toxic nature [15–18]. However, the photocatalytic performance of g-C3N4 is often
limited by the rapid recombination of photo-generated electron-hole pairs and low light
absorption capacity [19]. To overcome these limitations, the construction of heterostruc-
tures by coupling g-C3N4 with other semiconductors has been widely explored [20,21]. In
this study, silver phosphate (Ag3PO4) and magnetite (Fe3O4) are promising candidates
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due to their strong visible light absorption and magnetic properties, respectively [22–25].
The combination of these three materials, Fe3O4/Ag3PO4/g-C3N4, is expected to exhibit
enhanced photocatalytic performance under visible light irradiation due to the syner-
gistic effects, including improved light absorption, efficient charge separation, and easy
magnetic separation.

In this study, we present the synthesis and characterization of a Fe3O4/Ag3PO4/g-C3N4
composite and investigate its photocatalytic performance for the degradation of sulfamet-
hazine (SMZ) under visible light irradiation. The results of this study provide valuable
insights into the design and development of efficient and recyclable photocatalysts for the
removal of sulfonamides from the environment.

2. Materials and Methods
2.1. Materials

The materials required for this experiment were obtained from various sources. Urea,
silver nitrate (AgNO3), disodium hydrogen phosphate (Na2HPO4·12H2O), t-butyl alcohol
(t-BuOH), and ethanol were purchased from Tianjin Xintong Fine Chemicals Company
Limited, Tianjin, China. Ethylenediaminetetraacetic acid disodium (EDTA-2Na) was ob-
tained from Beijing Chemical Works, Beijing, China. Benzoquinone (BQ) was procured
from Shanghai Aladdin Biochemical Technology Co., Ltd., Shanghai, China. SMZ and
Iron(III) chloride hexahydrate (FeCl3·6H2O) were sourced from Shanghai McLean Biochem-
ical Technology Co., Ltd., Shanghai, China. All the reagents used in this research were of
analytical quality and were applied directly without additional purification. All solutions
were prepared using deionized water.

2.2. Preparation of Photocatalyst
2.2.1. Synthesis g-C3N4

Initially, 10 g of urea was introduced into a semi-sealed crucible, which was then
heated in a muffle furnace at 550 ◦C for a duration of four hours. The heating rate was
maintained at 2 ◦C per minute. Post-thermal treatment, the yielded yellow powder was
left to cool down to room temperature naturally. The cooled product was subsequently
rinsed thoroughly with distilled water and ethanol and then dried at 60 ◦C for a 12-h
period. Following the drying process, the powder was subjected to an additional round of
calcination in the muffle furnace, this time at 500 ◦C for 330 min, with a heating rate of 5 ◦C
per minute. The final product yielded from this procedure was g-C3N4.

2.2.2. Synthesis Ag3PO4/g-C3N4

The Ag3PO4/g-C3N4 was synthesized in line with the literature, incorporating minor
modifications with slight modifications. Briefly, g-C3N4 underwent sonication in 20 mL of
water for 2 h, followed by the addition of 0.312 g AgNO3 and subsequent sonication for
1 h at room temperature. Further, 0.238 g of Na2HPO4·12H2O was incorporated, and the
solution was stirred for an hour at 60 ◦C. The resulting yellow precipitate was isolated via
centrifugation, rinsed thoroughly with water and ethanol, and dried at 60 ◦C for 24 h.

2.2.3. Synthesis Fe3O4

Magnetic Fe3O4 nanoparticles were synthesized via a solvothermal technique. Initially,
a clear, yellow solution was formed by dissolving 1.35 g of FeCl3·6H2O in 40 mL of ethylene
glycol. Thereafter, 3.6 g of anhydrous sodium acetate and 1.0 g of polyethylene glycol
were incorporated, followed by 30 min of stirring. This solution was transferred to a
100 mL hydrothermal reaction kettle and heated to 200 ◦C for 8 h. The ensuing black Fe3O4
sediment was separated, cleaned three times, alternating between anhydrous ethanol and
deionized water, and then dried at 60 ◦C for a full day to produce Fe3O4 nanoparticles.
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2.2.4. Synthesis Fe3O4/Ag3PO4/g-C3N4

Fe3O4 was dispersed uniformly in a solution of 20 mL deionized water and 10 mL
anhydrous ethanol via 2-h sonication. The Ag3PO4/g-C3N4 composite photocatalyst was
then incorporated and mechanically stirred for 2 h, followed by another 2 h of sonication.
The blend was moved into a hydrothermal reactor and subjected to a temperature of
180 ◦C for a duration of 8 h. After allowing natural cooling, the resultant black solution
was washed thrice, alternating between anhydrous ethanol and deionized water, and
subsequently dried at 60 ◦C for 24 h. The product derived was Fe3O4/Ag3PO4/g-C3N4.

2.3. Characterization

Characterization of the materials was carried out using a range of techniques. X-ray
diffraction (XRD) analysis was performed using a Rigaku Ultima IV diffractometer, utiliz-
ing Cu Kα radiation and scanning a 2θ range from 10◦ to 90◦. Scanning electron microscopy
(SEM) images were obtained using a FEI Quanta-PEG 450 instrument. Photoluminescence
(PL) spectra were measured with an F-98 system (Shanghai, China), and Fourier-transform
infrared (FT-IR) spectroscopy was conducted on a PerkinElmer Spectrum Two spectrometer.
Ultraviolet-visible (UV-vis) spectroscopy was performed using a TU-1901 spectrophotome-
ter (Beijing, China), scanning a wavelength range from 200 nm to 800 nm.

2.4. Photocatalytic Activity and Stability Measurements

The photocatalytic degradation of sulfamethazine (SMZ) by Fe3O4/Ag3PO4/g-C3N4
samples was assessed under illumination under the light of a 500 W xenon lamp equipped
with a 420 nm cut-off filter. A solution of SMZ with a concentration of 3 mg/L was for-
mulated, and 600 mg of the created photocatalysts were added, leading to a concluding
volume of 50 mL after dilution. The suspension was agitated magnetically in darkness for
30 min to establish an adsorption/desorption equilibrium between SMZ and the photo-
catalysts prior to irradiation. Suspension aliquots of 1.5 mL were periodically drawn and
passed through a 0.22 µm Millipore filter to measure the remaining SMZ concentration.
Residual SMZ was quantified using high-performance liquid chromatography (HPLC,
Agilent Technologies 1200-Series). The recyclability and stability of the photocatalyst were
evaluated via repeated SMZ photodegradation trials. Catalyst stability was gauged over
multiple reaction cycles, with the photocatalyst being magnetically retrieved and rinsed
with deionized water ahead of each subsequent cycle. The efficiency of degradation (% DE)
was quantified using Equation (1). By graphing the natural logarithm of the ratio between
the SMZ concentration at a given time (Ct) and the initial concentration (C0) against time (t),
a linear relationship should emerge. The slope of this line provides the apparent rate
constant (k) for a pseudo-first-order reaction, as outlined in Equation (2).

DE = (C0 − Ct)/C0, (1)

ln(C0/Ct) = kt, (2)

To evaluate the role of various active free radical species in the degradation of SMZ,
a free radical scavenging experiment was employed. This experiment incorporates free
radical trapping agents in conjunction with the photocatalyst in the SMZ solution. Trap-
ping agents included t-Buoh, EDTA-2Na, and BQ, each at a concentration of 1 mmolL−1.
These were utilized to capture hydroxyl radicals (•OH), holes (h+), and superoxide radi-
cals (•O2

−), respectively. The predominant active species in the Fe3O4/Ag3PO4/g-C3N4
photocatalyst for SMZ degradation were deduced by comparing degradation rates before
and after the introduction of these radical trapping agents. This comparison highlights
the respective contribution of each active species towards the photocatalytic degradation
process, elucidating the underlying reaction mechanism.
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3. Results and Discussion
3.1. Charactation

The XRD analysis represented in Figure 1 provides critical insights into the crystalline
structures of the g-C3N4, Ag3PO4, Fe3O4, and Fe3O4/Ag3PO4/g-C3N4 synthesized in this
study. In the case of g-C3N4, two distinct diffraction peaks at 2θ values of approximately
13.0◦ and 27.4◦ are observed, corresponding to the (100) and (002) crystal planes, respec-
tively. This alignment corresponds precisely with the standard XRD pattern of g-C3N4
(JCPDS 87-1526) [26]. The cubic phase Ag3PO4 demonstrates notable diffraction peaks at
2θ values of 20.854◦, 29.660◦, 33.260◦, 36.541◦, 42.460◦, 47.760◦, 52.661◦, 54.981◦, 57.240◦,
61.621◦, 69.862◦, 71.859◦, 73.821◦, 87.241◦, which can be respectively ascribed to the (110),
(200), (210), (211), (220), (310), (222), (320), (321), (400), (420), (421), (332), (520) planes
(JCPDS No.06-0505) [27]. For the Fe3O4, well-defined diffraction peaks are located at 2θ
values of 30.206◦, 35.501◦, 43.190◦, 53.717◦, 57.221◦, 62.738◦, which correspond to the (220),
(311), (400), (422), (511), (440) planes as referenced in the standard card (JCPDS 19-0629) [28].
In the XRD pattern of Fe3O4/Ag3PO4/g-C3N4, the presence of the g-C3N4 (002) plane
and the Fe3O4 (220), (311), (400), (422), (511), (440) planes is clearly discernible. Crucially,
the diffraction peaks of Fe3O4 remain unaltered, thus indicating that the crystallographic
structure of Fe3O4 is preserved post-loading onto the Ag3PO4/g-C3N4 surface. The ab-
sence of additional impurity peaks signifies that no new impurities were introduced during
the reaction, thereby attesting to the high purity of the resultant magnetic photocatalyst
composite. Furthermore, a slight decrease in the intensity of the Fe3O4 diffraction peaks
in the Fe3O4/Ag3PO4/g-C3N4 sample compared to pure Fe3O4 is suggestive of potential
interactions among Fe3O4, Ag3PO4 and g-C3N4.
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As shown in Figure 2a, the g-C3N4, as prepared through the thermal oxidation exfolia-
tion technique with urea serving as the precursor, leads to the generation of a multitude of
irregularly stacked lamellar structures. These layered configurations play an instrumental
role in creating a more direct route for electron transfer, thereby fostering efficient migration
of photo-generated charge carriers [29]. Furthermore, the augmentation of the specific
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surface area and pore volume introduces an abundance of active sites for photocatalytic
reactions [30]. Figure 2b represents Ag3PO4, prepared through the in-situ precipitation
technique, displaying a spherically stacked morphology. A noteworthy observation from
this figure is the visible agglomeration within the sample, which could potentially impact
the photocatalytic efficacy due to the consequent reduction in the reactive surface area. As
exhibited in Figure 2c, the solvothermal method is used to prepare Fe3O4 nanospheres.
Owing to their relatively modest dimensions, these nanospheres showcase commendable
dispersibility. This characteristic is beneficial as it may lead to a more homogeneous distri-
bution of active sites and augmented accessibility for reactants, thereby potentially boosting
the overall photocatalytic performance. As shown in Figure 2d, Fe3O4 nanospheres are
discernibly dispersed across the Ag3PO4/g-C3N4 composite’s surface. The incorporation
of Fe3O4 into the composite serves a dual purpose: It not only expedites the photocata-
lyst recovery due to its magnetic properties but also boosts the electron migration rates
thanks to its superior electrical conductivity [30]. Furthermore, the presence of Fe3O4 may
reduce the recombination of photo-induced electron-hole pairs, which, in turn, augments
the photocatalytic efficiency of the composite. The combined effect of improved material
properties and unique morphological features is anticipated to yield notable photocatalytic
performance in the Ag3PO4/g-C3N4 composite.
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Figure 3 presents the FT-IR spectra of the Fe3O4/Ag3PO4/g-C3N4 composite synthe-
sized in this study. The composite shows pronounced absorption peaks around 810 cm−1,
1200–1700 cm−1, and 3200–3400 cm−1, closely paralleling the characteristic peaks of pure
g-C3N4 [31,32]. The peak at 810 cm−1 can be attributed to the bending vibration of triazine
units. The region from 1200 to 1700 cm−1 represents standard stretching vibrations of CN
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heterocycles. Furthermore, the absorption peak in the range of 3200–3400 cm−1 is ascribed
to the O-H stretching vibration of adsorbed water molecules [33]. An additional peak, evi-
dent around 1650 cm−1, corresponds to the bending vibration of these water molecules [34].
This spectral evidence testifies to the successful creation of the g-C3N4 structure without
disruption during the composite formation process, a claim further validated by XRD
characterization results [35]. The integration of Ag3PO4 and g-C3N4 into the composite
amplifies the surface adsorption O-H peak [36]. Further, the Fe3O4/Ag3PO4/g-C3N4 com-
posite exhibits a distinctive Fe-O stretching vibration of Fe3O4 around 589 cm−1 [37]. This
additional feature augments the O-H surface absorption peak, consequently enhancing the
hydroxyl density on the Fe3O4/Ag3PO4/g-C3N4 surface and improving the adsorption
performance of this magnetic composite photocatalyst [33]. These collective observations
corroborate the successful preparation of the Fe3O4/Ag3PO4/g-C3N4 composite.
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XPS was employed to delve deeper into the chemical composition of the magnetic
composite photocatalysts, particularly focusing on understanding the intricate interplay
between g-C3N4, Ag3PO4, and Fe3O4. XPS, with its unique capability of providing infor-
mation on the chemical bonds and binding states of elements within a material, offers a
comprehensive analysis of the constituents and their interactions. As shown in the survey
XPS spectra (Figure 4a), with the detection of carbon, nitrogen, oxygen, silver, iron elements,
and phosphorous, the Fe3O4/Ag3PO4/g-C3N4 composite demonstrates the successful in-
corporation of all three constituents—g-C3N4, Ag3PO4, and Fe3O4. Figure 4b–e illustrates
the high-resolution XPS spectra for the C 1s, N 1s, O 1s, Ag 3d, and Fe 2p regions. In
these spectra, the binding energy for each sample was calibrated to the standard C 1s
binding energy (284.8 eV). The C 1s spectrum for the Fe3O4/Ag3PO4/g-C3N4 composite
(Figure 4b) reveals characteristic peaks at 284.8 eV, 286.4 eV, 288.3 eV, and 290.2 eV, which
are attributable to the C-C, C-O, N=C-N, and O=C-O bonds, respectively [38–41]. This sug-
gests the presence of multiple carbon-containing species within the composite, indicative
of a complex interaction among the constituents. In the N 1s spectrum (Figure 4c), the
peaks located at 398.8 eV (C–N–C) [42], 400.3 eV (N-(C)3) [43], and 401.4 eV (N–H) [44]
corroborate with those from the g-C3N4 sample, confirming the presence of g-C3N4 in the
composite. The O 1s spectrum (Figure 4d) for the Fe3O4/Ag3PO4/g-C3N4 composite dis-
plays peaks at 529.7 eV, 532.1 eV, and 533.8 eV, which attributed to lattice oxygen (OL) [45],
hydroxyl oxygen (OOH) [46], and adsorbed oxygen (OA) [47], respectively. High-resolution
spectra of Ag 3d for Fe3O4/Ag3PO4/g-C3N4 sample (Figure 4e) present two distinctive
peaks at 368.1eV and 374.1eV, which are congruent with typical Ag+ orbitals of Ag+ 3d5/2
and Ag+ 3d3/2 [48,49]. This confirms the presence and involvement of Ag3PO4 within the
composite. Lastly, the Fe 2p spectrum for the Fe3O4/Ag3PO4/g-C3N4 (Figure 4f) exhibits
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two prominent peaks at 709.7 eV and 722.8 eV, representing the Fe 2p3/2 orbitals of Fe2+

and Fe 2p1/2 orbitals of Fe3+ [50,51]. It indicates the successful integration and interaction
of Fe3O4, Ag3PO4, and g-C3N4 in the synthesized photocatalyst.
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Figure 4. (a) The high-resolution XPS spectra of Fe3O4/Ag3PO4/g-C3N4; (b) C 1s; (c) N 1s; (d) O 1s; (e) 
Ag 3d; (f) Fe 2p. 
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ples concentrate around the 463nm spectral region. The sequence of descending fluores-
cence intensities is as follows: g-C3N4 > Ag3PO4 > Fe3O4 > Fe3O4/Ag3PO4/g-C3N4. This hier-
archy implies that the lower the fluorescence intensity, the fewer electron-hole recombi-
nation events occur. Therefore, the composite with the lowest fluorescence intensity, 
namely Fe3O4/Ag3PO4/g-C3N4, exhibits the least recombination rate of photo-generated 
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The efficiency of photo-generated electron-hole pair separation, a key parameter in
photoreactivity, is typically assessed PL [52]. For our PL measurements, an excitation
wavelength of 328 nm was used. As from Figure 5, the emission maxima of the test
samples concentrate around the 463nm spectral region. The sequence of descending flu-
orescence intensities is as follows: g-C3N4 > Ag3PO4 > Fe3O4 > Fe3O4/Ag3PO4/g-C3N4.
This hierarchy implies that the lower the fluorescence intensity, the fewer electron-hole
recombination events occur. Therefore, the composite with the lowest fluorescence intensity,
namely Fe3O4/Ag3PO4/g-C3N4, exhibits the least recombination rate of photo-generated
electron-hole pairs. This observation substantiates the hypothesis that the composite
photocatalyst configuration effectively mitigates the recombination of photo-generated
electron-hole pairs, which is desirable for enhancing photocatalytic efficiency. Further-
more, corroborating our spectrographic data, Fe3O4 intrinsically exhibits commendable
electronic conductivity. Such a characteristic is advantageous in facilitating the transfer
of photo-generated charge carriers, a crucial step in photocatalytic reactions. This further
underscores the role of compositional design in tailoring the photoreactive properties of
composite photocatalysts.
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Figure 5. PL spectra of g-C3N4, Ag3PO4, Fe3O4 and Fe3O4/Ag3PO4/g-C3N4.

The potency of a material’s photocatalytic activity is chiefly determined by its aptitude
for absorbing and utilizing incident light. This work employs UV-vis diffuse reflectance
spectroscopy to investigate the optical absorption properties of the magnetic composite
photocatalyst Fe3O4/Ag3PO4/g-C3N4. As illustrated in Figure 6, all samples reveal capabil-
ities of absorbing light within the ultraviolet range, with some response extending into the
visible spectrum, dictated by the respective bandgap dimensions. Pristine g-C3N4 manifests
an absorption cut-off around 438 nm, whereas Ag3PO4 shows an edge at about 510 nm.
Based on existing literature, Fe3O4 primarily absorbs light in the ultraviolet domain. Upon
integration of Fe3O4 into the composite, the absorption edge of Fe3O4/Ag3PO4/g-C3N4 is
detected at around 745 nm, thereby broadening the composite’s responsiveness to visible
light. According to the Tauc relation [53], The g-C3N4 possesses a bandgap energy of
2.96 eV, making it responsive primarily to ultraviolet light. Ag3PO4, with a bandgap of
2.27 eV, extends the composite’s light absorption into the visible range, thereby bolstering
the efficiency under visible light irradiation. Fe3O4, having a notably smaller bandgap of
1.16 eV, aids in widening the composite’s light absorption further into the visible spectrum.
When combined, the Fe3O4/Ag3PO4/g-C3N4 composite exhibits an intermediate bandgap
of 2.66 eV. This collaborative interplay ensures that the composite harnesses a broader range
of the light spectrum, optimizing the generation of electron-hole pairs. These bandgap
energies have significant bearings on a material’s absorption properties. This intermediate
bandgap leads to heightened light absorption, particularly in the visible region, as substan-
tiated by the absorption edge observed near 745 nm. This result underscores the synergistic
impact of the composite components: Fe3O4 expands the light absorption into the visible
range, whereas the wider-bandgap materials (g-C3N4 and Ag3PO4) enhance the overall
photocatalytic performance under UV light. As a result, under equivalent illumination,
the composite photocatalyst is proficient in generating a higher yield of reactive species,
thereby boosting its photocatalytic performance.
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3.2. Photocatalyst Performance

The inherent stability of SMZ poses a significant challenge to its degradation under
visible light in the absence of a photocatalyst. After 60 min of visible light irradiation, the
photocatalysts in dark conditions exhibited a negligible removal efficiency for SMZ, less
than 5%. This observation suggests that adsorption by the photocatalysts plays a limited
part in the entire process. To delve deeper into how solution pH affects the breakdown
of SMZ under visible light with Fe3O4/Ag3PO4/g-C3N4 serving as a photocatalyst, we
conducted photocatalytic experiments with initial pH values adjusted to 5.0, 6.0, 7.0, 8.0, and
9.0. The results showed that the degradation efficiencies of SMZ by Fe3O4/Ag3PO4/g-C3N4
within 60 min were 93.41%, 99.21%, 93.28%, 96.77%, and 98.01% at pH values of 5.0, 6.0, 7.0,
8.0, and 9.0, respectively (as shown in Figure 7). The corresponding degradation kinetic
constants were 0.04602, 0.07673, 0.04369, 0.05426, and 0.06140 min−1. These results suggest
that the degradation efficiency and kinetics of SMZ are significantly influenced by the pH
of the solution. The highest degradation efficiency was observed at pH 6.0, indicating
that the photocatalytic activity of Fe3O4/Ag3PO4/g-C3N4 is optimal in slightly acidic
conditions. The degradation kinetic constants also showed a similar trend, with the highest
value at pH 6.0. At pH 6.0, the photocatalyst likely assumes an optimal surface charge,
preventing aggregation and fostering the generation of reactive oxygen species (ROS). This,
in turn, elevates the photocatalytic degradation of SMZ. Furthermore, it is imperative
to understand the dual acidic-basic nature of SMZ. Given the molecule’s intrinsic acidic
and basic functional groups, its speciation can vary with pH, influencing its interaction
dynamics with the photocatalyst and consequently affecting its degradation efficiency.

Assessing the photochemical stability of a photocatalyst is crucial to ascertaining its
viability for real-world applications. We conducted an extensive stability evaluation for
the Fe3O4/Ag3PO4/g-C3N4 magnetic composite photocatalyst via five repeated cycles of
photocatalytic degradation of SMZ under identical experimental parameters. For these
tests, the pH of the solution was maintained at 6, and the visible light degradation of SMZ
was observed over a period of 60 min. As shown in Figure 8, it was noted that degrada-
tion rates of 99.21%, 99.01%, 98.87%, 97.92%, and 97.37% in these sequential degradation
cycles, respectively. Remarkably, even after five cycles, the degradation rate sustained
above 97%, signifying a negligible decrease in performance. This robust performance
across multiple cycles illustrates the outstanding endurance and photochemical stability of
the Fe3O4/Ag3PO4/g-C3N4 composite. The negligible depreciation in its photocatalytic
efficiency suggests a commendable recyclability potential for the composite. This demon-
stration of consistent high-performance degradation across multiple cycles, with minimal
loss in efficiency, is a highly promising indicator of the composite’s real-world applicability.
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3.3. Photocatalytic Mechanism

Photocatalytic oxidation processes involve key reactive species such as photo-generated
(h+), superoxide radical(•O2

−), and hydroxyl radical(•OH) [54–56]. To unveil the nuances
of the reaction mechanism, especially when applying the Fe3O4/Ag3PO4/g-C3N4 pho-
tocatalyst to the degradation of SMZ, we investigated the impact of several scavengers.
The selection included BQ, an •O2

− scavenger [57], t-BuOH, a scavenger of •OH [58],
and EDTA-2Na, a quencher for h+ [59]. This series of tests was devised to elucidate the
respective roles of these reactive species in the photocatalytic process. The experiment
was conducted with an initial solution pH set at 6 and under visible light irradiation,
creating a highly consistent environment to evaluate the effects of these scavengers on
the photocatalytic degradation of SMZ. Figure 9 presents these effects, revealing how
the efficiency of SMZ degradation varies with the introduction of different scavengers.
The results demonstrated that the degradation rate of SMZ remained largely unaffected
upon the addition of t-BuOH. This strongly suggests that •OH has a relatively minor role
in the photocatalytic degradation process [60]. Conversely, the introduction of BQ and
EDTA-2Na led to a significant decrease in the degradation rate. This data implies that •O2

−

and h+ are the primary active species responsible for the degradation of SMZ in the pres-
ence of the Fe3O4/Ag3PO4/g-C3N4 photocatalyst and under visible light conditions [61].
Drawing from these observations, we propose a detailed mechanism for the photocat-
alytic degradation of SMZ by the Fe3O4/Ag3PO4/g-C3N4 photocatalyst under visible light.
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Upon irradiation, the photocatalyst triggers the excitation of electrons to the conduction
band, leaving high h+ in the valence band. This electron-hole pair generation is a critical
initial step in photocatalytic reactions. A salient feature of our Fe3O4/Ag3PO4/g-C3N4
photocatalyst is its heterojunction structure, which serves to inhibit the recombination of
photo-generated electron-hole pairs. This is crucial, as such recombination often leads to a
decrease in photocatalytic efficiency. The suppressed recombination, in our case, likely con-
tributes to the enhanced photocatalytic activity observed. In our reaction system, dissolved
oxygen adsorbed on the photocatalyst surface can react with photo-generated electrons
(e−) to produce •O2

−, another reactive species. The photocatalyst’s large specific surface
area provides abundant active sites, further facilitating the migration of photo-generated
carriers and thus increasing the possibility of reaction with the adsorbed oxygen. In sum-
mary, our findings strongly suggest that the two primary active species, •O2

− and h+, play
crucial roles in the degradation of SMZ. They interact to efficiently break down SMZ into
smaller organic molecules or even fully mineralize it into CO2 and H2O [62]. Meantime, the
photocatalytic degradation mechanism diagram of Fe3O4/Ag3PO4/g-C3N4 under visible
irradiation is shown in Figure S1.
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4. Conclusions

In summary, this research provides a thorough investigation into the creation, characteri-
zation, and utilization of a novel Fe3O4/Ag3PO4/g-C3N4 magnetic composite photocatalyst
designed specifically for the visible-light-driven photocatalytic degradation of sulfonamide
antibiotics, focusing especially on SMZ. An integral revelation of the study underlines the
significance of solution pH in the degradation process, demonstrated through methodically
designed experiments. These findings indicate that an optimal photocatalytic performance
was achieved at a solution pH value of 6.0. Crucially, the Fe3O4/Ag3PO4/g-C3N4 magnetic
composite photocatalyst displayed exceptional stability and recyclability, with the ability to
sustain a degradation efficiency exceeding 97% through five successive cycles. The insights
gleaned from this comprehensive investigation not only contribute to our understanding of
the photocatalytic degradation of sulfonamide antibiotics using magnetic composite photocat-
alysts but also underscore the promising potential of the Fe3O4/Ag3PO4/g-C3N4 magnetic
composite for practical applications in environmental remediation. To elucidate the role of
various active radicals in the photocatalytic reactions, additional scavenger tests with differ-
ent chemicals were performed. The results showed a considerable decrease in the percent
degradation efficiency in the presence of radical scavengers such as BQ and EDTA-2Na, thus
proving that the generation of •O2

− and h+ are the primary active species possessing high
redox ability during the photocatalytic process.
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Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/su151713279/s1. Figure S1: The photocatalytic degra-
dation mechanism diagram of Fe3O4/Ag3P2O4/g-C3N4.
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