
Citation: Liu, T.; Cheng, G.; Yang, J.

Multi-Scale Recursive Identification

of Urban Functional Areas Based on

Multi-Source Data. Sustainability

2023, 15, 13870. https://doi.org/

10.3390/su151813870

Academic Editors: Antonio De

Nicola, Maria Luisa Villani

and Raquel Sanchis

Received: 6 August 2023

Revised: 7 September 2023

Accepted: 13 September 2023

Published: 18 September 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sustainability

Article

Multi-Scale Recursive Identification of Urban Functional Areas
Based on Multi-Source Data
Ting Liu, Gang Cheng * and Jie Yang

College Surveying & Land Information Engineering, Henan Polytechnic University, Jiaozuo 454000, China;
212104020087@home.hpu.edu.cn (T.L.); yangjie@hpu.edu.cn (J.Y.)
* Correspondence: chenggang@hpu.edu.cn

Abstract: The study of urban functional area identification is of great significance for urban function
cognition, spatial planning, and economic development. In the identification of urban functional
areas, most studies considered only a single data source and a single division scale, the research
results have problems such as low update frequency or incomplete information in a single data
set, and overfitting or underfitting in a single spatial resolution. Aiming at the above problems,
this paper proposes a multi-scale recursive recognition method based on interactive validation for
urban functional areas using taxi trajectory data and point of interest (POI) data as the main data
sources. First, the dynamic time warping (DTW) algorithm generates a time series similarity matrix,
a CA-RFM model combining the clustering algorithm and random forest model is constructed. The
model extracts significant feature regions as inputs through a K-medoid clustering algorithm, which
are imported into the random forest model for urban functional zone (UFZ) identification. Then, to
overcome the shortcomings of a single scale in expressing urban structural characteristics, a recursive
model of different levels of urban road networks is established to classify multi-scale functional areas.
Finally, cross-validation using the CA-RFM model and POI quantitative identification method obtains
the final identification results of urban functional areas. This paper selects Shenzhen as the study
area, the results show that the combination of clustering algorithm and random forest model greatly
reduces the error of manual selection of training samples. In addition, the study demonstrates the
superiority of the proposed method in two aspects, namely, faster delineation and improved accuracy
in urban functional area identification.

Keywords: urban functional zone; CA-RFM model; multi-scale recursive recognition; POI
quantitative identification

1. Introduction

As urbanization continues and the urban area expands, the functional urban area type
differs from what was envisioned in earlier plans [1]. Understanding changes in urban
functional areas is essential for effective urban development planning, natural resource
allocation, and ecosystem management [2]. However, accurately identifying an urban
functional zone is challenging due to the complexity and comprehensiveness of urban
functions [3]. Most traditional studies rely on existing land-use information, field surveys
or thematic data on functional zoning, which lack objective tests and are time consuming
and labor intensive [4–6]. In recent years, high-quality ultra-high-resolution remote sensing
images have shown certain advantages in representing urban functional zones due to
their large coverage, rich image information and wide availability [7]. However, satellite
imagery can only monitor the physical characteristics of the urban surface, which is not
sufficient to identify social functions and characterize the spatial and temporal patterns of
human mobility. The emergence of massive urban big data creates new urban computing
and analytics opportunities. The use of points of interest location check-in data, public
transportation data and cellular signaling data produces better results for the dynamic
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description of the city or functional zoning of the city, and provides a rich means of
identifying functional zones of the city [8–11], and can fill the gaps in missing semantic
information regarding the functional space of remote sensing images.

The development and formation of functional urban areas depend largely on how
residents interact with their surroundings. However, the explanation of UFZ has varied in
previous research. Berry identified UFZ as the interconnection within areas through the
distribution of activities and by flows of commodities between zones [12]. Karlsson et al.
identified the UFZ by measuring the economic activities and intra-regional transportation
infrastructure that existed within the region, and the modes of transport of interconnection
that existed between regions [13]. Yuan et al. defined the UFZ as the areas developed to
meet specific socioeconomic needs [14]. Although previous studies have varied in their
interpretations of urban functional areas, the researchers characterize UFZ by their zoning
characteristics and activity characteristics. The zoning characteristics are used to define the
zone boundaries, while the activity characteristics are used to identify the zone functions.

As mentioned above, different studies have defined UFZ differently. Among those
studies, zoning plays a critical role in UFZ identification, which mainly focuses on how to
partition the urban area into several spatial units where diverse socioeconomic activities
take place. The spatial segmentation methods mainly include grid-based segmentation,
road network-based segmentation and image-based segmentation [15]. The grid-based
segmentation method provides more granular results, as the segmented spatial units are
generally smaller than those from other segmentation methods, with grid cell resolution
ranging from 30 m per pixel to 10 km per pixel [16–18]. The road network-based seg-
mentation method mainly includes defining segment boundaries from city-designated
transportation zones or mapped road segments [19–22]. The commonly used image seg-
mentation techniques are based on the spatial distribution characteristics of the image
objects and the homogeneity of the functional types to generate urban functional area
units [23]. Roads, as boundaries of the area, carry the daily activities of the residents and
have a high degree of integration with the city. However, when using road network data
for regional segmentation, there is no regulation on which level of the road should be
selected as the standard of urban functional zone division [24–26]. To effectively express
the hierarchical semantic information of urban functional zones, this paper will explore the
significance of multi-scale functional zone division based on road network data.

In recent years, machine learning algorithms have been widely used in identifying
the zone functions, including support vector machine, k-nearest neighbor algorithm, naive
bayes and random forest. Support vector machine is a pattern recognition method based
on statistical learning theory, the purpose of which is to find a hyperplane that makes
it possible to correctly separate two types of data points as much as possible, and many
scholars have applied this algorithm in urban functional area recognition. Deng proposed
a polygonal Voronoi diagram method to divide urban areas, generate fine spatial analy-
sis units and categorize the themes of spatial analysis units by support vector machine
algorithm [27]. The k-nearest neighbor classification algorithm is a simple algorithm in
data mining classification counting, which mainly relies on limited adjacent samples as the
basis of classification. Liu uses dynamic time warping based k-nearest neighbor classifica-
tion algorithm to classify and identify urban functional areas and uses POI data to assist
analysis to obtain the final functional layout of Chengdu [28]. Naive bayes algorithm is a
simple and effective classification algorithm, which is based on bayes theorem and feature
independence assumption. Lefulebe uses planescope images and naive Bayes algorithms
to classify and detect changes in urban land use and land cover in cape town [29]. Random
forest algorithm is an integrated learning algorithm based on the decision tree algorithm,
which is trained on the dataset by using multiple decision trees at the same time and obtains
the final prediction through a voting mechanism or averaging. Grippa identifies urban
land-use classifications at the block level using OpenStreetMap data and random forest
algorithms [30]. Yao extracted the high-dimensional feature vector of POIs through the
World2 Vec model and trained the feature vector through the random forest algorithm to
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obtain the urban functional zone with high classification accuracy. Compared with the
traditional K-means algorithm, the effectiveness of the random forest algorithm for urban
functional zoning is verified [31]. Random forest algorithm increases the diversity of classi-
fication trees and improves the performance of individual classification or regression trees
by back sampling and randomly changing the combinations of predictor variables, and it
has the advantages of low computational cost, high model performance, high robustness
and low risk of overfitting when processing data. Among the above machine learning
algorithms, the random forest algorithm is better able to handle multiple classification
problems with functional areas of data from multiple sources. In the process of using
machine learning algorithms, it is extremely important to establish training samples, and
the quality of the training samples is directly related to the training performance of the
model. However, from the view of previous studies, most of the studies produce training
samples manually labeled manually, this method is time consuming and laborious, and the
accuracy of the training samples is not guaranteed.

Taxi trajectory data are widely used in the study of urban functional areas. Qian
proposed an integrated model for recognizing urban functional zones using satellite images
and taxi trajectories [32]. Gao used taxi trajectory data and applied a Gaussian mixture
model to classify the inflow and trip count characteristics of regions, and based on these
typical characteristics, these urban regions were regrouped by using the Pearson correlation
coefficient clustering method [33]. Liu et al. extracted time series from taxi trajectory data
to categorize and identify urban functional zones, and with the aid of POI assisted analysis,
the final functional layout of Chengdu was derived [28]. However, most time series mining
studies have used direct clustering methods, i.e., unsupervised learning, and there may be
many inaccuracies in the definition of categories in unsupervised learning due to the lack
of accurate data labels for the training samples.

Therefore, aiming at the above problems, this paper adopts different levels of road data
to divide the urban space and form a multi-scale road network. Dynamic taxi trajectory data
and static POI data are fused together, and the experiments are conducted from the perspec-
tives of “dynamic” and “static”, and the CA-RFM model, which combines the clustering
algorithm and random forest classification, is used for data mining. This paper provides a
new idea for the application of trajectory data mining in urban function identification.

2. Materials and Methods
2.1. Study Area

The study area is located in Shenzhen, China (Figure 1), including Futian District,
Luohu District, Nanshan District, Baoan District, Longgang District, another nine adminis-
trative regions and Dapeng New District, and is China’s special economic zone, national
economic center city and international city. The total area of the study area is 1996.78 square
kilometers, and the resident population is 10.7789 million. As one of the national economic
centers and international cities, Shenzhen has complex and diverse urban landscapes with
rich urban functional zoning. Shenzhen’s urban spatial structure is very complex, and the
distributions of urban functions are interlaced with each other, although the distribution of
functional areas such as residential areas and commercial areas shows a certain regularity
in general, the functions of many areas are not single, but mixed functional areas formed
by the interaction of multiple functions.



Sustainability 2023, 15, 13870 4 of 24

Figure 1. Study area.

2.2. Data and Processing

• Taxi Trajectory Data

As a kind of public transportation in the city, taxis attract passengers with their
convenience and are readily available. To make the research results reflect the travel
situation of residents on working days and rest days, this paper selects the whole week
trajectory data from 7 December 2015 (Monday) to 13 December 2015 (Sunday) for analysis,
with a total of 419,258,185 records. Each record contains vehicle number, recording time,
latitude and longitude, speed, direction and vehicle status, and the data format is shown in
Table 1 below.

Table 1. Taxi trajectory data.

ID Time Lon Lat Speed Direction Status

C124E2 1,448,934,913 22.579636 114.132820 62 53 1
C2AXHP 1,448,951,588 22.577946 114.130936 48 28 1

. . . . . . . . . . . . . . . . . . . . .
C685AD 1,449,016,722 22.594633 114.044900 56 109 1

CAEDHP 1,447,927,156 22.597000 114.040520 78 119 1
CDTISQ 1,443,498,723 22.599183 144.039636 39 215 1

. . . . . . . . . . . . . . . . . . . . .

In the original taxi trajectory data, the start point (point O) and end point (point D) of
each trajectory are extracted based on the unique identifier of the taxi and the chronological
order of the trajectory. The OD data are extracted according to the taxi ID, passenger status
and timestamp. The passenger status is 1, indicating that the passenger is loaded, and
0 indicates that there is no passenger, then the point in a continuous trajectory where the
passenger status changes from 0 to 1 is the starting point and the point where the passenger
status changes from 1 to 0 is the destination point. Group the records by vehicle ID and
arrange each group in ascending order by time, extract the record whose passenger status
becomes 1 as the departure point data and the record whose passenger status becomes
0 as the destination point data, and get the coordinates of the start and end points as well
as the time of the start and end points of each order. The above process was repeated for
all records within the date, and 3.86 million OD data were extracted from the 419 million
GPS records.
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• POI Data

The POI data are derived from the Gaode Map Open Platform, which records the
types of activities of urban residents in a certain location. In this paper, we collected the
2018 point-of-interest data within Shenzhen, and the original POI data had a wide range of
hierarchical classifications, with the major categories covering a variety of sub-categories,
and there were problems of repetition and crossover in different classifications, Therefore,
it is necessary to reclassify the POI data. According to the “urban land-use classification
and Planning and construction land-use standards”, considering the types and attributes of
urban functional areas, this study reclassified POIs into public management public service
facilities land, commercial service facilities land, residential land, industrial land, green
space and square land. The total number of cleaned POI data is 450,591 records, and the
classification table is shown in Table 2.

Table 2. POI data.

ID The Primary Classification The Secondary Classification

1 Land for public administration and
public service facilities

Public Facilities, science education and culture, sports leisure,
government agencies and social organizations, medical care, etc.

2 Commercial service facility land Catering services, shopping services, financial services,
accommodation services, life services, etc.

3 Residential land Business housing, tenement buildings, etc.

4 Industrial land incorporated business, agricultural and fishery base, etc.

5 Green space and square land Scenic spots, park squares, etc.

• Road Network Data

The road network data are obtained from the official website of OpenStreetMap. The
irregular grid composed of road network data is the basic unit representing the socio-
economic functions of urban management and planning. Different levels of road networks
divide the whole city into different traffic analysis zones (TAZ). The road grades selected
in this study include expressways, trunk roads, main roads, secondary roads, ordinary
branches, residential roads, service roads, etc. To ensure data quality, operations such as
removing overhanging points in roads, extending independent road lines to connect with
adjacent roads, and finally removing unnecessary internal roads by hand are performed on
the road network data.

2.3. Method

In this study, the trajectory data are transformed into a time feature sequence, and the
information is mined to achieve the purpose of identifying functional areas. The workflow
of urban main functional area identification is shown in Figure 2, including the following
three steps. Firstly, the K-medoid clustering algorithm based on DTW is used to cluster
the time feature sequence, and the preliminary results of block clustering in the study area
are obtained. Secondly, an ensemble method (CA-RFM model) combining the clustering
algorithm with the random forest model is proposed. This method uses clustering algorithm
to extract significant feature regions as input, effectively integrates time point features and
POI point features and uses the random forest model to automatically identify UFZ. Finally,
using up-bottom functional zoning identification, combining the semantic features of the
city represented by POIs, the functional zoning categories of multi-scale block units are
finely identified level by level.
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Figure 2. Workflow of urban functional area identification.

2.3.1. Methods of Time Series Generation

To understand the trip patterns of residents as a whole, the total number of passengers
per hour on working days and rest days in TAZ was counted. On this basis, the average
number of hours per hour on working days and rest days is counted.

Figure 3 shows that there are large differences in the travel patterns of residents on
workdays and weekends, so workdays and weekends should be treated separately. The
daily data of the pickup and the drop-off point on the workdays and weekends intersect
with the TAZ data. Then, the pick-up and drop-off numbers within each hour and each
TAZ were counted. Finally, the average passenger numbers over 24 h a day on workdays
and weekends were calculated. We obtained 4 sets of data in TAZ.

Figure 3. Characteristics of resident trips in the study area. A represents the number of pickups on
workdays; B represents the number of pickups on weekends; C represents the number of drop-offs
on workdays; D represents the number of drop-offs on weekends; E represents the average outflow
of workdays; F represents the average inflow of working days; G represents the average outflow of
weekends; H represents the average inflow of weekends.



Sustainability 2023, 15, 13870 7 of 24

In summary, the time series of each ultimately generated research unit as follows:{
O0, O1, . . . , O23, D0, D1, . . . , D23, O′0, O′1, . . . , O′23, D′0, D′1, . . . , D′23

}
where O0 −O23 represents the average outflow of workdays, D0 − D23 represents the aver-
age inflow of workdays, O′0 −O′23 represents the average outflow of weekends, D′0 − D′23
represents the average inflow of weekends.

2.3.2. Dynamic Time Warping

Dynamic time warping algorithm finds the best correspondence between two obser-
vation sequences by regularizing the time dimension with certain constraints, which can
explore the similarity and difference of time series with maximum flexibility, and it is the
most commonly used quantitative method to measure the similarity of time series.

Given time series P = [r1 . . . ri . . . rn] and Q =
[
s1 . . . sj . . . sm

]
, construct an n × m

matrix grid, where each element of the matrix represents the distance between points ri
and sj, the DTW algorithm needs to ensure the minimum difference when aligning P and Q.
Build path W = [w1 . . . wr . . . wk], among them max(m, n) ≤ K ≤ m + n− 1, it is necessary
to satisfy three conditions: boundary conditions, continuity conditions and monotone
conditions. The boundary condition is that the starting point of the path is the lower left
corner element (1, 1) of the matrix, and the endpoint is the upper right corner element (n, m).
The continuity condition means that, except for the start and end points, each element on
the path must have two points around it that are adjacent to each other; The monotonicity
condition requires that the next element on the path must lie to the right of or above the
previous element, while not spanning two elements. Among all the paths that satisfy the
above three constraints, the one with the smallest dDTW is selected as the output result,
that is, the path with the smallest distance between P and Q is measured:

dDTW(i, j) = MAR(i, j) + min(dDTW(i, j− 1), dDTW(i− 1, j), dDTW(i− 1, j− 1)) (1)

where 1 ≤ i ≤ 96, 1 ≤ j ≤ 96, dDTW(i, j) is the minimum cumulative distance of the current
matrix element MAR(i,j) with dDTW(0, 0) = 0, dDTW(0, j) = dDTW(i, 0) = ∞.

In this study, DTW eliminates phenomena such as shifting in the time trend when
measuring the variability of the 96-dimensional OD point time series in TAZ, and the time
comparisons based on the DTW distance calculations are good.

2.3.3. K-Medoid Clustering Algorithm

For a large amount of data without labels, semi-supervised learning usually adopts
manual methods to mark a small number of data labels with typical characteristics as the
training samples to train most of the remaining data without labels [34]. In this paper,
training samples are generated by combining unsupervised learning with manual labeling,
which greatly improves the accuracy of the experiment.

The DTW algorithm can be used to obtain the plot distance matrix, that is, the similarity
matrix of the time series of taxi traffic volume of the block unit, based on which the
clustering analysis can distinguish the differences between different plot types. In the
phase of generating training samples, the clustering method used in this study is the
K-medoid algorithm. K-medoid clustering is the preferred method in large-scale data
clustering analysis and is less affected by outliers, which makes it more suitable for this
study [35].

To evaluate the reliability of the results of different clustering numbers, this study
introduced the silhouette to evaluate the clustering quality of each cluster. In the context of
the K-medoid algorithm, assuming that in an existing clustering result, where a(i) represents
the mean value of the DTW distance between sample point i and other sample points in the
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same cluster and b(i) represents the mean value of the minimum DTW distance between
sample point i and other clusters, then there are:

s(i) =
b(i)− a(i)

max{a(i), b(i)} (2)

If s(i) is close to 1, it means that the sample point i matches well with the existing
clustering results. If s(i) is close to −1, it means that the sample point i should belong to
its neighbor clusters. The higher the mean value of s(i) of all points means the better the
clustering results.

2.3.4. CA-RFM Model

Random Forest is essentially a collection of many decision trees, and multiple trees
are integrated through an integrated learning concept based on traditional decision tree
algorithms, which ultimately results in a final prediction based on multiple tree voting.
The randomness of the random forest is reflected in the fact that the training samples of
each decision tree are randomly selected, and the splitting attributes of each node in the
tree are also randomly selected. Therefore, the accuracy of random forest classification
results greatly depends on the accuracy of training samples. The clustering algorithm
obtains the preliminary division result of the functional area by directly clustering the
time series data, and some areas have an inaccurate division. To make the classification
results more credible, this study takes the regions with significant features of each category
in the clustering results as the training sample regions of the random forest model and
combines the clustering algorithm and the random forest model to construct the CA-RFM
model. This combination of supervised and unsupervised learning to select samples
increases the accuracy of the training samples to some extent and improves the precision of
the experiment.

Given that several studies have confirmed that different urban functional areas have
different time statistical features and POI point features, but these two types of characteris-
tics are seldom fully integrated and used for functional area classification, this study used
the CA-RFM model to fuse these two types of characteristics, and the model was used to
classify the functional areas.

• Extraction of time statistical features;

Taxi OD data reflect the mobile information of passengers in different regions. Different
functional areas provide different social functions, and the number of taxi pick-ups and
drop-offs will change with time. Extracting 48-dimensional time statistical features of taxi
pick-up and drop-off point data for one week in each basic analysis unit are extracted
for functional area identification of each unit. Considering the differences in the travel of
residents on workdays and weekends, the total number of taxis getting on and off per hour
for 24 h per day on workdays and weekends were counted separately in each of the basic
units of analysis to generate a 96-dimensional data feature. The calculation method of the
average statistics of the getting on and off points of each basic analysis unit is as follows:

1. Average statistics of getting on points of taxi trajectory data

The calculation method of the 24 h average statistics of the getting on point of each
basic analysis unit on workdays is shown in formula (3):

Von =
∑dk∈Sh

Mon
(
u:,dk

)
Wd

(3)

where Von is the statistics of getting on points; u:,dk
is the 24-dimensional vector of the

number of getting on points on the kth working day; Mon(v) is the mean form of the daily
getting on point statistic; Sh is a one-week taxi trajectory experimental dataset; Wd is the
total number of workdays in a week.
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The calculation method of the 24 h average statistics of getting on points of each basic
analysis unit on weekends is as above, and the number of days on the workdays can be
replaced by the number of days on weekends.

2. Average statistics of getting off points of taxi trajectory data

The calculation method of the 24 h average statistics of the getting off point of each
basic analysis unit on workdays is as shown in formula (4):

Vo f f =
∑ek∈Sh

Mo f f
(
u:,ek

)
Wd

(4)

where Vo f f is the statistics of getting off points; u:,ek is the 24-dimensional vector of the
number of getting off points on the kth working day; Mo f f (v) is the mean form of the daily
getting off point statistic; Sh is a one-week taxi trajectory experimental dataset; Wd is the
total number of weekends in a week.

Considering each functional area’s different area, the density of each face OD point is
calculated as a feature to make up for the OD point flow information lost by normalization
processing. In summary, the time statistical characteristics of each research unit are finally
generated as 97 dimensions, that is:{

O0, O1, . . . , O23, D0, D1, . . . , D23, O′0, O′1, . . . , O′23, D′0, D′1, . . . , D′23, Den
}

where O0 −O23 is the average outflow characteristics of the workdays, D0 − D23 is the
average inflow characteristics of the workdays, O′0 −O′23 is the average outflow character-
istics of the weekends, D′0 − D′23 is the average inflow characteristics of the weekends and
Den is the point density characteristics, a total of 97 dimensions.

• Extraction of POI point features.

The number of POI points reflects the absolute value difference of different types of
interest points in the functional area, which can be used to assist in judging the actual
functional attributes of the functional area. However, the absolute value of the POI may
also cover the actual dominant attribute information in the region, so the point density
and enrichment index of the POI are introduced as auxiliary discriminant information.
Twelve representative types of POIs are selected from the general category of the POI,
which are catering service, scenic spot, company and enterprise, shopping service, finance
and insurance, science and education and cultural service, housing, life service, sports and
leisure service, medical and health service, government agencies and social organizations
and accommodation service. For each plot divided, the point density and enrichment index
of each type of POI point in the plot are calculated [36].

The density of POI points is expressed as:

DensityPOI(i,j) =
NumPOI(i,j)

Areaj
(5)

where DensityPOI(i,j) is the density of type i POIs in the functional area of type j; NumPOI(i,j)
is the number of type i POIs in the class j functional area; Areaj is the total area of the class
j functional area.

The POI enrichment index is expressed as:

Fi,j =
ni,j/nj

Ni/N
(6)

where Fi,j is the enrichment index of the class i POIs in the class j functional area; ni,j is the
number of type i POIs in the class j functional area; nj is the total number of POIs in the
class j functional area; Ni is the total number of type i POIs; N is the total number of all
POIs in the entire study area. The higher the F indicates the higher the enrichment index of
type i POIs in the class j functional area.
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In summary, the final 24-dimensional features of POI points for each research unit
were generated, i.e.,

{D1, D2, . . . , D12, F1, F2, . . . , F12}

where D1−D12 is the densities of the 12 types of POIs, and F1− F12 is the enrichment index
of the 12 types of POIs. These two indexes are used as POI point features, and a total of
24-dimensional POI point features are extracted.

2.3.5. Quantitative Identification of a POI

The POI contains a large amount of semantic information about urban functions and
is a way to quantitatively identify functional areas. Considering the large difference in
the amount of POI data between different categories and the differences in the geographic
entities they represent and the public awareness, this study introduces the two indicators
of frequency density (FD) and category ratio (CR) to determine the functional attributes,
and the calculation formulas are as follows [37].

FDi =
ni
Ni

(i = 1 . . . 5) (7)

CRi =
Fi

∑5
i=1 Fi

× 100%(i = 1 . . . 5) (8)

where i represents the i-th of the five POI types; ni is the number of the i-th type of POI in
the block unit; Ni is the total number of i-th type of POI; FDi is the frequency density of
i-th type of POI in the block unit to the total number of POIs of that type. CRi is the ratio of
the frequency density of i-th type of POI to the frequency density of all types of POIs in the
block unit.

The FD and CR of each type of POI within each functional area unit are calculated
according to the formula. Referring to the research of Chi Jiao et al., and through multiple
adjustment tests, the CR value of 30% is determined as the standard to judge the nature
of the functional area of the unit [38]. That is, when the proportion of a certain type of
POI type is greater than 30%, the unit is judged to be a single functional area; when the
proportion of all POI types in the unit does not exceed 30%, the area is determined to be a
mixed functional area, and the mixed type depends on the two most dominant POI types
in the unit; three and more than three mixed cases are not considered in this study.

2.3.6. Multi-Scale Recursive Recognition Method Based on Cross-Validation

The auxiliary data used in the delineation of urban functional zones vary, while the
block unit formed by the road network is closer to the boundary of urban functional zones,
easy to obtain and is the most widely used data in the delineation of functional zones. The
road network-based method can better estimate the actual distribution of urban roads, and
the use of multilevel urban road networks divided into functional district block units can
better meet the scientific management of urban planning departments and assist decision
making. For this reason, this study proposes a multi-level research unit division method
based on road grade, i.e., using highways, trunk roads and main roads as the first-level
unit demarcation line, adding ordinary street roads based on the first-level demarcation
line as the second-level demarcation line, and adding service roads based on the second-
level demarcation line as the third-level demarcation scale, to obtain the third-level scale
research unit.

Based on multi-level road network division, a multi-scale recursive identification
method based on cross-validation is proposed by combining the results of CA-RFM model
extraction and POI quantitative identification, as shown in Figure 4. The CA-RFM model is
used to determine the urban functional area category of the block unit at each scale. In this
process, the POI-based voting was used to verify the identification based on the CA-RFM
model and the results of the validation determined which blocks would be divided into
sub-blocks at the next scale. Whether the block unit is divided into the next scale depends
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on the consistency of the extraction results of the two methods, to realize the top-down
hierarchical division from large-scale road network to small-scale road network.

Figure 4. Multi-scale recursive recognition based on cross-validation.

This study formulates the principles that the method needs to follow. Firstly, after
calculating the CR values of all POI types in each block unit, the attribute similarity between
the quantitative identification of POI based on CR judgment and the identification based on
the CA-RFM model is calculated to determine whether the urban functional area is divided
and the attributes of the block unit.

(1) For the unit with a CR value greater than 30% of POI type, if the functional attributes
determined by CR are consistent with the functional identification results of the CA-
RFM model, the functional area attributes of the block unit are determined and the
block unit is no longer divided. If the functional attributes determined by CR are
inconsistent with the identification results of the CA-RFM model, the block unit is
further divided until the functional attributes of the two methods are consistent.

(2) For all units with CR values of POI types less than 30%, if the functional attributes
determined by CR are consistent with the functional identification results of the CA-
RFM model, the results are retained and the unit will not be divided. If the functional
attributes determined by CR are inconsistent with the functional identification results
of the CA-RFM model, the block unit is further divided until the functional attributes
of the two methods are consistent.

(3) For the unit that does not contain POI (CR is a null value), it is called a null value
unit. The recognition result of the CA-RFM model will be the terminal functional
area category of the block unit and will not be divided. For the unit that does not
contain trajectory data or the number of time statistical features of 0 exceeds 80% of
the total number of features, the functional attributes determined by the CR value are
the terminal functional area category of the unit and will not be divided. For the block
unit with inconsistent attribute results obtained by the two methods in the third level
division, the functional attribute determined by the CR value is the final functional
area category of the unit; for units that contain neither POI data nor trajectory data,
they are referred to as no-value unit and are not used as discriminatory regions.

3. Results
3.1. Training Sample Generation of CA-RFM Model

For the training of the CA-RFM model, training samples with labels are essential.
To obtain the training samples, the K-medoids algorithm was utilized to cluster the pre-
processed time series data, the reliability of the number of clusters is evaluated by the
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silhouette coefficient. The change in the silhouette value with the number of clusters K
is shown in Figure 5a–c. The larger the contour coefficient, the smaller the number of
clusters. Too small silhouette values lead to over-categorization, which produces too many
irrelevant categories; too large silhouette values lead to under-categorization, which makes
it difficult to separate different categories with similar properties. Therefore, we choose the
point where the concave–convex nature of the function changes, i.e., the inflection point.
From the graph, it can be seen that there are inflection points at each level when the number
of clusters is 7,6 and 6, respectively. Considering the change of silhouette with K and the
size of the data volume, the number of clusters at each level of the road network is finally
determined to be 7,6 and 6.

Figure 5. The changes in silhouette values with different numbers of cluster.

According to the overall planning of Shenzhen City, the POI enrichment index of
each type in each block unit and the category of urban functional areas marked by high-
definition remote sensing images, this study selects a certain amount of significant feature
areas from Figure 6a–c as the input of the CA-RFM model and generates training samples
for training the model. The sample sizes of industrial and commercial mixed area (C1),
green scenic spot (C2), life and recreation mixed area (C3), mature commercial area (C4),
industrial/public service mixed area (C5), public and commercial mixed area (C6) and
urban residential area (C7) are all 75.

Figure 6. Cont.
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Figure 6. K-MEDIODS clustering results.

3.2. Multi-Scale Recursive Urban Functional Area Identification Results

Figure 7 shows the identification results of functional areas with highways, trunk
roads and main roads as the first-level division scale. The road grade used in the first-level
division scale is mainly responsible for the long-distance and fast transportation services of
the city. It can be used as a landmark road of a city, and its zoning scale is relatively large.
The study area was divided into 919 first-level block units, of which only 270 units were
successfully identified by the multi-scale model, and the remaining 649 units did not reach
the threshold of similarity calculation. The results show that the functional attributes of
these 649 units are highly heterogeneous, and there are multiple categories of functional
areas within the block units. These first-level block units need to be subdivided on the
next scale.
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Figure 7. Identification results of the first level of segmentation.

Taking ordinary streets as the dividing boundary, a total of 2071 secondary block units
are divided. The similarity algorithm is used to calculate the recognition results of the
CA-RFM model. A total of 1308 secondary block units are successfully identified, and the
remaining 763 secondary block units need to be divided at the next scale (Figure 8). In
the secondary division, the number of identified functional areas has soared, especially in
the mixed area of life and recreation and the mixed area of industry/public service. This
also shows that, in urban planning and design, many factories, public service areas and
residential areas are designed with ordinary streets as the boundary. In addition, ordinary
streets are used to connect most areas of the city. Residential areas, industrial areas and
public service areas are generally located near convenient streets.

Figure 8. Identification results of secondary segmentation.

Figure 9 shows the results of the final level of block unit identification using service
roads, with a total of 1510 tertiary block units identified, and some smaller-scale mixed
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public and commercial areas and urban residential areas identified in large numbers. At the
same time, functional areas mainly based on industrial mixed functions (industrial-green
mixed areas, industrial-residential mixed areas) and functional areas mainly based on
public-service mixed functions (public-green mixed areas, public-residential mixed areas)
are also identified. In the last block unit, 12 types were identified, namely: C1-industrial
and commercial mixed, C2-green scenic spot, C3-life and recreation mixed area, C4-mature
commercial area, C5-industrial/public service mixed area, C6-public commercial mixed
area, C7-urban residential area, C8-industrial and green mixed area, C9-public residential
mixed area, C10-public green mixed area, C11-industrial and residential mixed area, C12-
green residential mixed area. Among them, the mixed area mainly composed of industrial
and public service mainly includes some small office areas, small factories and factories,
etc., which are relatively small in area, so it is necessary to divide the functional zoning unit
of the minimum scale road. It can be seen that the land-use types in Shenzhen are mainly
mixed with residential land, industrial land and public land.

Figure 9. Identification results of the three levels of segmentation.

Finally, the classification results of the above three scales are combined to obtain
the overall functional area identification results of the study area, as shown in Figure 10.
Based on the division from the large-scale road network to the small-scale road network,
this method realizes the identification of multi-scale urban functional areas from top to
bottom. The study area is divided into 3088 block units. For each type of functional area
type, a certain amount of block units in the classification results are extracted. The results
are tested with the overall planning of Shenzhen City and the ‘Mapping of Basic Urban
Land Use Types in China: Preliminary Results in 2018’ [39]. The calculation results of
the confusion matrix are as follows (Figure 11), and the overall recognition accuracy is
0.874%. The above experiments demonstrate that the multiscale recursive recognition
method combines the two methods organically. On the one hand, it realizes the mutual
test of the two recognition results and improves the extraction accuracy of the functional
area. The accuracy of the recognition results of the CA-RFM model is tested by using the
functional semantic information implied by POIs. The CA-RFM solves the problem that
there are no POI data in some units and POIs may have inaccurate data. On the other hand,
it reduces the unnecessary division of some blocks and improves the operational efficiency
of the model.
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Figure 10. Final consolidation results of urban functional areas.

Figure 11. Confusion matrix results.

4. Contrast Experiment

To verify the performance of the multi-scale recursive identification method based
on cross-validation in identifying urban functional areas, the functional area identification
results of this paper’s method (E) and the single-scale POI quantitative identification
method (A), the multi-scale POI quantitative identification method (B), the single-scale
CA-RFM model (C) and the multi-scale CA-RFM model (D) are compared. To keep the
variables constant, the block units of each layer obtained in Figure 10 are used as single-
scale functional area constraint boundaries, and the three-level scales of this study are
used as multi-scale functional area identification constraint boundaries. Table 3 shows the
accuracy comparison of different examples.

According to the combination of different scales and methods, five groups of com-
parative experiments were generated. From the perspective of “scale”, based on the same
method, the overall accuracy OA and Kappa of group B were higher than those of group A,
at the same time, the multi-scale recognition results of group CD were also better than the
single-scale recognition results. From the perspective of “method”, the POI quantitative
identification method is better than the CA-RFM model based on the same single scale in
the two groups of AC, and the CA-RFM model is better than the POI quantitative identifica-
tion based on the same multi-scale in the two groups of BD. On the whole, the multi-scale
recognition results are better than the single-scale recognition results. In this case, the
method of this study (group E) obtained the highest OA and Kappa coefficients: OA-0.874,
Kappa-0.853. In contrast, the method proposed in this paper has the best recognition effect.
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Table 3. Accuracy evaluation of identification results of urban functional areas in different examples
is a table.

ID
Scale Method

OA Kappa
Single-Scale Multi-Scale Quantitative Identification of POI CA-RFM Model

A
√ √

0.672 0.617
B

√ √
0.746 0.703

C
√ √

0.647 0.588
D

√ √
0.757 0.717

E
√ √ √

0.874 0.853

5. Discussion

POI data can reflect the spatial distribution of features, provide rich socioeconomic
information and have better spatial timeliness than traditional data. Therefore, using POI
data to identify urban functional area attributes is simpler and more efficient than traditional
methods. However, POI data also have limitations; POI data cannot reflect dynamic
information. Therefore, combining cab trajectory data and POI data to analyze urban
functional areas better meets the current requirements. In this paper, urban neighborhoods
divided by multilevel road networks are used as the unit of study to fit the urban form
more accurately and make the identification results more accurate. In order to validate the
recognition results of the method, the results were compared with Google Earth images,
Golder maps, and real photos of landmark areas. The comparison results for some typical
areas are shown in Table 4, and Google images from 2016 were chosen to be as close as
possible to the time of the trajectory data and POI data.

Table 4. Comparison and evaluation of functional area identification results.

Function Area No. Results of
Identification

Google Earth
Image Gaode Map Real Photos of

Landmark Site

C1:
industrial and commercial mixed

1

2

C2:
green scenic spot

3

4
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Table 4. Cont.

Function Area No. Results of
Identification

Google Earth
Image Gaode Map Real Photos of

Landmark Site

C3:
life and recreation mixed area

5

6

C4:
mature commercial area

7

8

C5:
industrial/public service

mixed area

9

10

C6:
public commercial mixed area

11

12
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Table 4. Cont.

Function Area No. Results of
Identification

Google Earth
Image Gaode Map Real Photos of

Landmark Site

C7:
urban residential area

13

14

C8:
industrial and green mixed area

15

16

C9:
public residential mixed area

17

18

C10:
public green mixed area

19
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Table 4. Cont.

Function Area No. Results of
Identification

Google Earth
Image Gaode Map Real Photos of

Landmark Site

C10:
public green mixed area

20

C11:
industrial and residential mixed

area

21

22

C12:
green residential mixed area

23

24

The landmark area in Group 1 is the Tianhong Shopping Center, which is one of the
more well-known shopping centers in Shenzhen, with many specialty stores and brand
stores of famous brands; the area in Group 2 is the Bauhinia City Shopping Plaza, and there
are also a number of medium-sized shopping malls such as the Qunxing Plaza Shopping
Center and the Maoye Department Store in this area, with a wide variety of specialty
themed food and beverage and themed merchandise stores, and with notable commercial
functions. In addition, there are a large number of tall office buildings in the vicinity,
where the nature of the work is evident, and the mix of the two main functions is in line
with the urban function of “mixed industry and commerce”. The landmark areas in the
comparison of Groups 3 and 4 are Shiang Mee Park and Baoan Park, respectively. Shiang
Mee Park is a comprehensive municipal park integrating culture, leisure and experience,
and Baoan Park is also a good place for citizens’ fitness, ecological sightseeing and leisure,
which is in line with the positioning of its functional area as a “Green Scenic Spot”. The
landmark areas in the comparison of Groups 5 and 6 are Huangpu Nga Yuan and Jingtian
South 3rd Street Park, which are not only densely populated with residential buildings
but also have places for people to relax and have fun, which is in line with their function
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as a “Mixed Lifestyle and Recreation Area”. The landmark areas in the comparison of
Groups 7 and 8 are the Joyo INTOWN Shopping Center and Star River COCO Par. These
two large shopping centers are included in the CBD business circle of Futian District, which
is a large-volume, composite and diversified commercial agglomeration area, and the
commercial function of these two areas occupies most of the area, with a small number of
buildings for other functions in the surrounding area, which is consistent with its functional
classification as a “mature commercial area”. The two areas occupy the majority of the area
for commercial functions, with fewer buildings for other functions in the surrounding area,
and are therefore in line with their function as “mature commercial districts”. The landmark
areas in the comparison of Groups 9 and 10 are the Mok Mo Wan Primary School and the
Shenzhen Baoxing Hospital, of which the Shenzhen Baoxing Hospital is a Grade II general
hospital. Both areas contain large industrial areas, such as the Jishengchang Industrial Area
and the Maadi Industrial Area, which have a medium density of small- and medium-sized
firms, which is consistent with their functional positioning of a “Mixed Industrial/Public
Service Area”. This is in line with the “mixed industrial/public service district” functional
designation. The landmark areas in the comparison of Groups 11 and 12 are the Shenzhen
Documentation Service Center and the Huanggang Community Library. Group 11 contains
small- and medium-sized shopping malls, led by the Excellence Shopping Center, while
Group 12 contains shopping and leisure venues such as the Huanggang Commercial City
and Times Square, which are in line with the positioning of the “public-commercial mixed
zone” functional area. In the comparison of Groups 13 and 14, there is a large number
of higher-density and better-arranged residential buildings, which is consistent with its
functional area positioning as an “urban residential area”. The landmark areas of Groups
15 and 16 are Civic Square and Longhua Park, where a large number of science and
technology parks and wholesalers are located, which is in line with the positioning of the
functional area as an “industrial and green mixed zone”. Groups 17 and 18 are characterized
by the Donghai Experimental Primary School Kindergarten and Nanshan Foreign Language
Kewa School, while Group 17 contains a large number of training institutes and medium-
density residential areas, and Group 18 contains neighborhoods such as Rhine Garden
and Mangrove Garden, which are in line with the positioning of the area as a “Mixed
Residential and Communal District”. The landmark areas of Groups 19 and 20 are the
Bonjour Monastery and the Pak Nai Hang Park, which contain public service facilities
such as schools, sports and recreation facilities, and is in line with the positioning of
the functional area as a “Mixed Use Public and Green Area”. The landmark areas of
Groups 21 and 22 are Longhua Industrial Zone No. 3 in Bao’an District and Shenzhen
Yanguang Middle School. Group 21 contains many small factories and companies, as well
as a certain density of residential areas, which is in line with its positioning as a “Mixed
Industrial and Residential Area” functional area. Group 22, which was originally a mixed
industrial/public service district, was misclassified as “mixed industrial/residential”. The
landmark areas of Groups 23 and 24 are the Plaza of the Unified Building in Jixia Village
and the Community Park in Kwun Lung Village, which contain more neighborhoods and
recreational plazas and is in line with the positioning of the functional area as a “mixed
green and residential area”.

From the identification results, we can find that the mixed living and recreational areas
with mainly residential functions and urban residential areas have better identification
results; the mature commercial areas in the study area can be identified, especially those
located in the location of urban business districts can be identified more accurately; The
mixed industrial/public service areas were identified with high accuracy, but some of them
were misclassified as mixed public housing and mixed industrial–housing areas, which is
related to the quality of the data. In addition, large green areas can be accurately identified,
and some ecological areas of the city, large squares and parks can be identified. Some
small areas of parks and squares are mistaken for public service facilities, and mixed with
residential areas are misclassified as other mixed areas, with poor single identification
results. Although the methodology proposed in this study achieves the expected results
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and provides a basis for fast and accurate identification of urban functional zones, there
are still some limitations. For example, the taxi trajectory data used in this study have
some positioning errors and such data do not completely cover the study area due to
regional transportation, economic and infrastructure constraints, which leads to bias in the
identification process; secondly, the actual boundaries of the delineated study units and
functional areas are different, which can also make the identification results inaccurate. In
the future, richer data and more precise divisions can be added and chosen to explore the
functional areas of the city to improve recognition accuracy.

6. Conclusions

With the deepening of the urbanization process, the urban structure presents complex
and regular characteristics, and this paper analyzes the urban spatial structure from the
perspective of big data mining. In the era of big data, the emergence of massive data
has added new data sources to the identification of urban functional areas. However,
single data have inevitable defects in the identification of functional areas. Therefore, this
paper uses a combination of multi-source data to improve the accuracy and reliability of
functional area identification. Combined with taxi trajectory data, POI data and multi-scale
road network data, a multi-scale recursive identification method of urban functional areas
based on POI frequency density analysis and the CA-RFM model is proposed. Experiments
and comparisons show the feasibility and superiority of the method. The method can
provide a theoretical basis for urban land planning, administrative division adjustment,
urban resource allocation and other fields, and has auxiliary and guiding value for the
scientific integration of land use and urbanization. The contribution of this study is mainly
manifested in two aspects:

(1) The time series data are clustered and analyzed using DTW based K-MEDOIDS
clustering, and the raw output of the clusters is used as the input to the CA-RFM
model, which improves the accuracy and efficiency of the sample region selection
using this auxiliary method. The overall accuracy of the experiment is 87.4%, which
can be improved by up to 20% compared to the other control experiments in this
paper, and the UFZ classification results also show the effectiveness of these sample
zone selections.

(2) Using multilevel road networks to decompose block unit level by level, combined
with POI quantitative identification and CA-RFM model, a multi-scale recursive
identification method of urban functional areas based on interactive validation is
proposed to realize the fine extraction of functional areas from top to bottom, which
avoids the shortcomings of the use of a single road network. The interactive validation
of the two methods improves the overall classification accuracy. In addition, the
recognition results of the joint use of CA-RFM model and CR can alleviate the negative
impacts when there are no POI data, no taxi trajectory data and too little trajectory
data in some blocks.

Much work remains to be done in this area of research in the future. In this paper, taxis
are used as a representative of residents’ traveling and other residents’ traveling modes
are ignored. In addition, location service big data, such as cell phone check-in data and
microblog check-in data, are important references for the interpretation and classification
of urban land use. Therefore, multi-source urban big data should be integrated to measure
urban morphology in future research to make the classification results more detailed and
reliable. In addition, after obtaining reliable classification results of urban functional zones,
the spatial structure of each functional zone and its correlation can be analyzed. In turn,
the degree of rational utilization of urban space can be assessed and effective optimization
suggestions can be attempted.
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