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Abstract: Our study analyzed PM2.5 concentrations in Porto Velho, Rondônia, during the April 2020
and October 2022 wildfire seasons. This study aimed to evaluate the temporal characteristics of PM2.5

and the influence of long-distance pollution sources. Using PurpleAir data, we found that the average
PM2.5 concentration was 17.7 ± 24.0 µg m−3, with significant spikes in August. PM2.5 concentrations
decreased during the day but rose from nighttime to morning. The PM2.5 concentration was observed
to be distributed at a high level of 36.3 ± 31.1 µg m−3 in slow westerly winds. Moreover, even
in the dominant northerly wind conditions, a similarly high concentration of PM2.5 was detected,
measuring at 33.2 ± 28.3 µg m−3. Air masses mainly originated from northeastern, southeastern,
and southern regions, passing through Paraguay and Bolivia. Furthermore, PM2.5 in Porto Velho
was influenced by Brazil’s northern and Central-West areas. To meet the Sustainable Development
Goal (SDG) Indicator 11.6.2 for clean air, it is recommended that wildfires in Porto Velho’s northern
and western regions be reduced, and more robust deforestation policies are needed in areas with
long-distance pollution sources.
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1. Introduction

The Amazon rainforest plays a pivotal role as a carbon sink, absorbing greenhouse
gases and thereby regulating climate change [1,2]. However, intentional wildfires are set in
the Amazon during the dry season to clear land for pasture and agriculture [3,4]. These
wildfires are significant carbon emission sources, producing carbon aerosols that amplify
the impacts of climate change [5–7]. Exacerbated climate change conditions, characterized
by more frequent droughts and longer dry seasons, further amplify wildfire occurrences [8].

Wildfires have the potential to adversely affect the health of residents both in the
immediate vicinity of the fire outbreak and in downwind regions through long-range
transport mechanisms [9–11]. Notably, PM2.5 emissions from wildfires are known to
be more harmful than those originating from fossil fuels, and the increase in wildfires
correlates with a rise in atmospheric PM2.5 concentrations [11–13]. Attention to PM2.5
concentrations is crucial as they influence respiratory ailments, cardiovascular diseases,
and cognitive function decline in individuals [14–16]. Thus, elevated levels of PM2.5 run
counter to Sustainable Development Goal (SDG) 11.6.2, which aims to reduce adverse
health impacts from air pollutants, including fine particulate pollution [17,18]. Air quality
enhancement through PM2.5 reduction is pivotal to achieving sustainable development
objectives.

An increase in the daily average concentration of wildfire-related PM2.5 by 10 µg m−3

led to a 3.1% rise in mortality rate, whereas an increase in the annual or biennial average
PM2.5 concentration by 1 µg m−3 resulted in a 0.14% or 2% increase in mortality rate,
respectively [10,15,19,20]. On the other hand, a decrease in PM2.5 levels by 10 µg m−3, or
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meeting the WHO recommended level of 10 ug/m3, led to an increase in life expectancy [21,22].
While air quality improvement policies focus on reducing PM2.5 and other pollutants in
major urban areas, the effect of local and distant wildfires on urban PM2.5 concentrations
cannot be ignored [13].

Research related to PM2.5 resulting from wildfires has also been conducted in the
Amazon region [23,24]. Wildfire-induced PM2.5 concentrations have been exceptionally
high in the central-western parts of Brazil, affecting the health of children, women, and the
elderly aged 65 and over [15,20,25,26]. Porto Velho, situated in the central-western Amazon
of Brazil, is the capital of the Rondônia state and is home to approximately 500,000 residents.
Rondônia is notably among the regions experiencing the most severe deforestation within
Brazil. In the Amazon area, 80% of PM2.5 emissions are attributed to deforestation [27].
Therefore, understanding the impact of wildfires stemming from deforestation on the
sustainable well-being of the region’s inhabitants is of paramount importance.

Previous studies have used satellite data and modeling techniques, presenting chal-
lenges in assessing specific areas in the Amazon [20,25,28,29]. Recent observational data
for PM2.5 in the region are outdated, and the sampling period for PM2.5 exceeded two days,
limiting the understanding of the diurnal variation of PM2.5 from wildfires [25,27].

This research utilizes hourly average PM2.5 data from PurpleAir. It aims to evaluate the
temporal characteristics of PM2.5 in conjunction with meteorological data during wildfire
periods and the influence of long-distance pollution sources. Through this, we expect to
contribute to the sustainable goal of clean atmospheric quality (SDG Indicator11.6.2) for
the area’s residents.

2. Methods
2.1. PM2.5 and Meteorological Data

In the Amazon region, inclusive of the Porto Velho area, there are no regulatory-grade
monitors. Instead, hourly measurement data regarding particulate matter are acquired
using PurpleAir’s Low-Cost Sensor (PALCS). This study utilized PM2.5 data provided by
PurpleAir (https://www2.purpleair.com/ (accessed on 30 July 2023)) from April 2020 to
October 2022. The data can be downloaded using the PurpleAir Data Download Tool.
The PALCS system comprises two channels, labeled as A and B. Utilizing these two
channels, it simultaneously measures the mass concentrations of PM1, PM2.5, and PM10,
along with particle counts for sizes of 0.3, 0.5, 1.0, 2.5, 5.0, and 10.0 µm. Additionally,
the system records meteorological variables, including temperature, relative humidity,
and atmospheric pressure. Data from both channels are utilized for the purpose of data
verification. It is notably employed in areas experiencing extensive wildfires [30–32]. Ardon-
Dryer et al. [23] found a good agreement (75% of the comparison had a R2 > 0.8) between
regulatory-grade monitors and low-cost sensors in wildfire areas. To conduct Quality
Control (QC) in our research, we first calculated the differences and relative percentiles
of the raw data, precisely the PA_cf1 measurements, obtained from channels A and B.
Adhering to the QC criteria proposed by the U.S. EPA, only data exhibiting a difference of
5 µg m−3 or less, or a relative percentile of 70% or less, were utilized in our analysis [33].
Consequently, 1.5% of the data were excluded from this study. In studies on wildfire-
affected areas, there have been cases where data removal rates through QC for Channel A
and Channel B of PALCS were 2.6% and 4%, respectively [33,34]. The correlation of PM2.5
between Channels A and B showed a good fit (R2 = 0.99). Additionally, the Root Mean
Square Error (RMSE) showed a 2.8% improvement following QC.

Secondly, an issue was identified with the PALCS’s final data, denoted as PA_atm,
which appeared to overestimate measurements compared to regulatory-grade monitors [35].
The U.S. EPA has proposed Equation (1) to adjust the PA_atm data, leveraging the results
from regulatory-grade monitors and incorporating PM2.5 concentration and relative hu-
midity [33].

PM2.5 = PA_cf1 × 0.524 − 0.0862 × RH + 5.75 (1)

https://www2.purpleair.com/
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where PM2.5 is the corrected PurpleAir sensor mass concentration, PA_cf1 is the raw data
of PM2.5 concentration measured with PALCS, and RH is the relative humidity.

In this research, we also adopted this method, rectifying the excessive measurements
of PALCS (Equation (2))

PM2.5 = 0.762 × PA_atm − 1.704 (2)

Meteorological data (wind speed, wind direction, temperature, relative humidity, visi-
bility) were sourced “from timeanddate website (https://www.timeanddate.com (accessed
on 30 July 2023))”. The mixing height data were determined using the Vmixing program of
the NOAA’s Lagrangian integrated trajectory (Hysplit4 model, https://www.ready.noaa.
gov/HYSPLIT.php (accessed on 30 July 2023)). The data utilized in the Vmixing program
were based on the GDAS1 dataset (https://www.ready.noaa.gov/data/archives/gdas1/
(accessed on 30 July 2023)), which provides reanalysis data at a 1◦ by 1◦ resolution.

2.2. Wildfire Information

Visible Infrared Imaging Radiometer Suite (VIIRS) was developed to enhance the
capabilities of the Advanced Very-High Resolution Radiometer (AVHRR) [36]. Currently,
VIIRS’s active fire detection products are available in both 750 m and 375 m spatial res-
olutions [37]. The 375 m resolution product from VIIRS offers improved sensitivity to
smaller fires and boasts a higher rate of detection [36]. The VIIRS data were down-
loaded from the BDQEUMADAS website, which is operated by the Brazilian National
Institute for Space Research under the Ministry of Science, Technology, and Innovation
(http://terrabrasilis.dgi.inpe.br/queimadas/bdqueimadas (accessed on 30 July 2023)). The
data are based on the 375 m resolution Visible Infrared Imaging Radiometer Suite (VIIRS)
dataset.

2.3. Back-Trajectory Analysis

To investigate the long-range transport of PM2.5, the Hysplit4 model was employed to
conduct a back trajectory analysis of the air inflow at a height of 500 m above the measure-
ment site over 72 h (https://www.ready.noaa.gov/hypub-bin/trajtype.pl?runtype=archive
(accessed on 30 July 2023)).

The meteorological data used for the back trajectory transport were from the GFS
(Global Forecast Model) at a resolution of 0.25◦ by 0.25◦. Additionally, to determine the
long-range wildfire regions contributing to the PM2.5 concentrations in the Porto Velho area,
we applied the potential source contribution function (PSCF) and concentration-weighted
trajectory (CWT) models, leveraging trajectory analysis data. The Openeair package in
the R program was used to analyze PSCF, CWT, and cluster analysis in order to evaluate
long-range emission sources [27].

2.4. PSCF Model

The PSCF model calculates a conditional probability, assessing the chance that a
trajectory moving through a particular geographic grid cell will lead to a concentration
surpassing a defined threshold (in this study, 24 h PM2.5 standard 50 µg m−3) when it
reaches the receptor site (Equation (3)).

PSCFij = mij/nij (3)

where mij denotes the count of trajectory points that traverse the ij grid cell when the
concentration at the site of Porto Velho exceeds a specific criterion, and nij represents the
total number of air masses that enter the ith and jth cells over the study period.

The domain was defined with a latitude range from 26 S to 1 N and a longitude range
from 45 S to 73 S, with a grid size set at 0.5◦ by 0.5◦. While grids with high probability
values (PSCFij) can be identified as emission sources, those with limited trajectories can
exhibit significant uncertainties. To address this limitation, a weighting factor (Wij) can

https://www.timeanddate.com
https://www.ready.noaa.gov/HYSPLIT.php
https://www.ready.noaa.gov/HYSPLIT.php
https://www.ready.noaa.gov/data/archives/gdas1/
http://terrabrasilis.dgi.inpe.br/queimadas/bdqueimadas
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be employed. In this study, the Openair package in R, which we utilized, incorporates a
weighting factor as described in Equation (4) [38]. A weighting factor was applied when the
trajectory points were less than twice this average, as suggested by Zeng and Hopke [39].

Wij =


1.0, nij > 2·nave

0.75, nave < nij ≤ 2·nave

0.5, 0.5·nave < nij ≤ nave

0.15, nij < 0.5·nave

(4)

2.5. CWT Model

The PSCF model determines backward trajectories that display concentrations ex-
ceeding specific thresholds (in this study, the 24 h environmental standard of 50 µg m−3).
However, this approach has an inherent drawback: it might underestimate trajectories
with even greater concentrations, making it challenging to differentiate and assess them
individually. The CWT model combines the back trajectory with the concentration in the
measurement area to express the degree of impact of the back trajectory through each grid
cell on the measurement area as a concentration (Equation (5)) [40]. The weighting factor is
applied identically, as in the case of PSCF.

CWTij =

(
1

∑M
T=1 τijT

)
× ∑M

T=1 CτijT (5)

where CWTij represents the 1 h PM2.5 concentration within grid cell ij at the time the
backward trajectory arrives, C is the concentration observed on arrival of trajectory T, τijT
is the number of trajectory segment endpoints for an individual backward trajectory (T) as
it passes through a 0.5◦ × 0.5◦ grid cell ij, i is the index of the trajectory, and M is the total
number of back trajectories.

3. Results
3.1. Temporal Variation of PM2.5

During the analysis period in Porto Velho, the average PM2.5 concentration was
17.7 ± 24.0 µg m−3, equivalent to Brazil’s annual standard of 17 µg m−3. Wildfires con-
tribute more than 80% of PM2.5 during the dry season in the western Amazon region [41].
During the wildfire season, July through October, the average concentration was 34.2 µg m−3,
seven times higher than the average for the wet season (December–May), with more than
25% of high concentrations above 100 µg m−3 occurring in August when the average
concentration was 54.5 µg m−3 (Figure 1).

In the Amazon basin, including Porto Velho, observational studies on PM2.5 are scarce,
with the majority of the research being dated (Table 1). The most commonly employed
method is filter-based, and for low-cost sensors (LCS), a laser light source is utilized to
measure PM2.5. In Mauna, located in the Amazonas state, and in Porto Velho of the
Rondônia state, samples were collected using filters over durations of two to five days. In
Iranduba, also in the Amazonas state, sampling on the filters lasted for 10 h. Conversely,
in the Rio Blanco area of the Acre state, real-time measurements were conducted utilizing
low-cost sensors with a laser light source, and the analyzed data were based on daily
averages. However, these studies yielded low-resolution data, presenting challenges in
accurately capturing daily variations in ambient conditions.
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Figure 1. Box plot of the monthly concentration of PM2.5 from April 2020 to October 2022 in Porto
Velho. The horizontal line in a box is the mean value. The lower and upper whiskers represent 10%
and 90%, respectively.

Table 1. Comparison of PM2.5 average concentrations with those of previous studies in the Amazon
rainforest, Brazil.

Location
(State) Year PM2.5 (µg m−3) Reference

Manaus
(Amazonas) 2008–2012

2.4
(January–June 1.3,

July–December 3.4)
Artaxo et al. [42]

Porto Velho
(Rondonia) 2009–2012

21.6
(January–June 10.2,

July–December 33.0)
Artaxo et al. [42]

Iranduba
(Amazonas) 2016

March–April 4.7
August–September

6.7
Fernandes et al. [43]

Rio Blanco
(Acre state) 2018–2019 10.1 Coker et al. [31]

Porto Velho
(Rondonia) 2020–2022

17.7
(January–June 6.2

July–December 24.6)
This study

In the state of Amazonas, both the Iranduba and Mauna regions maintained notably
clean air quality in terms of PM2.5 concentrations. Emissions in the Iranduba area originated
from fugitive dust, open burning, and vehicles, while the Mauna region was influenced by
long-range pollutants from forest fires. In Porto Velho, the average PM2.5 concentration
measured from 2008 to 2012 was 28.6% higher than in this study due to a drought in 2010
that increased wildfires.

In the region of Porto Velho, diurnal variations of PM2.5 exhibited distinct charac-
teristics between the rainy (December–May) season and periods of wildfire (Figure 2).
During the rainy season, the peak concentration occurred at 20:00 Local Time (LT), while
the minimum concentration was observed at 6:00 LT. In contrast, during wildfire periods,
concentrations were generally lower during the day, but from dawn until 7:00 LT, the PM2.5
concentration surged to its daily maximum. The diurnal variation of PM2.5 during wildfire
periods correlated with the diurnal attributes of wind speed and mixing height. As the
wind speed increased and the mixing height rose during the day, PM2.5 concentrations
decreased due to enhanced dispersion and dilution. However, starting from 18:00 LT, when
the mixing height reduced and the wind speed weakened, there was a rising trend in PM2.5
concentrations. By 20:00 LT, with the mixing height dropping to 70 m, PM2.5 concentrations
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intensified, continuing this upward trend until 7:00 LT the next morning. This can be
attributed to the weaker horizontal dispersion and the challenges in dilution at night when
the mixing height is exceptionally low, especially during wildfires. When high concentra-
tions of PM2.5 are introduced indoors during the nighttime, the duration of their presence
indoors increases, leading to elevated levels of PM2.5 concentration within the indoor
environment [43]. During the day, if smoke plumes from wildfires enter the atmosphere
and stagnate by evening, the resulting decrease in mixing height and concentration can
adversely impact the air quality in Porto Velho. The average PM2.5 concentrations during
the rainy season and wildfire periods were 4.8 ± 5.8 and 34.2 ± 30.1 µg m−3, respectively.
This underscores the fact that although rising mixing heights can lead to decreased PM2.5
concentrations, increased wildfires can boost both the peak and minimum concentrations in
the diurnal pattern. In August, the average wind speed reduced by 67% compared to that
in the rainy season, while the maximum and minimum wind speeds decreased by 63% and
48.5%, respectively. This reduction in wind speed, leading to minimal horizontal dispersion,
contributed to the elevated PM2.5 concentrations. Additionally, the relative humidity in
Porto Velho was, on average, 27.2% lower at 16:00 LT during wildfire periods compared to
during the rainy season, providing more favorable conditions for wildfire occurrences.
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Figure 2. Diurnal variation of PM2.5, wind speed, mixing height, and relative humidity at Porto Velho.

3.2. PM2.5 Concentrations Based on Wildfire Occurrence and Wind Conditions

Figure 3a shows the average annual number of wildfires within 30 km of the study
area and the number of wildfires during the fire season from July to October. From 2012 to
2022, there was an average of 1121 wildfires per year, and trends in wildfire occurrence were
not statistically significant (Theil-Sen, p > 0.05). Most wildfires occurred during the July to
October fire season, accounting for 92.9% of annual wildfires. In particular, an average of
15.7 wildfires per day occurred in August, when 42% of the annual wildfires occurred.
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Figure 3. Wildfires near the station and in the Amazon rainforest. (a) Wildfires within 30 km of
the station (2012 to 2022). (b–d) Wildfires occurred in August within 30 km of stations (2020–2022).
(e–g) August wildfires in Brazil, Bolivia, and Paraguay (2020–2022). The yellow diamonds indicate
the PM2.5 measurement locations.

Figure 3b shows the wildfires that occurred within 30 km of the measurement site dur-
ing the analysis period in August when PM2.5 concentrations were the highest. Figure 3c
shows the wildfires that occurred during the analysis period in August in Brazil. During
a wildfire season, plumes from wildfires in upwind areas can also contribute to PM2.5
enhancement and those near the measurement site [44]. Higher mixing heights can in-
crease the vertical rise of wildfire plumes, which can increase PM2.5 concentrations in the
atmosphere in the downwind region [45].

Wildfires that frequently occur within a 30 km radius of the measurement station
can impact the PM2.5 concentration levels at the station, contingent on the wind direction
and speed. During the period of wildfire occurrences, the wind direction in the Porto
Velho region was most frequently northerly and southerly, accounting for 28.4% and
16.4% of the time, respectively (Figure 4). In westerly, southwesterly, and northwesterly
winds, light winds of 0–2 ms−1 occurred at an average rate of 95.5%, while relatively
strong winds exceeding 4 ms−1 were infrequent, averaging just 0.2%. In contrast, easterly,
southeasterly, and northeasterly winds had a comparatively higher percentage of winds
exceeding 4 ms−1, averaging 9.2%, while light winds made up an average of 67.4%.
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Northerly and southerly winds predominantly had light winds of 0–2 ms−1, occurring
77.5% and 78.7% of the time, respectively, with relatively strong winds of 4 m/s or more
occurring 2.5% and 6.1% of the time.
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Figure 4. Wind rose during the wildfire period in Porto Velho.

As for the PM2.5 concentration according to wind direction, westerly, northwest-
erly, northerly, and southwesterly winds exhibited concentrations of 36.8 ± 30.2 µg m−3,
35.6 ± 25.2 µg m−3, 32.8 ± 27.8 µg m−3, and 32.7 ± 28.3 µg m−3, respectively. Conversely,
the concentrations of PM2.5 in southeasterly, southerly, easterly, and northeasterly winds
were distributed at 26.4 ± 25.6 µg m−3, 27.5 ± 26.1 µg m−3, 27.5 ± 25.3 µg m−3, and
30.1 ± 25.2 µg m−3, respectively.

3.3. SDG Indicator 11.6.2 and Air Quality Index (AQI)

Good air quality is vital for the sustainable well-being of citizens. The Sustainable
Development Goal (SDG) Indicator 11.6.2 quantifies the “annual mean levels of fine partic-
ulate matter (e.g., PM2.5) in cities (population-weighted)”. In Brazil, the annual standard
for PM2.5 is set at 17 µg m−3. For 2021, the Porto Velho region recorded an annual average
PM2.5 concentration of 16.9 ± 25.3 µg m−3, meeting the annual environmental standard.
Nevertheless, this value is three times higher than the World Health Organization (WHO)’s
annual guideline of 5 µg m−3.

During the rainy season, the PM2.5 concentration fully met Brazil’s standard and
achieved 96.7% of the WHO’s standard (24 h environmental standard at 15 µg m−3).
However, during the wildfire season, these concentrations met 78.3% of Brazil’s standard
and only 23% of the WHO’s standard. Specifically, in August, the concentrations complied
with 48.9% of Brazil’s standard and a mere 8.7% of the WHO’s criteria.

The Brazilian government has established a five-tier air quality index to help citizens
understand and respond to health risks associated with air quality conditions. The AQI
for PM2.5 consistently indicated a “Good” index during the rainy season. During the
wildfire period, there was a 21.2% occurrence above the “Bad” index, and this proportion
increased to 51.1% in August (Table 2). When the AQI deteriorated from a “Good” index
to a “Hazardous” index, the wind speed decreased by 0.4 ms−1 and 0.3 ms−1 during
the wildfire period and in August, respectively. The average wind speed of 0.7 ms−1 in
August corresponds to the daytime (from 12:00 to 18:00 LT) average seen in Figure 2b, while
0.4 ms−1 is on par with the average wind speed at night (from 17:00 to 06:00), illustrating
the difference in wind speeds between daytime and nighttime. The lower average wind
speeds in wildfire period and August when the AQI index is categorized as “Very Bad”
and “Hazardous” suggest a low mixing height and stagnant air conditions, predominantly
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during nighttime. Visibility, which provides a direct visual indication of air quality status
for citizens, deteriorated by 77.1% during the wildfire period and by 75% in August.

Table 2. Wildfire frequency, visibility, and wind speed characteristics by AQI, Brazil.

AQI
Range of PM2.5
Concentration

(24 h Average, µg m−3)

July–October August

Frequency
(%)

Visibility
(km)

Wind Speed
(ms−1)

Frequency
(%)

Visibility
(km)

Wind Speed
(ms−1)

Good 0–25 49.7 22.7 1.5 16.3 22.6 0.7
Moderate >25–50 29.1 21.1 1.5 32.6 20.3 0.6

Bad >50–75 13.3 14.2 1.4 31.5 12.8 0.5
Very Bad >75–125 7.0 8.9 1.1 17.4 8.8 0.5

Hazardous >125 0.9 5.2 1.1 2.2 5.6 0.4

3.4. Estimation of PM2.5 Sources
3.4.1. Conditional Probability Function (CPF) and Polar Annulus

CPF analysis serves as a valuable method for assessing the sources of specific PM2.5
concentrations, taking into account wind speed and direction. The AQI uses a 24 h average,
which exhibited a maximum wind speed difference of 0.4 m/s during wildfire periods.
However, CPF analysis employs hourly data, thus revealing a significant fluctuation in wind
speeds, ranging from a minimum of 0.1 ms−1 to a maximum of 13 ms−1 (Figure 5). When
the hourly PM2.5 concentration was measured at 14 µg m−3 or lower, the predominant
winds were either southeasterly, ranging from 8 to 14 ms−1, or easterly winds of 4 ms−1

or higher (Figure 5a). For PM2.5 concentrations between 15 and 25 µg m−3, northwesterly
winds exceeding 4 ms−1 were the main contributing factor (Figure 5b).
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At moderate air quality levels, where PM2.5 concentrations were between 25 and
50 µg m−3, weaker winds of 2 ms−1 or less were influential (Figure 5c). However, at
poor air quality levels with PM2.5 concentrations ranging from 50 to 75 µg m−3, strong
northeasterly winds between 12 and 14 ms−1 were prevalent (Figure 5d). Moreover, in
instances where PM2.5 concentrations exceeded 75 µg m−3 (Figure 5e), the distribution
occurred under conditions of low wind speed and stagnant air.

The CPF analysis demonstrated that the distribution of PM2.5 concentrations varies
based on the characteristics of wind direction and speed. The polar annulus approach is
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used to analyze how PM2.5 concentrations change over time based on the wind direction
(Figure 6). In the Porto Velho region, higher concentrations of PM2.5 were observed from
nighttime to morning in the northerly wind sector and from dawn to daytime over an
extended period in the westerly wind sector (Figure 6a). In the easterly wind, high concen-
trations of PM2.5 were distributed from late dawn to morning. In the Porto Velho region,
daytime PM2.5 concentrations are comparatively lower, largely driven by the strong easterly
wind influx. Conversely, the elevated PM2.5 concentrations observed in the westerly wind
patterns can be attributed to the prevailing weaker wind velocities (Figure 6b). Visibility is
a good indicator of air quality, including pollutants such as PM2.5 [46]. In this region, the
visibility was excellent when the southeasterly wind system, which has high wind speed
and low PM2.5 concentration, was introduced (Figure 6c). Furthermore, atmospheric pres-
sure was observed to be relatively higher in the southerly wind and lower with northerly
and westerly winds (Figure 6d). Such observations imply that wildfires may occur more
frequently in the north and west than in the southern regions.
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3.4.2. Back Trajectory Analysis

In the Amazon rainforest, PM2.5 from forest fires can affect hundreds of kilometers
of horizontal distances [11]. Moreover, plumes of wildfire smoke can rise as high as
2500 m and, depending on weather conditions, influence PM2.5 enhancement in downwind
areas [47]. Back trajectory analysis can assess the contribution of PM2.5 from wildfires to
the target area through horizontal and vertical transport [44,48].

Figure 7a displays the probability of trajectories with PM2.5 concentrations exceed-
ing 50 µg m−3 crossing each grid. This suggests pollution sources in the North Region
(comprising the states of Amazonas and Pará). The CWT analysis further indicated that
areas contributing to the PM2.5 in Porto Velho include parts of the North and Central-West
regions (the states of Mato Grosso, Figure 7b). From 2020 to 2022, in Mato Grosso, Para,
and Amazonas, the areas damaged by wildfires constituted 42.9% (471,721 ha), 0.7%, and
0.09%, respectively, of the total wildfire-affected areas in Brazil [49].
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Figure 7c shows the five clusters of winds entering the station, with the influence
of northeasterly winds (Clusters 1 and 2), southeasterly winds (Clusters 3 and 4), and
southerly winds (Cluster 5). PM2.5 concentrations from Clusters 2, 3, and 4 were 38.6, 34.6,
and 37.6 µg m−3. Cluster 1 was 28.4 µg m−3, and Cluster 5 was 24.3 µg m−3. Cluster 5
reflected the longest pathway from Paraguay and Bolivia. Clusters 2 and 4 had relatively
fast inflows from Para and Mato Gosso. Clusters 1 and 3 had shorter travel paths, reflecting
the impact of wildfires in areas close to Porto Velho. Deforestation is a major cause of
wildfires in the Brazilian Amazon region, and deforestation occurs along roads. Cluster 1
and Cluster 2 were found to be affected by wildfires occurring in the area around highways
319 and 230 [50–52]; therefore, policies to reduce wildfires are needed to reduce exposure
to high concentrations of PM2.5 for citizens along roads and in downwind areas [48,53].
Cluster 2, Cluster 4, and Cluster 5 traveled relatively long distances through wildfire areas,
contributing to the deterioration of air quality in the region. This is because the more
wildfires that occur, the more likely air traveling through the wildfire zone will contain
high concentrations of PM2.5 [54].

4. Discussion

The Porto Velho region is known for its recurrent forest fires due to deforestation.
Nevertheless, with a population of approximately 500,000, research on their PM2.5 exposure
has been notably limited. In particular, there has been no detailed study on the hourly
distribution of PM2.5 and the areas most affected by forest fires regarding air quality.

The PM2.5 concentration in the Porto Velho region was consistent with Brazil’s annual
environmental standards. However, from July to October, the period recognized as the
wildfire period, there was a notable increase in PM2.5 concentrations attributed to the rise
in wildfires, wind velocities, and mixing height.

During wildfire periods, PM2.5 concentrations increased from 20:00 to 07:00 LT, cor-
responding to mixing height and wind speed changes. While decreased mixing height
intensified PM2.5 concentrations, the continued rise until 07:00 LT indicates wildfires as a
significant PM2.5 source during the night and early morning. Wildfires during these hours
further enhance PM2.5 concentrations due to limited vertical dispersion [55,56].

During the day, increased wildfire activity can elevate PM2.5 concentrations [57,58].
This can intensify PM2.5 concentrations in downwind areas, especially in the afternoon
when wind speed drops and mixing height decreases [58,59]. These patterns are pro-
nounced in diurnal variations, particularly during wildfire seasons and in August. Despite
the increased mixing height in August, the PM2.5 concentrations peaked due to frequent
wildfires and a 67% decrease in wind speed compared to those of the rainy season, hinder-
ing PM2.5 dispersion.
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In Porto Velho, PM2.5 concentrations during wildfire seasons need reduction to meet
SDG Indicator 11.6.2. The air quality index indicated “Bad” or worse levels in 21.2% of the
period, with August reaching a concerning 51.1%. This poses significant health risks to
its inhabitants.

In the Porto Velho region, northerly and westerly winds correlated with increased
PM2.5 concentrations due to frequent wildfires. In contrast, stronger southerly or easterly
winds led to decreased PM2.5 concentrations and clearer visibility, with the highest levels
observed in the early to mid-morning. The main long-distance pollution contributors were
wildfires from Amazonas, Para, and Mato Grosso. Cluster analysis also highlighted air
influx from northeastern highways, central areas, and regions in Paraguay and Bolivia.

In the Amazon rainforest region, including the Porto Velho area, the absence of
regulatory-grade monitoring stations precludes direct comparison with PurpleAir’s mea-
surement data. However, the PM2.5 emitted from the wildfires in the Amazon can settle
in areas where residents of downwind regions live [47]. Low-cost sensors allow for real-
time data collection from multiple monitoring points, enabling the construction of diverse
datasets. Through this, the accuracy of the analysis can be enhanced [33]. Consequently,
evaluating emission source characteristics through even low-cost sensors is an essential
preliminary study to formulate policies to reduce PM2.5.

Local wildfires from the north and west, along with long-range transport from wild-
fires from Mato Grosso, Amazonas, and Para, impact PM2.5 concentrations in the region.
To achieve clean air goals (SDG Indicator 11.6.2), mitigating these wildfires and reducing
deforestation in Brazil’s northern and central areas is crucial. Given the immediate and
long-term impacts of elevated PM2.5 levels, the results of this study underscore the urgent
need for comprehensive policies aimed at improving air quality.
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