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Abstract: The existing flood stochastic simulation methods are mostly applied to the stochastic
simulation of flood intensity characteristics, with less consideration for the randomness of the flood
hydrograph shape and its correlation with intensity characteristics. In view of this, this paper
proposes a flood stochastic simulation method that combines intensity and morphological indicators.
Using the Foziling and Xianghongdian reservoirs in the Pi River basin in China as examples, this
method utilizes a three-dimensional asymmetric Archimedean M6 Copula to construct stochastic
simulation models for peak flow, flood volume, and flood duration. Based on K-means clustering, a
multivariate Gaussian Copula is employed to construct a dimensionless flood hydrograph stochastic
simulation model. Furthermore, separate two-dimensional symmetric Copula stochastic simulation
models are established to capture the correlations between flood intensity characteristics and shape
variables such as peak shape coefficient, peak occurrence time, rising inflection point angle, and
coefficient of variation. By evaluating the fit between the simulated flood characteristics and the
dimensionless flood hydrograph, a complete flood hydrograph is synthesized, which can be applied
in flood control dispatch simulations and other related fields. The feasibility and practicality of
the proposed model are analyzed and demonstrated. The results indicate that the simulated floods
closely resemble natural floods, making the simulation outcomes crucial for reservoir scheduling,
risk assessment, and decision-making processes.

Keywords: flood stochastic simulation; three-dimensional copula function; flood morphological
characteristics; dimensionless flood hydrograph

1. Introduction

The variation of flood processes is influenced by numerous factors, making it extremely
complex and characterized by evident randomness [1]. Stochastic flood simulation involves
generating a large number of flood hydrographs based on the statistical characteristics and
stochastic patterns derived from historical flood observations. This method can not only
be used to forecast future hydrological conditions, but also to provide fundamental data
for flood control scheduling simulation calculations and the development of scheduling
strategies. Therefore, stochastic flood simulation holds significant importance for formulat-
ing reservoir scheduling plans and making decisions related to risk assessment in flood
control [2].

Flood events are hydrological stochastic events involving multiple variables and types.
They include intensity characteristics such as flood peak, flood volume, and flood dura-
tion, as well as shape characteristics that represent flood hydrographs. Additionally, there
are certain correlations among these characteristics [3]. Currently, the most widely used
flood stochastic simulation models include regression-based models, set-based models,
non-parametric methods, nonlinear methods, and wavelet analysis theory. However, these
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models treat the flood process as a whole hydrological sequence and neglect the crucial role
of flood characteristics. As a result, the accuracy of simulating flood characteristics is not
high, and they are constrained by the type of marginal distributions, making it difficult to
address complex multivariate joint simulation problems. Copula functions have also found
extensive application in the field of hydrological stochastic simulations [4–9]. The Copula
function can simulate flood characteristics, with a focus on considering the interdepen-
dencies among these characteristics. Furthermore, it offers diverse and flexible marginal
distributions, significantly enhancing the accuracy and adaptability of flood stochastic
simulations and finding numerous applications in practical production. For instance, Xiao
and Guo [10] utilized the Gumbel Copula function to establish a two-dimensional stochastic
simulation model for flood peak and flood volume, with better simulation results than tra-
ditional models. Three-dimensional flood characteristics can more effectively assess flood
attributes. Gao [11] constructed a three-dimensional joint distribution model for flood peak,
flood volume, and flood duration, carrying out a three-dimensional stochastic simulation
for flood characteristics. Currently, most three-dimensional Copula functions employed
are single-parameter functions [12]. However, for high-dimensional stochastic variables
with different correlations, single-parameter Copula functions cannot accurately reflect
complex asymmetric correlation structures. Asymmetric Copula functions possess more
flexible parameters and forms, making them more suitable for fitting high-dimensional
stochastic variables [13,14]. Ref. [15] created a three-variable asymmetric Archimedean
Copula joint distribution model between flood peak and flood volume during specific time
intervals, verifying the feasibility and practicality of asymmetric Copula simulation for
high-dimensional stochastic variables.

Flood hydrographs possess both stochastic and correlated attributes, with their shapes
varying significantly [16]. They represent a random process, and at the same time, there
is a certain correlation between the flood process hydrograph and intensity features such
as flood peak and flood volume. Traditional methods for simulating flood hydrographs
involve using fixed single or a few typical flood hydrographs, and then simulating the flood
process through equal-frequency or scaling calculations. However, these methods have
significant limitations in practical application, as they fail to fully capture the stochastic of
flood hydrographs and their correlations with flood intensity characteristics. Consequently,
simulated flood hydrographs tend to exhibit overly uniform shapes, and may lead to
unrealistic scenarios for certain combinations of peak and volume. To address these issues,
Gao and Yan [17] incorporated the stochastic simulation of flood hydrograph shapes into
the three-dimensional joint distribution model of flood characteristics. They employed the
Monte Carlo method, combined with logarithmic, normal, and orthogonal transformations,
for simulating dimensionless flood hydrographs.

Considering this, this article proposes a flood stochastic simulation method that
takes into account the stochastic of flood hydrographs and the correlation between the
hydrograph shape and flood intensity features. This approach builds upon the stochastic
simulation model of flood characteristics, and further investigates the stochastic nature of
flood hydrographs, analyzing the correlation between flood characteristics and hydrograph
shapes, thereby achieving an organic integration of flood intensity characteristics with
potential flood hydrographs. Firstly, a three-dimensional joint distribution function is
built for flood peak, flood volume, and flood duration, and several sets of flood intensity
characteristics are randomly simulated. Secondly, representative flood hydrographs are
determined through cluster analysis using measured flood data. Considering the depen-
dency between flood volumes at different time intervals, a Copula function is utilized
to establish a multivariate joint distribution function for flood volumes at various time
intervals. Several sets of flood volumes are then randomly simulated, based on the joint
distribution function, and compared with the Monte Carlo method [18], for a dimensionless
flood process hydrograph simulation. Furthermore, various characteristic parameters
related to flood hydrograph shapes, such as the peak coefficient, peak timing, angle of flood
rising point, and coefficient of variation, are calculated and analyzed for their correlation
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with flood intensity characteristics, including flood peak, flood volume, and flood dura-
tion. The goodness of fit between each set of simulated flood intensity characteristics and
dimensionless flood hydrographs is determined to identify representative flood processes.
Finally, the representative dimensionless flood hydrographs are amplified according to
the corresponding flood peak, flood volume, and flood duration, to obtain complete flood
processes. The specific technical approach is shown in Figure 1. Considering the frequent
occurrence of floods and the high flood control pressure in the Pihe River Basin, especially
in the Fuziling and Xianghongdian reservoirs, the proposed method is applied to a flood
stochastic simulation and simulation dispatching calculations during flood seasons. A
comparison is made with observed floods to verify the applicability and superiority of
this approach. This study aims to lay the foundation for the formulation of flood control
scheduling schemes during the flood season for reservoir operations.
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2. Materials and Methods
2.1. Three-Dimensional Copula Stochastic Simulation of Flood Characteristics
2.1.1. Flood Characteristic Variables

Based on the basic characteristics of runoff conditions and hydrological information
forecasting standards [19,20], flood process variations are generally described using two
indicators: intensity and shape. The intensity indicators involved in this article mainly
include flood peak, flood volume, and flood duration, while the shape indicators primarily
consist of peak shape coefficient, peak timing, angle of flood rising point, and coefficient of
variation. This section mainly introduces the flood shape indicators, as shown in Figure 2.
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The peak timing [21] Tm refers to the time when the flood peak appears, and it is
generally taken as the initial moment when calculating the peak occurrence, starting from
the moment the flood begins to rise.

Tm = T(Qtm) (1)

The peak shape coefficient c refers to the ratio of the average flow before the peak to
the peak flow during the flood.

c =
Qtm

Qtm

(2)

The angle of the flood rising point [22] α is represented using the tangent value of the
elevation angle, tanα. It is the ratio of the normalized peak flow to the pre-peak time.

tanα =
Qtm

′

Tm
′ (3)

The coefficient of variation (CV) is the ratio of the standard deviation of the sub-flood
process to the mean flow.

CV =
σ[Q(t)]

Qav
(4)

where tm represents the time corresponding to the flood peak; Qtm denotes the flood peak.
Qtm stands for the average flow before the peak. Qtm

′ represents the normalized flow
value. Tm

′ represents the normalized pre-peak time. Q(t) refers to the sub-flood process.
σ[Q(t)] is the standard deviation of the sub-flood process. Qav is the average flow of the
sub-flood process.
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For a flood event, the operators generally pay more attention to the rising stage, rather
than the recession stage. The peak timing, peak shape coefficient, angle of flood rising point,
and coefficient of variation are all important morphological indicators that characterize
the rising characteristics. The peak timing reflects the time when the flood peak appears;
the peak shape coefficient reflects the shape before the flood peak; the angle of flood rising
point is a physical description of the flood hydrograph, indicating the overall shape of
the flood as sharp and narrow or short and wide. The coefficient of variation reflects the
intensity of changes in the flood fluctuation process. A larger value indicates a faster rise
and fall of the flood and a more clustered process variation, making it prone to disasters in
a short period.

2.1.2. Joint Distribution of Characteristics

Traditional joint distributions, such as multivariate normal, multivariate log-normal,
etc., have certain limitations, as their marginal distributions must be the same. Copula is a
multidimensional joint distribution function with a domain in [0, 1], representing a uniform
distribution [23]. It can connect the marginal distributions of multiple random variables to
obtain their joint distribution. Let X1, X2, . . . . . . Xn be n continuous random variables with
marginal distribution functions F1, F2, . . . . . . Fn. According to Sklar’s theorem, there exists
an n-dimensional Copula function C that satisfies the following for any x ∈ Rn:

H(x1, x2, . . . xn) = C(F1(x1), F2(x2), . . . . . . Fn(xn)) (5)

According to different construction methods, Copula functions can generally be di-
vided into three types: elliptical (multivariate Gaussian, multivariate Student t), quadratic,
and Archimedean types (symmetric and asymmetric).

(1) Elliptical Copula is based on the elliptical distribution. The most commonly used
elliptical Copula functions include Gaussian Copula [24] and Student t Copula [25].

1© Gaussian Copula

C(u1, u2, u3; Σ) =
∫ Φ−1(u1)

−∞

∫ Φ−1(u2)

−∞

∫ Φ−1(u3)

−∞

1

(2π)3/2|Σ|1/2 exp
(
−1

2
ωTΣ−1ω

)
dω (6)

where Σ =

 1 ρ12 ρ13
ρ12 1 ρ23
ρ13 ρ23 1

 is a symmetric and positive definite correlation matrix, with

−1 ≤ ρij ≤ 1 (i, j = 1, 2, 3). Φ−1 represents the inverse of the univariate standard normal
distribution function, and its bivariate margins are also characterized by the Gaussian
Copula.

2© Student t Copula

C(u1, u2, u3; Σ,υv) = TΣ,υ
(
T−1
υ (u1), T−1

υ (u2), T−1
υ (u3)

)
=
∫ T−1

υ (u1)
−∞

∫ T−1
υ (u2)
−∞

∫ T−1
υ (u3)
−∞

Γ( υ+3
2 )

Γ( υ
2 )

* 1

(πυ)
3
2 |Σ|

1
2

(
1 + wTΣ−1w

υ

) υ+3
2 dω

(7)

where T−1
υ (.) represents the inverse function of the univariate Student t distribution.

TΣ,υ
(
T−1
υ (u1), T−1

υ (u2), T−1
υ (u3)

)
denotes the multivariate Student t distribution function.

Σ =

 1 ρ12 ρ13
ρ12 1 ρ23
ρ13 ρ23 1

 is a correlation matrix, ρij =

{
1; i = j

ρji; i 6= j − 1 ≤ ρij ≤ 1(i, j = 1, 2, 3).

(2) Archimedean Copula [26] functions are currently widely used Copula functions,
known for their simplicity and ability to construct various forms of multivariate joint
distribution functions with strong adaptability. They have extensive practical applications
and are also the most commonly used functions in the field of hydrology. Archimedean
Copula functions can be classified into symmetric and asymmetric types.
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Taking the three-dimensional case as an example, the commonly used Copula func-
tions [27] in symmetric Archimedean Copulas are shown in Table 1.

Table 1. Formula and parameter range of three-dimensional symmetric Archimedean Copula functions.

Copula Function Expressions Parameter Ranges

Gumbel C(u1, u2, u3; θ) = exp
{
−
[
(− lnu1)

θ + (− lnu2)
θ + (− lnu3)

θ
]1/θ

}
θ ∈ [1, ∞)

Frank C(u1, u2, u3; θ) = − 1
θ ln
{

1 + [exp(−θu1)−1][exp(−θu2)−1][exp(−θu3)−1]
[exp(−θ)−1]2

}
θ ∈ R, θ 6= 0

Clayton C(u1, u2, u3; θ) =
[
u−θ

1 + u−θ
2 + u−θ

3 − 2
]−1/θ

θ ∈ (0, ∞)

Ali-Mikhail-Haq C(u1, u2, u3; θ) = u1u2u3

[1−θ(1−u1)(1−u2)(1−u3))]
−1/θ θ ∈ [−1, 1)

In the equation, u1, u2, u3 represent the marginal distribution functions, where u1 = F1(x),
u2 = F2(x), u3 = F3(x); θ is the parameter of the Copula function.

Asymmetric Archimedean Copula is a “fully nested” Copula proposed by Joe H, Nelsen
RB, Embrechts P, Lingdskog F [28], and others, based on the study of two-dimensional
Archimedean Copulas. Taking the three-dimensional case as an example, the expressions
for five common asymmetric Archimedean Copulas are shown in Table 2 [29]:

Table 2. Formula of three-dimensional asymmetric Archimedean Copula function.

Copula Function Expressions Parameter Ranges

M3

C(u1, u2, u3; θ1, θ2) =

− 1
θ1

log

1−
(

1− e−θ1

)−1(
1− e−θ1u3

)1−
[

1−
(

1− e−θ2

)−1(
1− e−θ2u1

)(
1− e−θ2u2

)] θ1
θ2

 θ2 ≥ θ1 ∈ [0, ∞]

M4 C(u1, u2, u3; θ1, θ2) =

[
u−θ1

3 +
(

u−θ2
1 + u−θ2

2 − 1
) θ1

θ2 − 1

]− 1
θ1

θ2 ≥ θ1 ∈ [0, ∞]

M5

C(u1, u2, u3; θ1, θ2) =

1−
{[

(1− u1)
θ2
(

1− (1− u2)
θ2
)
+ (1− u2)

θ2
] θ1

θ2
(

1− (1− u3)
θ1
)
+ (1− u3)

θ1

} 1
θ1

θ2 ≥ θ1 ∈ [1, ∞]

M6 C(u1, u2, u3; θ1, θ2) = exp

{
−
[(

(−lnu1)
θ2 + (−lnu3)

θ2
)θ1/θ2

+ (−lnu3)
θ1

]1/θ1
}

θ2 ≥ θ1 ∈ [1, ∞)

M12 C(u1, u2, u3; θ1, θ2) =

1 +

( 1
u3
− 1
)θ1

+

((
1
u1
− 1
)θ2

+
(

1
u2
− 1
)θ2
) θ1

θ2

 1
θ1


−1

θ2 ≥ θ1 ∈ [1, ∞)

2.1.3. Construction of Copula Joint Distribution Models

The construction of the Copula joint distribution model mainly involves several steps,
including the selection of flood characteristic indicators, determination of marginal distribu-
tion functions, correlation measurement, parameter estimation, testing, and goodness-of-fit
evaluation.

After selecting the flood characteristics and individual marginal distributions, we focus
on measuring the correlation between the characteristics. The pairwise correlation between
characteristics determines the choice of joint distribution type, typically computed using
Kendall and Spearman rank correlation coefficients. In commonly used Copula functions,
parameter estimation methods include maximum likelihood, correlation-based indicators,
and the method of moments. For two-dimensional functions, the correlation-based indicator
method is often employed for indirect estimation, while, for high-dimensional functions,
the maximum likelihood method is generally used to estimate parameters.

Finally, the Copula joint distribution function is tested and optimized. The Kolmogorov–
Smirnov non-parametric test is used to verify whether the joint distribution of characteris-
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tics represents the overall distribution type. For the various alternative Copula functions
obtained through hypothesis testing, the Genest–Rivest plot [30] is used to visually compare
the fit between empirical joint distribution function values and theoretical joint distribution
function values. When the simulation results are similar, the Ordinary Least Squares (OLS)
and Akaike Information Criterion (AIC) [31] are used to evaluate the fit discrepancies and
select the optimal joint distribution model.

2.1.4. Stochastic Simulation of Flood Characteristic Variables

After obtaining the n-dimensional joint distribution of flood characteristic variables
X1, X2, . . . , Xn (where the joint distributions of dimensions 1, 2, . . . , n − 1 are also known),
the steps for the stochastic simulation of each characteristic variable are as follows:

(1) Generate n independent random numbers k1, k2, ki, . . . , kn, (1 ≤ i ≤ n), following the
uniform distribution on the interval [0, 1].

(2) Set k1 to be the probability of X1 not exceeding F(x1), i.e., F(x1) = k1. Calculate x1

using x1 = F−1(k1).
(3) Set k2 to be the conditional probability distribution value of X2 given X1 = x1, i.e.,

F(x2|x1) = k2. Then compute x2 using x2 = F−1(k2|X1 = x1).
(4) For ki, where i > 2, set it as the conditional probability distribution value of xi given

X1 = x1, X2 = x2, . . . , Xi−1 = xi−1, i.e., F(xi|xi−1, . . . , x2x1) = ki. Calculate xi using
xi = F−1(ki|X1 = x1, X2 = x2, . . . , Xi−1 = xi−1).

(5) Repeat steps (2) to (4) until i = n, completing one random simulation.
(6) Repeat steps (1) to (5) a total of H times to obtain H sets of correlated flood character-

istic variables.

2.2. Classification and Stochastic Simulation of Flood Hydrographs
2.2.1. Classification of Flood Hydrographs

During a flood event, the flow continuously changes over time, resulting in the ran-
domness and diversity of flood hydrograph shapes. Additionally, the shapes of different
flood hydrographs are influenced by peak, volume, and duration of the flood. Correspond-
ing changes in reservoir operation and water resources management measures are made,
based on different types of flood hydrographs, such as those with early, mid, or late peaks.
Therefore, in-depth research on flood hydrograph types requires classifying the shapes of
flood hydrographs and removing the influence of flood characteristic variables. This allows
the flood intensity to be the sole factor affecting different flood types over time, achieved
through nondimensionalization of flood hydrographs as shown in Equations (9) and (10).

In this study, the K-means clustering algorithm [32] is used to cluster the observed
flood data, obtaining several representative flood hydrographs.

Given a sample set D = {x1, x2, . . . , xm}, the K-means algorithm aims to minimize the
squared error for the cluster partition C = {C1, C2, . . . , Ck}.

E =
k

∑
i=1

∑
x∈Ci

‖x− µi‖2
2 (8)

where µi =
1
|Ci |∑x∈Ci

x represents the mean vector of cluster Ci. This expression partially
characterizes the compactness of the samples around the cluster mean vector. A smaller
value of E indicates a higher similarity among the samples within the cluster.

Using the K-means algorithm for flood hydrograph clustering, to remove the influence
of flood characteristic variables, and ensure that the variation of flood intensity over time
is the sole factor affecting different flood types, it is necessary to first normalize the flood
hydrographs.

τ =
t
T

(9)
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Fτ =
Vt

V
(10)

where T represents the flood duration; τ denotes the non-dimensional time at time t, with
τ ∈ (0, 1]; Vt is the accumulated flood volume at time t; V is the total flood volume of a
flood event; Fτ represents the non-dimensional cumulative flood volume, which represents
the accumulated percentage of flood volume over time, with Fτ ∈ (0, 1].

Furthermore, the non-dimensionalized cumulative flood volume curve for each flood
event is partitioned into M equal time intervals, with non-dimensional time (τ) as follows:

τi =
i

M
, i = 1, 2, . . . , M (11)

Afterward, non-dimensional time τi is used to interpolate the cumulative flood volume
curve, resulting in the corresponding non-dimensional cumulative flood volume Fτ . The
detailed process is illustrated in Figure 3.
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Finally, the non-dimensional flood volumes of each flood event in the M time intervals
are input into the K-means algorithm for clustering, resulting in K representative types of
typical non-dimensional flood hydrographs.

2.2.2. Non-Dimensional Flood Hydrograph Stochastic Simulation

The core of simulating flood hydrographs lies in generating non-dimensional cumu-
lative flood volume values, where 0 ≤ Fi ≤ 1 (i = 1, 2, . . . , K). Essentially, this can be
transformed into a problem of generating non-dimensional flood increments in each time
interval.

P1 = F1 (12)

Pi = Fi − Fi−1 (i = 2, 3, . . . , K) (13)

The non-dimensional flood increment values, denoted as Pi, must satisfy the following
constraints: 1© P1 + P2 + . . . PK = 1; 2© 0 ≤ Pi ≤ 1 (i = 1, 2, . . . , K). Considering that the Pi
values in each time interval are mutually dependent non-normal variables, a multivariate
joint distribution of non-dimensional flood increments in each time interval is established,
based on the Copula functions. The joint distribution function is used for stochastic simula-
tion of the flood increment values Pi in each time interval. In this study, elliptical Copula
functions, which exhibit good performance in representing interdependence between mul-
tivariate variables, are employed to construct the joint distribution model for flood volume
increments in each time interval and perform stochastic simulations.

In order to compare the stochastic simulation methods of the multivariate Copula-
based flood volume increments, as described above, and following the methods from the
literature, a Monte Carlo simulation is utilized to stochastically generate unconstrained
independent normal multivariate variables for reverse calculation of non-dimensional flood
volume increments in each time interval. The specific method is shown in Figure 4:
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First, a logarithmic transformation is applied to convert the correlated non-normal
multivariate variables under constraints into correlated non-normal multivariate variables
without constraints. Next, the Johnson system function is used to transform the correlated
non-normal multivariate variables into correlated standard normal multivariate variables.
Then, the Schmidt orthogonalization method is employed to obtain the orthogonal trans-
formation matrix, which converts the correlated standard normal multivariate variables
into independent standard normal multivariate variables. Finally, a Monte Carlo simu-
lation is utilized to stochastically generate multidimensional normal random variables.
Subsequently, the inverse transformation is performed to obtain the correlated non-normal
random variables under the specified constraints.

2.3. Integration of Flood Characteristics and Flood Hydrographs

Flood shape characteristics have a certain correlation with flood peak, flood volume,
and flood duration. Based on the flood shape characteristics at a certain flood peak, flood
volume, and flood duration, suitable non-dimensional flood hydrographs are selected.
This ensures that the simulated flood hydrographs adhere to the actual occurrence pattern
of floods.

The morphological characteristics of the observed flood hydrographs, such as the peak
shape coefficient, peak timing, angle of flood rising point, and coefficient of variation, are
statistically calculated. Then, the correlation between these morphological characteristics
and flood intensity characteristics is measured for pairwise combinations. The morpho-
logical characteristics that exhibit good correlation with flood intensity characteristics are
selected to establish a joint distribution model. The fit between the morphological charac-
teristics related to the simulated intensity characteristics and the corresponding values of
each simulated flood process is calculated, and the representative flood process with the
highest fit is chosen for magnification.

e = 1−
∣∣∣Th − Tk

∣∣∣− ∣∣∣ch − ck
∣∣∣− ∣∣∣Tah − Tak

∣∣∣− ∣∣∣CVh − CVk
∣∣∣ (14)

where e represents the goodness of fit; Th, ch, Tah, and CVh are the non-dimensional peak
timing, peak shape coefficient, angle of flood rising point, and coefficient of variation of
flood characteristic variables for the h-th group of floods, respectively; and Tk, ck, Tak, and
CVk are the non-dimensional peak timing, peak shape coefficient, angle of flood rising
point, and coefficient of variation of the k-th representative flood hydrograph, respectively.

By calculating the goodness of fit, the representative flood hydrographs corresponding
to each set of flood characteristic variables are determined. The corresponding type of flood
hydrograph is then integrated with the flood peak, flood volume, and flood duration to
generate a complete flood hydrograph.

3. Case Study
3.1. Study Area Overview

Fuziling and Xianghongdian Reservoir belong to the Huai River Basin, specifically
within the Pi River system, located in the middle and upper reaches of East Pi River in
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Huoshan County, and the upper reaches of West Pi River in Jinzhai County, respectively,
both situated in Anhui Province. The geographical location of the study area is shown in
Figure 5. Fuziling Reservoir has a controlled drainage area above the dam of 1840 km2

and is a large (2) type reservoir designed primarily for flood control and irrigation, with
additional functions for power generation and water supply. Xianghongdian Reservoir
has a controlled drainage area above the dam of 1400 km2 and is a large (1) type reservoir
designed primarily for flood control and irrigation, with additional functions for power
generation and water supply. Both reservoirs serve to protect downstream areas, including
towns in Liuan City, the Hewu and Ningxi railways, G35, G42 expressways, G312 national
road, and other essential infrastructures. They safeguard a population of approximately
1.3 million people and about 48,000 hectares of arable land. Xianghongdian Reservoir
also plays a role in flood peak mitigation for the Huai River mainstream. Both reservoirs
are situated in the subtropical continental monsoon zone, with mild and humid climates
throughout the year. Frequent interactions between warm and cold air masses from the
north and south, along with cyclone activities and the influence of land uplift from the Dabie
Mountains and typhoon landfalls, often lead to concentrated rainfall events. Therefore,
conducting flood stochastic simulation studies for Fuziling and Xianghongdian Reservoirs
is of significant importance for their flood control and safety during the flood season. For
this study, a total of 185 observed flood events from 1964 to 2020 for Fuziling Reservoir and
171 observed flood events from 1964 to 2020 for Xianghongdian Reservoir were selected for
the extraction and analysis of flood characteristics.

Sustainability 2023, 15, x FOR PEER REVIEW 11 of 26 
 

 

 

Figure 5. Geographical location of the study area. 

3.2. Measurement of Flood Characteristics Correlation 

The flood intensity characteristics selected in this study include flood peak, flood vol-

ume, and flood duration, while the shape characteristics consist of peak timing, peak 

shape coefficient, angle of flood rising point, and coefficient of variation. The Pearson cor-

relation coefficients between each characteristic are presented in Table 3. Data marked 

with “**” and “*” indicate significant correlations at the 0.01 and 0.05 significance level 

respectively. 

Table 3. Correlation coefficient of flood characteristic quantity. 

Name of 

Reservoir 
Characteristic 

Flood 

Peak 

Flood 

Volume 

Flood 

Duration 

Peak Shape 

Coefficient 

Peak 

Timing 

Angle of Flood 

Rising Point 

Coefficient 

of Variation 

Foziling 

flood peak 1 0.768 ** 0.335 ** −0.492 ** 0.203 ** 0.364 ** 0.663 ** 

flood volume 0.768 ** 1 0.614 ** −0.334 ** 0.432 ** 0.153 * 0.296 ** 

flood duration 0.335 ** 0.614 ** 1 −0.312 ** 0.597 ** 0.156 * 0.175 * 

peak shape 

coefficient 
−0.492 ** −0.334 ** −0.312 ** 1 −0.227 ** −0.338 ** −0.685 ** 

peak timing 0.203 ** 0.432 ** 0.597 ** −0.227 ** 1 −0.223 ** −0.002 

angle of flood 

rising point 
0.364 ** 0.153 * 0.156 * −0.338 ** −0.223 ** 1 0.630 ** 

Figure 5. Geographical location of the study area.



Sustainability 2023, 15, 14032 11 of 25

3.2. Measurement of Flood Characteristics Correlation

The flood intensity characteristics selected in this study include flood peak, flood
vol-ume, and flood duration, while the shape characteristics consist of peak timing, peak
shape coefficient, angle of flood rising point, and coefficient of variation. The Pearson
correlation coefficients between each characteristic are presented in Table 3. Data marked
with “**” and “*” indicate significant correlations at the 0.01 and 0.05 significance level
respectively.

Table 3. Correlation coefficient of flood characteristic quantity.

Name of
Reservoir Characteristic Flood Peak Flood

Volume
Flood

Duration
Peak Shape
Coefficient Peak Timing

Angle of
Flood

Rising Point

Coefficient
of Variation

Foziling

flood peak 1 0.768 ** 0.335 ** −0.492 ** 0.203 ** 0.364 ** 0.663 **
flood volume 0.768 ** 1 0.614 ** −0.334 ** 0.432 ** 0.153 * 0.296 **

flood
duration 0.335 ** 0.614 ** 1 −0.312 ** 0.597 ** 0.156 * 0.175 *

peak shape
coefficient −0.492 ** −0.334 ** −0.312 ** 1 −0.227 ** −0.338 ** −0.685 **

peak timing 0.203 ** 0.432 ** 0.597 ** −0.227 ** 1 −0.223 ** −0.002
angle of

flood rising
point

0.364 ** 0.153 * 0.156 * −0.338 ** −0.223 ** 1 0.630 **

coefficient of
variation 0.663 ** 0.296 ** 0.175 * −0.685 ** −0.002 0.630 ** 1

Xianghongdian

flood peak 1 0.866 ** 0.351 ** −0.292 ** 0.188 * 0.351 ** 0.483 **
flood volume 0.866 ** 1 0.528 ** −0.087 0.256 ** 0.281** 0.250 **

flood
duration 0.351 ** 0.528 ** 1 −0.201 ** 0.504 ** 0.236 ** 0.257 **

peak shape
coefficient −0.292 ** −0.087 −0.201 ** 1 −0.230 ** −0.180 * −0.588 **

peak timing 0.188 ** 0.256 ** 0.504 ** −0.230 ** 1 −0.350 ** 0.087
angle of

flood rising
point

0.351 ** 0.281 ** 0.236 ** −0.180 * −0.350 ** 1 0.631 **

coefficient of
variation 0.483 ** 0.250 ** 0.257 ** −0.588 ** 0.087 0.631 ** 1

From Table 3, it can be observed that both Fuziling and Xianghongdian Reservoirs
exhibit significant positive correlations between flood peak, flood volume, and flood
duration. For Fuziling Reservoir, there are significant positive correlations between flood
peak and the coefficient of variation, as well as between flood duration and peak timing.
However, there is a significant negative correlation between flood volume and the peak
shape coefficient. As for Xianghongdian Reservoir, significant positive correlations
are found between flood peak flow and the coefficient of variation, flood volume and
angle of flood rising point, and flood duration and peak occurrence time. Based on
these correlation patterns, three-dimensional Copula functions are used to establish joint
distribution models for flood peak, flood volume, and flood duration for both Fuziling
and Xianghongdian Reservoirs. Additionally, two-dimensional Copula functions are
applied to establish joint distribution models for flood peak and coefficient of variation,
flood duration and peak timing, as well as flood volume and peak shape coefficient
for Fuziling Reservoir; and for flood peak and coefficient of variation, flood volume
and angle of flood rising point, and flood duration and peak timing for Xianghongdian
Reservoir.

3.3. Copula Simulation of Flood Characteristics

Based on the correlation analysis of flood characteristics, Copula functions are used
to construct multivariate joint distribution functions. The commonly used distributions
in hydrological frequency analysis, namely, normal distribution, log-logistic distribu-
tion [33], Weibull distribution, Generalized Extreme Value distribution (GEV) [34], and
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gamma distribution, are fitted to the samples of flood peak, flood volume, duration,
peak shape coefficient, peak timing, angle of flood rising point, and coefficient of vari-
ation for Fuziling and Xianghongdian Reservoirs. The marginal distributions of flood
peak and flood duration for the Fuziling Reservoir are determined to be log-logistic
distributions, while the total flood volume and angle of flood rising point are modeled as
GEV (Generalized Extreme Value) distributions. The shape coefficient follows a Weibull
distribution, and the coefficient of variation is represented by a gamma distribution.
For the Xianghongdian Reservoir, the flood peak, total flood volume, angle of flood
rising point, and coefficient of variation are modeled as log-logistic distributions, while
flood duration and time of peak occurrence are modeled as GEV distributions. The
distribution parameters are presented in Table 4.

Table 4. Edge distribution parameters.

Name of
Reservoir Characteristics Marginal Distributions Mu (a) Sigma (b) Morphological

Parameters (k)

Foziling

flood peak Log-Logistic 6.7773 0.5767
flood volume GEV 0.5554 0.4457 0.5263
flood duration Log-Logistic 4.3966 0.2786

Peak timing GEV 18.7545 12.4247 0.3440
peak shape coefficient Weibull 0.3887 2.1895
coefficient of variation Gamma 5.7937 0.1532

Xianghongdian

flood peak Log-Logistic 6.9753 0.4746
flood volume Log-Logistic −0.3014 0.4878
flood duration GEV 55.223 24.3223 0.0925

Peak timing GEV 18.5201 11.0115 0.2022
angle of flood rising point Log-Logistic −1.0181 0.3163

coefficient of variation Log-Logistic −0.1648 0.1887

Five types of non-symmetric Archimedean Copula functions (M3, M4, M5, M6, M12)
are used to construct the joint distribution functions of flood peak, flood volume, and
flood duration, which represent the three-dimensional flood intensity characteristics for
both reservoirs. Additionally, three types of symmetric Archimedean Copula functions
(Frank, Clayton, Gumbel) are used to construct the joint distribution functions between
flood intensity and shape characteristics. The goodness-of-fit is evaluated through the
Kolmogorov–Smirnov test, and the function types are further selected based on the OLS
and AIC criteria. The Copula parameters and the results of goodness-of-fit evaluations are
presented in Tables 5 and 6, respectively.

Table 5. Three-dimensional asymmetric Archimedean Copula parameters and goodness of fit evalua-
tion results of flood peak, flood volume, and flood duration.

Name of
Reservoir Copula θ1 θ2 H P (%) OLS AIC

Foziling

M3 13.0846 9.4238 0 17.26 0.0964 −861.392
M4 2.3086 3.4126 1 0.018 0.0769 −945.2933
M5 1.5411 2.7317 0 17.26 0.0441 −1150.793
M6 1.3963 2.5316 0 73.59 0.0405 −1181.948
M12 1.0395 1.9459 0 13.49 0.0470 −1115.736

Xianghongdian

M3 14.6957 10.5305 0 17.76 0.0941 −801.3896
M4 2.7373 3.3566 1 0.12 0.0713 −896.1163
M5 1.5245 3.3884 0 13.86 0.0316 −1172.817
M6 1.3904 2.939 0 85.75 0.0205 −1319.596
M12 1.0348 2.1453 1 2.43 0.0336 −1151.915
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Table 6. Evaluation results of two-dimensional symmetrical Archimedean Copula parameters and
goodness of fit.

Name of Reservoir Characteristics Copula θ H P (%) OLS AIC

Foziling

Flood peak and coefficient of variation
Frank 6.7103 0 99.93 0.0117 −1818.10

Gumbel 2.0277 0 99.48 0.031 −1635.50
Clayton 1.8761 0 89.56 0.0822 −1452.10

Flood volume and peak shape coefficient Frank −2.4257 0 94.75 0.0178 −1739.50

Flood duration and peak timing
Frank 4.7534 0 65.79 0.0407 −1584.30

Gumbel 1.6766 0 97.98 0.0212 −1706.50
Clayton 1.1528 0 74.50 0.1244 −1374.40

Xianghongdian

Flood peak and coefficient of variation
Frank 4.0522 0 77.93 0.0372 −1440.10

Gumbel 1.5456 0 99.06 0.0142 −1604.40
Clayton 1.0926 0 42.45 0.0795 −1310.20

Flood volume and angle of flood
rising point

Frank 1.3027 0 92.44 0.0467 −1401.10
Gumbel 1.1992 0 92.44 0.0354 −1448.60
Clayton 0.3216 0 50.77 0.0687 −1335.10

Flood duration and peak timing
Frank 1.4608 0 98.99 0.0181 −1563.70

Gumbel 1.1637 0 99.85 0.0144 −1602.50
Clayton 0.4548 0 98.06 0.0248 −1509.70

According to Table 5, the non-symmetric Archimedean M6 Copula provides the best
fit for the joint distribution of flood peak, flood volume, and flood duration for both the
Foziling and Xianghongdian reservoirs. As shown in Table 6, the Frank Copula provides
the best fit for the joint distribution of flood peak and coefficient of variation, as well as
the joint distribution of flood volume and peak shape coefficient for the Foziling reservoir.
The Gumbel Copula provides the best fit for the joint distribution of flood duration and
peak timing, as well as the joint distribution of flood peak and coefficient of variation,
flood volume and angle of flood rising point, and flood duration and peak timing for
the Xianghongdian reservoir. Therefore, the M6 Copula function is selected to fit the
three-dimensional intensity characteristics for both reservoirs, while the Frank Copula and
Gumbel Copula are selected to fit the two-dimensional intensity and shape characteristics
for both reservoirs. The joint distribution Ke–Kc plots for each group of variables are shown
in Figures 6–9. All data points in the figures are clustered around the 45-degree diagonal
line, indicating a good fit of the joint distribution functions.
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Based on the joint distribution functions of the three-dimensional and two-dimensional
variables, and in combination with the simulation method for flood characteristics described
in Section 2.1.4, 10,000 sets of flood characteristics were simulated (by comparing the mean,
Cv, and Cs errors of the simulated characteristics for 0.1 million, 1 million, 5 million, and
10 million simulations, it was found that the errors tend to stabilize at 10,000 simulations, as
shown in Figure 10). Each set includes seven characteristics: flood peak, flood volume, flood
duration, peak shape coefficient, peak timing, angle of flood rising point, and coefficient of
variation. The statistical parameters of each simulated characteristic are shown in Table 7.
Comparing them with the observed characteristics, it can be seen that the main statistical
parameters are very close, passing the applicability test, and can be used for subsequent
flood process magnification.
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Table 7. Statistical parameters of observed and simulated flood characteristics.

Characteristics
Flood

Statistic

Foziling Xianghongdian

Observed
Flood

Simulated
Flood

Observed
Flood

Simulated
Flood

Flood peak
Mean value 1410 1551 1508 1569

CV 1.08 0.99 0.97 0.92
CS 2.95 2.62 2.75 2.6

Flood volume
Mean value 1.15 1.27 1.06 1.10

CV 1.04 0.96 1.02 0.96
CS 2.59 2.30 3.06 2.97

Flood duration
Mean value 91.1 90.84 71.68 73.85

CV 0.5 0.51 0.48 0.49
CS 1.405 1.07 1.2 1.08

Peak shape
coefficient

Mean value 0.34 0.40
/CV 0.48 0.42

CS 0.28 0.28

Peak timing
Mean value 31.05 19.05 27.33 23.91

CV 0.75 0.71 0.64 0.68
CS 1.56 2.65 1.69 2.66
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Table 7. Cont.

Characteristics
Flood

Statistic

Foziling Xianghongdian

Observed
Flood

Simulated
Flood

Observed
Flood

Simulated
Flood

Angle of flood rising
point

Mean value
/

0.43 0.37
CV 0.65 0.63
CS 2.18 3.52

Coefficient of
variation

Mean value 0.89 0.69 0.89 0.77
CV 0.42 0.42 0.33 0.31
CS 1.03 1.16 0.71 0.93

3.4. Flood Hydrograph Classification

The 185-flood hydrograph from the Foziling Reservoir and the 171-flood hydrograph
from the Xianghongdian Reservoir have been normalized and divided into 21 segments
based on the characteristics of the watershed flood periods. The K-means clustering
method was then applied to classify the flood process lines. Eventually, both reservoirs’
flood hydrographs were divided into three classes, as shown in Figure 11. Class I represents
floods where the peak occurs in the first half of the flood process line, Class II represents
floods where the peak occurs in the middle of the process line, and Class III represents
floods where the peak occurs in the latter half of the hydrograph. Based on the classification
results, it is observed that the peaks of floods in both the Foziling Reservoir and the
Xianghongdian Reservoir generally appear in the middle of the flood process.
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3.5. Stochastic Simulation of Different Types of Flood Hydrograph

The joint distribution models of flood increments for each time period are constructed
using multivariate Gaussian and multivariate t Copula functions, and stochastic simula-
tions are performed. For illustration purposes, we present the results of 300 simulated
dimensionless flood hydrograph, considering 100 each of Class I, II, and III flood types for
both the Foziling Reservoir and Xianghongdian Reservoir. Figures 12a and 13a show the
simulated flood hydrograph for the Foziling Reservoir, while Figures 12b and 13b display
those for the Xianghongdian Reservoir. Additionally, for comparison, we use Monte Carlo
simulation to randomly generate unconstrained independent normal multivariate inversely
derived flood increments, as shown in Figure 11.
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Figure 12. Monte Carlo method for simulating flood hydrographs of Class I, II, and III: (a) Foziling
Reservoir; (b) Xianghongdian Reservoir.

Statistical comparisons are made for the means of the three flood simulation methods
and the normalized observed mean values at each cross-section. The results of the compari-
son are presented in Table 8. From Figures 12–14 and Table 8, it can be observed that the
simulation of the three flood process line types (Class I, II, and III) for both the Foziling
Reservoir and Xianghongdian Reservoir are highly accurate. The relative errors of the
means, except for Class I flood at the Foziling Reservoir, are all within 20%. This indicates
that the simulated flood hydrograph maintains a similar distribution to the observed flood
data at each cross-section, demonstrating the effectiveness of the random simulation of
flood process lines. Furthermore, the multivariate Gaussian Copula simulation performs
the best among the three methods, with relative errors within 5% for all flood types, except
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for Class III flood at the Xianghongdian Reservoir, which has a relative error of 6.87%. This
is superior to the Monte Carlo random transformation and multivariate t Copula methods.
Therefore, the flood hydrograph simulated using the multivariate Gaussian Copula method
is chosen for fusion with flood characteristics.

Sustainability 2023, 15, x FOR PEER REVIEW 19 of 26 
 

 

  
(a) (b) 

Figure 13. Multivariate t_ Copula simulation flood hydrograph of Class I, II, and III: (a) Foziling 

Reservoir; (b) Xianghongdian Reservoir. 

Statistical comparisons are made for the means of the three flood simulation methods 

and the normalized observed mean values at each cross-section. The results of the com-

parison are presented in Table 8. From Figures 12–14 and Table 8, it can be observed that 

the simulation of the three flood process line types (Class I, II, and III) for both the Foziling 

Reservoir and Xianghongdian Reservoir are highly accurate. The relative errors of the 

means, except for Class I flood at the Foziling Reservoir, are all within 20%. This indicates 

that the simulated flood hydrograph maintains a similar distribution to the observed flood 

data at each cross-section, demonstrating the effectiveness of the random simulation of 

flood process lines. Furthermore, the multivariate Gaussian Copula simulation performs 

the best among the three methods, with relative errors within 5% for all flood types, except 

for Class III flood at the Xianghongdian Reservoir, which has a relative error of 6.87%. 

This is superior to the Monte Carlo random transformation and multivariate t Copula 

methods. Therefore, the flood hydrograph simulated using the multivariate Gaussian 

Copula method is chosen for fusion with flood characteristics.  
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Reservoir; (b) Xianghongdian Reservoir.

Table 8. Relative errors between measured value and simulated mean value of each section.

Type of Flood
Hydrograph

Foziling Xianghongdian

Logarithmic
Transformation t Guassian Logarithmic

Transformation t Guassian

I 46.70% 2.02% 2.41% 4.98% 1.57% 1.48%
II 7.99% 3.37% 1.87% 5.10% 2.25% 1.88%
III 10.03% 3.73% 3.17% 8.04% 7.11% 6.87%
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3.6. Fusion of Flood Characteristics with Different Types of Flood Hydrographs

By applying the flood hydrograph identification method, we analyzed the goodness
of fit between the 10,000 sets of flood characteristics generated in Section 2.3 and the three
representative types of dimensionless flood hydrograph obtained in Section 2.2.2 This
analysis allows us to determine the flood hydrograph type corresponding to each set of
flood characteristics. After the calculation, for the Foziling Reservoir, out of the 10,000 sets
of flood characteristics, 2632 sets showed the best fit with Class I flood process, 3554 sets
with Class II flood process, and the remaining 3814 sets with Class III flood process. For the
Xianghongdian Reservoir, out of the 10,000 sets of flood characteristics, 2033 sets showed the
best fit with Class I flood process, 4935 sets with Class II flood process, and the remaining
3032 sets with Class III flood process. The comparison between the occurrence frequencies
of different types of simulated floods and observed floods is presented in Table 9. The
results demonstrate that the frequencies of different types of flood processes obtained from
the proposed random simulation method closely align with the frequencies observed in
actual flood events, indicating the reliability of the simulation results.
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Table 9. Comparison between simulated frequency and measured frequency of different types of
flood hydrographs.

Name of
Reservoir

Type of Flood
Hydrograph

Observed Value Simulated Value

Events Frequency Events Frequency

Foziling
I 55 29.10% 2632 26.32%
II 67 35.45% 3554 35.54%
III 67 35.45% 3814 38.14%

Xianghongdian
I 36 21.05% 2033 20.33%
II 86 50.29% 4935 49.35%
III 49 28.65% 3032 30.32%

In the stochastic simulation of 10,000 flood events, multiple flood events were obtained
that bear similarities to the “1991”, “1975”, and “1969” typical floods. The comparison
between the simulated floods and the typical flood events is illustrated in Figures 15 and 16,
and the characteristics are summarized in Table 10. Both Foziling and Xianghongdian
Reservoirs’ simulated flood events show a close resemblance in terms of flood intensity char-
acteristics to the typical floods. Additionally, the type of flood process remains consistent,
indicating that the stochastic simulation of floods, considering both intensity and morphol-
ogy indicators, is capable of capturing historically typical flood events, demonstrating the
representativeness and reliability of the simulation results.
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Figure 15. Stochastic simulation diagram of typical floods of Foziling Reservoir in 1991, 1975, and
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Table 10. Comparison of typical flood simulation and measured characteristic quantities of Foziling
and Xianghongdian reservoirs.

Name of Reservoir Characteristics
Typical Floods Simulated Floods

Year 1991 Year 1975 Year 1969 Year 1991 Year 1975 Year 1969

Foziling

Flood peak (m3/s) 2223 2424 4580 2884 2780 4685
Flood volume (108 m3) 3.39 2.57 3.47 3.24 2.6 3.2

Flood duration (h) 176 176 176 167 164 167
Type of flood hydrograph III I III III I III

Xianghongdian

Flood peak (m3/s) 3680 3460 9148 3818 3571 9234
Flood volume (108 m3) 6.43 3.48 6.55 5.28 3.04 7.3

Flood duration (h) 165 145 161 156 125 150
Type of flood hydrograph II II II II II II

Figure 17a shows the flood hydrograph of a single event for each of the three classes (I,
II, III) at Foziling Reservoir. For Class I, the flood peak, flood volume, and flood duration
are 2234 m3/s, 120 million m3, and 66 h, respectively. For Class II, the flood peak, flood
volume, and flood duration are 1648 m3/s, 60 million m3, and 73 h, respectively. For Class
III, the flood peak, flood volume, and flood duration are 3951 m3/s, 479 million m3, and
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102 h, respectively. Figure 17b shows the flood hydrograph of a single event for each of
the three classes (I, II, III) at Xianghongdian Reservoir. For Class I, the flood peak, flood
volume, and flood duration are 2948 m3/s, 143 million m3, and 41 h, respectively. For Class
II, the flood peak, flood volume, and flood duration are 643 m3/s, 51 million m3, and 53 h,
respectively. For Class III, the flood peak, flood volume, and flood duration are 5626 m3/s,
262 million m3, and 60 h, respectively. These classes represent different scenarios: peak
with a large volume and short duration, peak with a small volume and short duration,
and peak with a large volume and long duration, for both Foziling and Xianghongdian
Reservoirs.

After these steps, a flood hydrograph of any type under the joint distribution of flood
peak, flood volume, and flood duration can be randomly simulated, considering different
inflow possibilities. This provides a data foundation for flood control scheduling and risk
assessment.
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4. Conclusions and Outlook

This paper is based on the Copula function to simulate flood characteristics and
flood hydrograph. We specifically focused on the randomness of flood hydrograph and
the correlation between their morphological features and intensity characteristics. This
approach provides a new perspective for flood stochastic simulation, resulting in flood
hydrographs that better match real-world scenarios. It offers crucial insights for flood
control scheduling, risk assessment decisions, and serves as a valuable foundation for
decision-making in these areas.

(1) When establishing the stochastic simulation model for flood characteristic vari-
ables, significant consideration was given to the asymmetric correlation among high-
dimensional flood characteristic variables. A non-symmetric Archimedean Copula
was employed to construct the joint distribution. Compared to traditional symmetric
methods, the simulated flood characteristic variables using this approach more closely
resemble natural flood conditions.

(2) Taking the inflow flood data of Fuziling and Xianghongdian Reservoirs as examples,
the dimensionless flood process lines were clustered and analyzed. For different
types of flood hydrograph, three methods, namely, multivariate Gaussian Copula,
multivariate t Copula, and Monte Carlo simulation, were used to stochastically sim-
ulate the related cumulative flood volumes for each time interval. These methods
enhanced the diversity and randomness of the hydrograph. A comparative analysis
of the relative errors between the three simulation methods and the measured data
showed that the multivariate Gaussian Copula method provided process lines that
closely approximated the observed ones.

(3) Emphasis was placed on the influence of flood intensity characteristics on the shape
of hydrograph. Two-dimensional joint distributions between flood peak, flood vol-
ume, flood duration, and flood shape characteristics were established to achieve an
organic fusion between flood hydrograph and characteristic variables. The results of
practical calculations demonstrated that the simulated flood data closely matched the
statistical characteristics and type proportions of the measured flood data, indicating
the applicability and reliability of this method in flood random simulation.

(4) Using Copula functions to randomly simulate multivariate flood characteristics and
flood hydrographs requires a substantial amount of observed flood data for estimating
model parameters. Insufficient flood data length and precision may impact the
accuracy of the model. While three typical flood hydrographs obtained through
clustering methods can, to some extent, enrich the diversity of flood hydrographs,
they still do not fully represent the characteristics of rare flood hydrographs.

(5) This paper generalizes the flood hydrographs of reservoirs into 21 intervals, with
the option to increase the number of segments when the flood duration in the basin
is longer. During the fusion of flood characteristic variables and flood hydrograph,
the model employed flood regulation calculations to back-calculate and deduce the
flood process, resulting in a sawtooth-shaped pattern. To address this issue, this study
appropriately smoothed the flood hydrograph, while keeping the flood peak, flood
volume, and flood duration unchanged. However, further improvements are required
to enhance the fusion method.
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