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Abstract: Passenger transport is a key sector of the economy, and its sustainability depends on achiev-
ing the greatest possible efficiency, avoiding problems of congestion or underuse of infrastructures,
and reducing the sector’s environmental impact. Knowing the elasticities of demand is critical to
achieving these objectives, estimating the intensity of transport demand, and predicting the effect of
different policies on reducing greenhouse gas emissions. This research proposes a relatively simple
model for estimating and predicting the elasticity of demand for different modes of transport at the
route level. This model could be used by companies and public management to obtain a vision of
the different analysed routes and the pressure of their demand, as well as a relative perspective of
each of them. Such a model is used to estimate the price and income demand elasticities of passenger
transport modes in domestic routes in the United States (2003–2019), where there is competition
between road, rail, and air transport. Series of passenger numbers, fares, and budget shares are
reconstructed from the available data. A Rotterdam demand model (RDM) is estimated using a
seemingly unrelated regression method (SUR). The estimated income elasticities imply that demand
for road transport increases somewhat more proportionally than the increase in income, somewhat
less than proportionally for air transport, and with very low proportionality for rail transport. This
indicates the need to target investment and service improvement efforts, as well as technological
solutions, according to this difference in demand pressures. Finally, the demand response of the three
modes of transport to price increases is inelastic, and there is little or no pass-through from one mode
to another. This implies that fiscal or carbon pricing actions could have a very limited impact and
high social costs. Again, strategies based on investments in technological progress, infrastructure
development, and normative interventions could be more effective.

Keywords: passenger transport; modes of transportation; elasticities of demand; efficient and
sustainable transport management

1. Introduction

The transport sector is very important in a country’s economy. In the case of the US,
it accounted for 9.1% and 8.7% of its GDP in 2018 and 2019 (11.6% in 1980), respectively
(US Bureau of Transport Statistics, BTS [1,2]). In addition to this direct impact, transport
modes and their costs are fundamental factors in understanding economic and human
geography, as Krugman pointed out in his seminal 1991 article [3]. As stated by Rodrigue
et al., transport is vital to the performance of an economy: “When transport systems are
efficient, they provide economic and social opportunities and benefits that result in positive
multiplier effects” [4].

On the other hand, there are major problems of passenger transport inefficiency and
its impact in terms of noise emissions, pollutants, and greenhouse gases. Suffice it to give a
brief overview of some of these problems. The US transport sector emitted 1836 million
metric tons of carbon dioxide in 2022 (US Energy Information Administration, EIA [5]).
The US total was 4964 million metric tons of carbon dioxide, thus making transport the
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highest-emitting end-use sector. In this US transport service, light trucks (including SUVs,
vans, and minivans) account for 37.1% of greenhouse gas emissions, passenger cars for
20.7%, commercial aircraft for 6.6%, other aircraft for 2.0%, ships and boats for 2.8%, and
rail for 1.9% [6]. Global CO2 emissions from the transport sector grew again in 2022 by
254 Mt [7].

Moreover, congestion and under-utilisation problems remain severe. Regarding con-
gestion, different examples of problems can be cited: delays (increased fuel consumption,
workers’ overtime, passenger compensation); increased operational costs (congestion leads
to inefficient routes and queuing patterns); reduced travel frequency or use of higher
capacity means of transport, impacting on overall operational efficiency; infrastructure
costs (higher investment in infrastructure to avoid congestions); and environmental impact
(congestion can lead to increased fuel consumption and greenhouse gas emissions). A vari-
ety of different costs stem from overcapacity in passenger transport, including opportunity
costs (revenue lost due to oversupply and unrealised demand) and inefficiency (variable
cost per passenger increases with a lower margin if prices do not change, and there can be
lower profitability due to the need to lower prices to increase demand).

The costs associated with some of those problems have been analysed in the literature.
Thus, for example, Schrank et al. [8] estimated that congestion in road transport generated
losses of USD 190 billion (2020 USD) in 2019 due to additional fuel costs and extra travel
hours. This is consumption that increases greenhouse gas emissions: “the stop-and-go
nature of congestion increasing emissions yet further” (Grote et al. [9], p. 95). Congestion
is thus an important factor in road traffic emissions (op. cit.). The same problem occurs
in air traffic, since, as the following was pointed out by Clarke et al. [10]: “Because of
congestion, aircraft are often forced to fly far from the cruise altitude and/or the cruise
speed for which they are designed. Such sub-optimality results in unnecessary fuel burn
and gaseous emission” (p. 4).

Furthermore, the US Travel Association [11] deduced that traffic congestion caused
Americans to avoid 47.5 million road trips in 2018, which cost the economy nearly USD
30 billion in lost travel spending. Moreover, the cost of delays in 2019 was estimated at USD
33 billion by a Federal Aviation Administration (FAA)-sponsored study [12]. Additionally,
the Travel Industry Association’s estimate of unrealised air travel in 2007 was valued at
more than 41 million trips, which would have resulted in additional revenue of more than
USD 26 billion (Travel Impact Newswire [13]). In turn, the problem of airport congestion
was quantified in 2008 by Gelhausen et al. [14], who estimated that 6% of all flights are
operated from capacity-constrained airports in the United States. Moreover, as some
authors have argued (Burghouwt et al. [15]), congestion at airports leads to higher fares for
air passengers. Finally, among many other issues raised, there is a current trend for airlines
to use larger aircraft to cope with transport from congested airports (Pollard [16]). At the
same time, the use of regional airports, currently less in demand, is likely to increase, based
on smaller, less noisy, and more environmentally sustainable aircraft (Banchik et al. [17]).
The development of airports and the aircraft type composition of airlines will depend
on the evolution of demand and therefore on making a correct demand forecast (NASA
Team [18]). In general, as Severino et al. [19] state, “transport systems efficiency plays a key
role for communities’ liveability and economy, being, in addition, an important factor in
the economic integration of countries” (p. 1).

Ultimately, these problems highlight the need to make estimates and projections of
the intensity of each of the modes of passenger transport and, consequently, of demand
(Nar y Arslankaya [20]). There are several alternative methods of transport demand
forecasting. Very important aspects of current study methods include the use of a large
quantity of data collected through smart systems (e.g., use of smart cards, use of payment
cards, use of numerical systems to quantify public transport) and, based on artificial
intelligence, efforts to make predictions of future demand behaviour. This introduces
greater variation of estimation and prediction methods compared to the situation prior to
the development of digital traffic management systems and data processing. For example,
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Nar and Arslankaya [20] use machine learning algorithms. Çelebi et al. [21] use neural
networks to develop short-term passenger demand forecasting models. Qin et al. [22] note
that recurrent neural networks, convolutional neural networks, and other methodologies
are used in road traffic demand management. Orlando et al. [23] propose spatial models (a
modern variation of the old gravity models) and the use of digital public transport data to
predict the future frequency of public transport trips. However, all these methodological
proposals face the problem of the difficulty of obtaining reliable passenger transport data.
One of the most relevant ways of quantifying demand in the passenger transport sector
is based on the estimation of its elasticity with respect to income and prices of the most
relevant modes. Therefore, quantifying the elasticity of demand for the routes where
transport is concentrated is vital to understanding the impact of price changes and income
on all the issues outlined above. Li et al. [24] pointed out that “studying the price elasticity
of demand is the only way to formulate scientific road pricing”, which can be extended to
all other modes. Moreover, the great relevance of estimating the elasticities of demand is
reaffirmed in the scientific literature. For example, Zeng et al. [25] point out that the research
into the price elasticity of demand for travel modes “has become a research hotspot.”
(p. 3). In addition, “the sensitivity of demand concerning the monetary price of travelling
determines the supplier’s ability to raise revenues by setting fares above the marginal
social cost” (Hörcher and Tirachini [26], p. 2). Above all, forecasting through knowledge of
elasticities would provide insight into reactions to future price and income developments,
adding an understanding of potential consumer behaviour in different scenarios.

Finally, the movement of passenger demand between modes of transport is an impor-
tant element in an emission reduction strategy, as rail transport implies lower emissions
(e.g., Gama [27], Zeng et al. [25]). However, whether such a shift in demand between modes
occurs depends, in part, on the value of the cross-price elasticities (the higher their positive
value is, the stronger the response to price changes will be).

Although the estimation of passenger transport demand elasticities has been widely
addressed in the scientific literature (Oum et al. [28], Goodwin [29], Holmgren [30], Gun-
delfinger [31], etc.), the results reveal wide ranges of these estimates (see Appendix C),
meaning that further research is needed to illuminate this issue and approximate this value
more accurately. Moreover, there is little recent evidence on the price elasticity of demand
for public transport services (Davis [32]).

Consequently, this study focuses on demand elasticities, an important contemporary
scientific research object (Zeng et al. [25]), and does so with respect to some of the most
important routes in the United States. One of the advantages of estimation at the route
scale is that it allows for differentiation between distinct cases. For example, factors
such as distance, infrastructure, demographic and economic structure, etc., vary from one
route to another, and an estimation at the national market level would exclude important
existing differences.

Therefore, the present study has a general objective, which is to propose a relatively
simple model that can be used to estimate and predict passenger transport demand on
different routes, factoring in the various transport modes and making assessments based
on accessible data from public statistical agencies. In this way it could be used, without
complexity, by companies and public management to obtain a global view (through average
values) of the different routes and the pressure of their demand, as well as a relative
perspective of each of them, allowing for a comparison between routes. To achieve this
objective and to show that it is feasible, the present study includes three intermediate aims,
namely, (i) to contribute to estimating the elasticities of demand in passenger transport for
domestic routes in the United States, where there is competition between air, road, and
rail transport; (ii) to contribute to the comparison of those estimates on the different routes
analysed from 2003 to 2019 in order to check whether there are relevant variations between
them (which requires comparison on a common basis); and (iii) to draw some conclusions
based on the relationship between the estimated demand elasticities and the effectiveness
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of different public policies to be implemented to improve the sustainability of passenger
transport in the United States on domestic routes.

In order to achieve these objectives, 20 routes in the United States have been selected
based on the relevance of their passenger volume. Demand elasticities have been estimated
using a procedure similar to that applied by Escañuela [33] when measuring the demand
elasticity of the Northeast Corridor of the United States. This study expands the geographic
area of study and thus provides a more general and homogeneous view of passenger
transport demand in the United States. To obtain this estimation, road passenger data
series, for which no accurate records exist in the United States, have been approximated.
Making this information available can be seen as one of the indirect contributions of
this study.

Demand is measured at the route level as the number of passengers using each mode
of transport, meaning that the estimate is conditional on the level of expenditure within
the group. A theoretical demand model, the Rotterdam demand model (RDM), which was
initially proposed by Barten [34] and Theil [35], is applied. The RDM fulfils the different
maximisation conditions (whose corresponding theoretical restrictions are detailed in point
2.2 of the methodology section), contributing to the results’ robustness while enabling a
comparison between routes.

2. Materials and Methods

The methodological body of this research is composed of four main elements: (i) an
RDM imposed on a conditional level estimation; (ii) an assessment based on the assumption
of a rational demander, which is later used to test the hypotheses derived from it; (iii) an
estimation carried out at a conditional level; and (iv) a seemingly unrelated regression
(SUR) model applied as a multi-equation estimation procedure.

2.1. Methods
2.1.1. The Choice of the RDM for Estimation

Two main options have been found in the scientific literature regarding the empirical
estimation of passenger transport demand. Specifically, there is one that uses aggregate data
and values across the population and one that uses disaggregated values at the individual
or household level (Dunkerley et al. [36], Oum [37]). Aggregate models rely on data to
describe the behaviour of large groups of travellers (Winston and Small [38]). Different
disaggregate models can be used to understand the behaviour of the transport service’s
user. Winston and Small [38] emphasize some of the advantages of disaggregated models,
such as a greater number of observations, a greater number of attributes considered in
the demanded service, a theoretical basis, and an explicitness of the sources of random
disturbances. The key contributor to these models, on which much of the scientific literature
on this topic is based, is McFadden [39], who started from an individual utility function on
alternatives, each of which is based on a series of attributes. Among these models, the use of
a discrete choice logit model could be an important alternative to the approach adopted in
this paper. For example, with an object of study similar to that of the present work, Cirillo
and Hetrakul [40] studied an optimal pricing strategy for the Acela Express (Amtrak)
service using a multinomial logit model. Therefore, these methods involve obtaining
primary data through the design of homogeneous questionnaires, allowing the subsequent
comparison of results on different routes and at different points in time (Fillone et al. [41],
Al-Salih and Esztergár-Kiss [42]). The current study analyses 20 national transport routes
for which there is no standard source of information. Explaining and predicting aggregate
phenomena on 20 different routes makes the aggregate level preferable. However, both
because of conformity in the level of data between the model and the cases studied, and
because of the difficulty of obtaining sufficient and homogeneous disaggregated data
available for all the cases studied, the choice between aggregate and disaggregate models
depends largely on the purpose of the study (Oum [37]). In our methodological approach,
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secondary data are used, which are easy to obtain and are continuously available over
time (annually).

Another important choice to be made concerns the application of a parametric or
nonparametric method to estimate the elasticity of demand. Several examples of the
application of nonparametric methods can be found in the literature. Thus, for example,
Lago et al. [43] conducted a comparative study to estimate demand elasticities for transit
services; Davis [32] applied the same methodology to periods of fare changes in Mexico
City, Guadalajara, and Monterrey to estimate the price elasticity of demand for urban rail
transport; and Hoang-Tung et al. [44] compared ex-ante and ex-post scenarios related to the
introduction of a bus rapid transit service in Hanoi. The quasi-experimental method does
not allow for the estimation of revenue or own-price and cross-price elasticities, whether
uncompensated (Marshall) or compensated (Hicks), in the 20 studied routes. The non-
parametric, quasi-experimental, or natural experimental methods require a change or shift
in supply, on a stable demand curve, to estimate the value of one of the elasticities of one of
the alternative transport modes. Therefore, we have chosen the parametric method since it
allows us to capture all the elasticities.

Finally, different aggregated demand models, both theoretical and empirical, have
been applied in the scientific literature (Deaton [45], Barnett and Seck [46]). However,
current economic theory has not been able to answer the question regarding which spec-
ification is best for estimating the demand function in a particular dataset (Barnett and
Seck [46]). In the present study, the selection of the RDM is based on two important advan-
tages. The first is related to its theoretical basis. The problem of aggregation in the demand
function is to find a valid way to relate a function that aggregates consumers and relates to
the individual demand functions of each consumer. Therefore, the problem of consumer
aggregation concerns the characteristics or properties the function retains when aggre-
gating multiple individual consumers. The aggregate demand function only retains the
properties of continuity and homogeneity and does not take any other properties from the
individual functions (Varian [47]). However, while it is true that the aggregation problem
also arises in the RDM as it does in other systems of demand equations (McFadden [48],
Yoshihara [49], Barten [50]), this problem can be overcome. According to Barnett [51],
the problem is solved when starting from weak assumptions with unproblematic validity
by using the probability bounds of the Slutsky equations as the number of consumers
increases. Compared to its main theoretical alternative, the Almost Ideal Demand System
(Deaton and Muellbauer [52]), the RDM appears better at recovering the true values of
the elasticities. As outlined by Barnett and Seck [46], this is true “when we implement
exact aggregation within weakly separable branches of a utility tree.” (p. 821). The second
advantage is econometric, arising from the fact that the RDM determines its variables in
terms of first differences, which is desirable in the presence of autocorrelation. As Granger
and Newbold [53] recommended, taking the first differences of all variables should con-
siderably improve the interpretability of the coefficients and avoid spurious regression.
Moreover, although it is an old technique, RDM is still a useful and commonly applied
model today (Nguyen et al. [54], Muhammad and Countryman [55], Clements et al. [56]).

2.1.2. The RDM and the Theoretical Conditions of Rational Consumer Theory

The RDM can be considered to be consistent with a variety of consumers’ preferences
since the utility function is not specified explicitly (Clements and Gao [57]). The mathemat-
ical core of the RDM (following Barnett and Serletis [58], p. 69) is given by a differential
demand system with relations given in absolute (undeflated) prices, as shown in (1):

ωitDxit = ki + θiDQt + ∑j πijDpjt + uit (1)

where ij are goods or services, i, j = 1, . . ., n (in this case, they represent the different pairs
of transport modes being compared, where n = 2 or 3 modes); t is the period; x is the
quantities; p is the prices; k is a constant coefficient capturing the possible variation in tastes
and other factors over time (Clements and Johnson [59]); and Dxit means ln(xi)–ln(xi(t−1)).
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DQt is the change in real income (as measured by applying a Divisia volume index that
uses budget shares as weights):

DQt = ∑n
j=1 ω jtDxjt (2)

where ωi i is the budget share of i. θi is the marginal budget share of the i use of money
income (Barnett and Serletis [58]):

θi = ωiηiy =
pixi

y
∂xi
∂y

y
xi

(3)

where y is income. In Barten [60],

ωit =
ωit + ωit−1

2
(4)

where πij is the Slutsky coefficient or substitution effect (the effect of a change in the price
of good j on the demand for i, with income remaining constant):

πij = vij − φθiθj (5)

where

∑j vij = φθi =
∂y
∂λ

λ

y
pixi

y
∂xi
∂y

y
xi

=
λpi pjuij

y
(6)

and λ is the Lagrange coefficient.
We then have a system of multiple linear equations that is easy to estimate econo-

metrically in relation to consumer theory. The dependent variables are the changes in the
number of passengers using train transport and air transport and the synthetic index of
car and bus passengers. This change in demand is explained by changes in real income
and in the prices of the different modes of transport. Parameterisation implies that the
coefficients θi and πij are considered to be constants, and infinitesimal changes are taken as
finite differences from t-1 to t. The overall impact of other important factors that influence
the demand for passenger transport beyond prices and income, such as time cost, travel
purpose, and personal driving preferences, are assumed to be random (Deaton [61]).

This study is based on the relevance of compliance with the hypothesis of the utility-
maximising rational consumer theory of consumption. If this hypothesis is not fulfilled,
then the demand models follow neither second-order nor first-order theoretical conditions
(Serletis and Shahmoradi [62]). In that case, we cannot be sure that the demand for transport
mode is a result of rational consumer decisions but must consider the possibility that this
demand could be arbitrary, making it impossible to estimate meaningful choices. The
theoretical restrictions are as follows. The sum of the change in expenditure for the different
goods must be equal to the change in total income (Barten [60]):

∑n
i=1 θi = 1 (7)

Moreover, in terms of zero-degree homogeneity, multiplying prices and income in the
same proportion does not change demand decisions.

∑n
j=1 πij = 0 (8)

Third, regarding symmetry, the cross-derivatives of the Hicks demand function
are equal:

πij = πji (9)

The underlying idea is that if real income rises, consumers increase their consumption
to match this additional income. However, if prices and nominal income increase by the
same amount, consumption remains unchanged (there is no monetary illusion). Symmetry
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is, however, not intuitive but rather a mathematical consequence of satisfying utility
maximisation theory. Moreover, the expenditure function is concave. The Slutsky matrix
[πij] is negative semidefinite, and the compensated own-price effect must be nonpositive:

H =
∂2C(u )

∂pi∂pj
≤ 0 (10)

∂hi(u, p)
∂pi

≤ 0 (11)

Therefore, all the eigenvalues of the [πij] matrix are less than or equal to 0. If the
price of a mode of transport rises, abstracting from the impact on real income, it would be
expected that consumption of that transport mode would decrease. The other values of the
Slutsky matrix, cross-prices, must be positive. Again, abstracting from the effect on real
income, consumers increase their consumption level of a particular good or service when
the alternative product rises in price.

Finally, in terms of positivity, the cost function, which expresses the minimisation of
consumption expenditure necessary to achieve a given level of utility, u, and given market
prices, p, C(p,u), is nonnegative; for monotonicity, the derivatives of the cost function are
nonnegative, and thus expenditure must increase monotonically with increasing prices.
Aggregation, homogeneity, and symmetry are all set as conditions. Positivity and mono-
tonicity must be observed. Negativity and curvature must be demonstrated from the [πij]
matrix values.

The RDM preserves the conditions of the individual rational consumer at the aggregate
level: “The convergence approach reveals that all of the restrictions at the individual
consumer level carry over to the aggregate equations. This is the justification for applying
the Rotterdam model to aggregate data” (Clements and Selvanathan [63], p. 64).

2.1.3. The Conditional Level of Demand Estimation

In this study, a conditional estimation is developed. Following the lead of Selvanathan
and Selvanathan [64], the unconditional estimation of demand uses the shares of each good
or service, or groups of them, to estimate total expenditure. The conditional estimation uses
the expenditure allocation in the transport group as the group variable itself. That is, this
paper’s conditional estimation is specific to the details of the consumption group analysed
(the demand for transport services on domestic routes in the United States). It assumes that
consumer decisions regarding these services are made independently of those made for
all other consumption groups (the block independence assumption). The reason for using
this level of demand is that its estimate is based on the number of passengers using each
mode of transport on each route rather than on the overall monetary expenditure at the
national level.

Moreover, if the two-stage budget allocation assumption holds, then the allocation of
expenditure is made first to the group (intercity transport) and then among the transport
modes. Then, the conditional and unconditional demand functions should provide the same
result (Edgerton [65]). In this sense, this paper follows the suggestion made by Clements
and Selvananthan [63]: “There is a two-level decision hierarchy under block independence.
In many applications such a separation into levels of the consumer’s decision problem
makes good intuitive sense” (p. 17). Finally, Muhammad and Countryman [55] recall one
of the relevant advantages when choosing the RDM for estimation at the conditional level:
“As noted by Theil and Clements (1987), blockwise dependence (or weak separability of
product groups) is sufficient for limiting the analysis to goods within a product group when
using the Rotterdam model” (p. 744).

The base equation used in Estimation (12) represents the conditional estimation of
demand. We used the equation of Selvanathan and Selvanathan [64]:

witDqit = θ
′
i ωgtDQt + ∑n

j=1 π
g
ijDpjt + ε

g
it (12)
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All terms on the right-hand side of the equation are expressed in terms of the i-th
group of transport modes (Clements and Johnson [58]), where i denotes goods in Group
g (referring to the group of goods and services consumed, which are modes of transport
in this case);ω refers to the unconditional budget shares; andω′ refers to the conditional
budget shares (which explain the allocation of expenditures in the transport group in terms
of the group variable itself). ωit is defined in Equation (4), and the differentials are defined
in Equation (1) and the following paragraph. The conditional marginal share of good i (θ’)
and the conditional Slutsky coefficients (πg) are then estimated. The terms are defined in
the previous equations. The differences from the unconditional estimation are as follows:

θ′i =
θi
θg

(13)

θg = ∑n
i=1 θi (14)

DQgt = ∑n
i=1 ω′itDqit (15)

The restrictions remain the same.
Now, the conditional elasticities are as follows (Selvanathan and Selvanathan [64]):

η′iy =
θ′i

ω′it
(16)

η′it =
π

g
ij

ωi
(17)

The relationship between the Hicksian and Marshallian (∈ij) elasticities is given by
the following:

∈ij= ηij
∗ + ωiηiy (18)

where the Marshall price elasticity is estimated by the usual relationship but now takes the
conditional share of expenditure. The Marshall elasticity is equal to the Hicks elasticity
plus the sum of the product of the share of the good and the income elasticity.

2.1.4. The Seemingly Unrelated Regression (SUR)

Finally, the assumption of the rational consumer hypothesis implies the existence of
a series of multi-equational restrictions, which have already been discussed above. The
imposition of these conditions requires the simultaneous estimation of all equations, which
is conditional on these restrictions. For this reason, the seemingly unrelated regression
method (SUR) introduced by Zellner [66] is applied. However, the application of RDM
implies two important observations in this regard. On the one hand, the regressors on
the right-hand side of the equation are equal and exogenous. The demand for all modes
of transport is posed in terms of the same variables, i.e., the price differences between all
modes of transport and real income. Thus, there is no covariance between the error terms of
the model equations, meaning that the SUR estimation would not be more efficient than the
estimation obtained by OLS. However, on the other hand, the number of global equations
of the RDM system is larger than the number of independent variables. Therefore, the
covariance matrix of the system would be singular. To solve this problem, one equation
is dropped following the proposal of Barten [60], according to which any equation can be
suppressed without affecting the results. Finally, restrictions are applied to the coefficients
in order to estimate the omitted equation.

2.2. Data

This paper analyses 20 major passenger routes, with 9 of them exhibiting competition
between the three modes of passenger transport (air, rail, and road) and 11 of them using
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two modes (air and road). Data were extracted from 2003 to 2019. The routes were selected
based on their importance, as measured by the number of passengers carried (the list
of the analysed routes can be seen in Appendix A, Table A1). Data were obtained from
different sources:

• Data on the percentage share of consumer expenditure were obtained from the Con-
sumer Expenditure Surveys of the Bureau of Labor Statistics [67]. This included the
following data: intercity bus fares, intercity train fares, airline fares, and car costs
(intercity).

• Air passenger transport data were obtained from the US Bureau of Transportation
Statistics, BTS, from the Airline Origin and Destination Survey [68]. These are random
monthly surveys that consider 10% of the prices and quantities of all tickets sold in
the United States. The number of passengers (daily average per quarter) and average
fare per quarter were later annualised.

• Rail transport data were obtained from Amtrak (media, annual reports, the General
Legislative Annual Report, and the Rail Passengers Association) [69–72], and they
included a series of numbers reflecting passenger volume and average annual fare.

• Regarding road transport mode, there were no data on the number of passengers or
the prices of cars and buses (Schwieterman et al. [73]). Therefore, these data had to be
calculated on the basis of vehicle traffic, vehicle types, average number of passengers,
miles, and unit fuel costs. Vehicle traffic counts were taken from [74–90].

First, the calculation of the number of passengers using each of the routes analysed,
per car or bus, is calculated using Equations (19)–(21):

CTP = AADT × 365×%C×VPC (19)

BTP = AADT × 365×%B×VPB (20)

TP = CTP + BTP (21)

Car total passengers (CTP) and bus total passengers (BTP) are calculated. The annual
average daily traffic (AADT) [74–90], annualised over 365 days, is multiplied by the total
traffic percentages, including cars and buses. BTS [1,2,91] provides data on the share of
cars and buses in the overall traffic of the United States (cars, %C; bus, %B). Finally, it
is necessary to multiply these numbers by the average number of passengers using both
modes (cars VPC, buses VPB) on the basis of data taken from the FHWA [92,93]. The total
value of passengers (TP) is the sum of both.

Road transport prices are obtained using two procedures that yield similar results.
The first procedure is found in Equations (22)–(25).

AP = GASP×%GC + DIEP×%DC (22)

CCOST = AP× ROUD
CMPG

/VPC (23)

BCOST = DIEP× ROUD
BMPG

/VPB (24)

where AP is the average fuel price, GASP is the average gasoline price (per gallon), and
DIEP is the average diesel price (per gallon). Both values are multiplied by the percentage
of cars using gasoline (%GC) and the percentage using diesel (%DC) [1,2]. Data were
obtained from the EIA [94]. ROUD is the distance of the route in miles, which is divided by
the miles per gallon to obtain the number of gallons required to travel the route (CMPG for
cars, BMPG for buses). Fuel efficiency data were obtained from [1,2]. The prices per gallon
of fuel per distance travelled, therefore, can be used to yield the cost per car (CCOST) and
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the cost per bus (BCOST) of the route. This is performed by dividing these values by the
number of passengers in each mode. Taking the weighted average of both costs relative to
the number of passengers, the route price is found for road transport in (25).

PCB =
CCOST × CTP + BCOST × BTP

TP
(25)

The second equivalent mode is based on statistics from [91–93] and the American
Automobile Association [95,96]. This mode uses different costs (average cost of owning
and operating an automobile). If we use the operating costs (fuel, maintenance, tires) of car
travel, we arrive at results similar to those already obtained. If we include higher pro-rata
ownership costs per mile, then the price of travel by car increases. It is reasonable to assume
that the consumer considers the expenses directly associated with the trip to be the cost of
the trip. The car is a durable consumer good, the usefulness of which cannot be associated
with travelling from one end of a route to the other.

An example of the data obtained for two of the routes can be seen in Tables A2 and A3.

3. Results

After estimating the elasticities of the 20 routes considered in the study, we can
affirm that 19 of them have coefficient estimates whose sign agrees with the theory’s
prediction. The one exception is the Portland–Seattle route, which has signs of estimated
coefficients contrary to the theory’s predictions (so that the Slutsky matrix is not negative
semidefinite). The explanation for this seems to lie in a series of events that make the series
non-homogeneous, with exogenous impacts on supply, masking the impact of prices and
rents on demand (see Appendix B, Table A5).

Moreover, almost all estimated income elasticities were significant (for a maximum
p value of 0.1) for road and air transport modes, but not for rail transport. A total of
40 estimates of income elasticity were significant (38 without the Portland–Seattle route),
11 (10 without the Portland–Seattle route) were not statistically significant and, except for
2 of them, all referred to passenger rail transport.

Regarding the price elasticities of demand, approximately three-quarters of the coeffi-
cients were statistically significant when estimating demand for two modes of transport (air
versus car/bus), but this significance decreased for estimates of routes with competition
among all three modes of transport. On routes with three modes, about 45% of the price
elasticities were statistically significant. The price elasticities of demand involving the rail
mode of transport were generally not statistically significant. Finally, the application of
the corresponding statistical tests, whose results are included in Appendix B at the end of
Tables A4 and A5, confirmed that the vast majority of routes supported the validity of the
regression hypotheses (no autocorrelation, homoscedasticity, normality, or relevance of the
multi-equation conditions imposed).

The estimated values of the elasticities are shown in the following tables (Tables 1–3).
(Appendix B shows Tables A4 and A5, which contain the estimated coefficients and statisti-
cal values).

Regarding air and road transport, the estimated average income elasticities show that
air travel has an inelastic demand (0.94), while that of road travel is elastic (1.11). The
coefficient of variation indicates the existence of some heterogeneity. As such, the median
of each distribution was also calculated (0.95 air, 1.06 road), confirming the conclusions
drawn from the average. The estimates made for rail transport were highly heterogeneous
(with a high coefficient of variation), including both positive and negative estimates. The
average is 0.05 (the median being 0.20). These estimates can be compared with those
given in Tables A6–A8 in Appendix C. The quantification obtained is within the ranges
observed in the scientific literature, although the income elasticity of road transport in the
scientific literature is sometimes lower and that of air transport higher. After analysing
a sample of 22 income elasticities from the literature, Holmgren [30] pointed out that the
income elasticity of public transport demand ranged from −0.82 to 1.18, with an average
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of 0.17. Thus, on the one hand, looking at the values in the tables in Appendix C and in
Holmgren’s study, there is a large dispersion of estimates, which underlines the need for
further research. On the other hand, the low estimate of the income elasticity of the train is
justified by the fact that many customers buy a car when their annual income reaches a
certain level, which reduces the demand for public transport (train and bus modes).

The Hicks elasticities were negative in terms of the price itself and positive for the
price of the competing modes (net substitutes). However, the substitution effects were all
weak (a 10% increase in the price itself would generate, on average, a drop in demand for
this mode of transport of −2.4% for air transport, −1.3% for road transport, and −8.2%
for train transport). The Hicks cross-price elasticities were also weak. The median of each
distribution confirmed the conclusions drawn from the average.

Table 1. Conditional income elasticities (shaded if significant). Averages were calculated taking
Orlando/Washington (3 modes) into account (the calculations by the SUR method were carried out
by R language (R core team), Systemfit package (Henningsen and Hamann [97,98])).

Routes (i) Period Train Air Road
Los Angeles/Phoenix 2007 to 2019 1.2700 0.7922

San Francisco/Los Angeles 2007 to 2019 −0.7325 0.5022 1.7372
Los Angeles/Sacramento 2007 to 2019 −0.5685 0.7113 1.4610
Las Vegas/San Francisco 2003 to 2017 0.3123 1.4914

Atlanta/Miami 2003 to 2017 0.9357 1.0445
Chicago/Washington DC 2008 to 2019 0.3071 0.6582 1.4803

Atlanta/New York 2003 to 2017 1.2307 0.8406
Chicago/New York 2003 to 2019 0.5832 1.2970

San Francisco/Seattle 2003 to 2017 1.5766 0.5891
Orlando/Washington (2 modes) 2003 to 2017 1.0800 0.9447
Orlando/Washington (3 modes) 2003 to 2017 0.3287 0.7386 1.3747

Denver/Los Angeles 2003 to 2019 1.3833 0.7270
Boston/Chicago 2004 to 2019 0.9603 1.0300

New York/Orlando 2003 to 2017 1.0178 0.9875
Chicago/Orlando 2003 to 2017 1.2322 0.8394

Miami/Washington 2008 to 2019 0.2036 0.6045 1.5555
New York/Miami 2003 to 2019 0.7611 1.1713
Chicago/St. Louis 2007 to 2019 0.1728 0.4853 1.7197

Buffalo/New York City 2007 to 2019 0.3365 1.6900 0.1269
Portland/Seattle 2003 to 2019 −0.0689 1.1823 0.8016
Chicago/Detroit 2003 to 2018 0.4799 0.9686 1.0722

Estimated average elasticity 0.0510 0.9402 1.1070
Estimated S.D. of elasticity 0.4270 0.3801 0.4124
Coefficient of variation (%) 8.3771 0.4043 0.3726

Estimated median 0.2036 0.9480 1.0584

[i] The Slutsky coefficient matrix must be negative semidefinite, i.e., no eigenvalue is positive. One of them must
be 0 as a result of the imposed conditions. This concavity is checked for all routes. For example, the eigenvalues
of the Chicago and St. Louis route are −0.0001 (approx. 0), −0.0005, and −0.0007.

The Marshall elasticities show inelastic demands for all modes of transport. A 10%
increase in the price itself implies, on average, a reduction of −6.2% for air, −6.9% for
road transport, and −8.2% for train transport. All cross-price elasticities are weak. These
elasticities are sometimes negative because the income effects dominate the substitution
effects (grossly complementary to one another) (income effects predominate for air transport
demand relative to road transport prices, as well as for road transport relative to the prices
of the other two modes (the strongest effect is the 6% fall in road transport demand due to
the 10% increase in air transport prices)).
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Table 2. Conditional Marshall price elasticities (shaded if significant).

Routes Period Transport Mode Cross Elasticity

Train Air Road Air Pass.,
Road Prices

Road Pass.,
Air Prices

Los Angeles/Phoenix 2007 to 2019 −0.6597 −0.5304 −0.6104 −0.2618
San Francisco/Los Angeles 2007 to 2019 −1.6481 −0.5921 −0.8859 0.0486 −0.7582
Los Angeles/Sacramento 2007 to 2019 −0.2665 −0.9204 −1.0185 0.2186 −0.4169
Las Vegas/San Francisco 2003 to 2017 −0.3866 −1.0532 0.0743 −0.4382

Atlanta/Miami 2003 to 2017 −0.5702 −0.7466 −0.3655 −0.2979
Chicago/Washington DC 2008 to 2019 −0.9325 −0.4392 −0.6524 −0.2506 −0.7956

Atlanta/New York 2003 to 2017 −0.6690 −0.6111 −0.5617 −0.2296
Chicago/New York 2003 to 2019 −0.5655 −0.9861 −0.0177 −0.3109

San Francisco/Seattle 2003 to 2017 −0.7784 −0.4308 −0.7982 −0.1583
Orlando/Washington (2 modes) 2003 to 2017 −0.7024 −0.7377 −0.3776 −0.2070
Orlando/Washington (3 modes) 2003 to 2017 −1.0233 −0.6360 −0.6923 −0.1595 −0.6408

Denver/Los Angeles 2003 to 2019 −0.7503 −0.5485 −0.6330 −0.1785
Boston/Chicago 2004 to 2019 −0.5153 −0.6757 −0.4450 −0.3543

New York/Orlando 2003 to 2017 −0.6255 −0.7277 −0.3923 −0.2598
Chicago/Orlando 2003 to 2017 −0.6764 −0.6151 −0.5558 −0.2243

Miami/Washington 2008 to 2019 −0.4137 −0.4719 −0.7517 −0.1406 −0.7700
New York/Miami 2003 to 2019 −0.4865 −0.8042 −0.2746 −0.3671
Chicago/St. Louis 2007 to 2019 −0.9741 −0.3148 −0.7901 −0.1873 −0.9420

Buffalo/New York City 2007 to 2019 −0.6482 −0.9692 −0.0575 −0.7108 −0.0681
Portland/Seattle 2003 to 2019
Chicago/Detroit 2003 to 2018 −0.6596 −0.8174 −0.6218 −0.1426 −0.4399

Estimated average
Marshall elasticity (1) −0.8208 −0.6234 −0.6947 −0.3107 −0.4164

Estimated S.D. of
Marshall elasticity 0.4293 0.1728 0.2270 0.2873 0.2483

Coefficient of variation 0.5231 0.2773 0.3268 0.9246 0.5962
Estimated median −0.7961 −0.6255 −0.6923 −0.2746 −0.3543

(1) Averages were calculated taking Orlando/Washington (3 modes) into account.

Table 3. Conditional Marshall cross-price elasticities.

Cross Elasticities Train Passengers Air Passengers Road Passengers

Routes Period Air
Prices

Road
Prices

Train
Prices

Road
Prices

Train
Prices

Air
Prices

San Francisco/Los Angeles 2007 to 2019 1.4061 0.9745 0.0412 0.0486 −0.0931 −0.7582

Los Angeles/Sacramento 2007 to 2019 0.4320 0.4030 −0.0095 0.2186 −0.0256 −0.4169

Chicago/Washington DC 2008 to 2019 0.7159 −0.0904 0.0317 −0.2506 −0.0323 −0.7956

Orlando/Washington (3 modes) 2003 to 2017 1.2216 −0.5270 0.0569 −0.1595 −0.0416 −0.6408

Miami/Washington 2008 to 2019 0.2963 −0.0862 0.0080 −0.1406 −0.0338 −0.7700

Chicago/St. Louis 2007 to 2019 0.4303 0.3709 0.0167 −0.1873 −0.0201 −0.9420

Buffalo/New York City 2007 to 2019 0.3326 −0.0208 −0.0100 −0.7108 −0.0014 −0.0681

Chicago/Detroit 2003 to 2018 −0.0464 0.2262 −0.0087 −0.1426 −0.0105 −0.4399

Estimated average Marshall elasticity 0.5985 0.1563 0.0158 −0.1655 −0.0323 −0.6039

Estimated S.D. of Marshall elasticity 0.4911 0.4471 0.0255 0.2672 0.0278 0.2810

Coefficient of variation 0.8205 2.8610 1.6164 1.6140 0.8611 0.4653

Estimated median 0.4311 0.1027 0.0123 −0.1510 −0.0289 −0.6995
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For example, considering the route from Chicago to Orlando, a 10% increase in air
transport prices causes a −6.8% reduction in the number of passengers using air transport
and a −2.2% reduction in those using road transport. Moreover, a 10% increase in road
transport prices causes a −5.6% reduction in the demand for air transport and a −6.2%
reduction in the demand for passenger transport using cars or buses. Taking, for example,
the Los Angeles to San Francisco route, a 10% increase in the price of rail would imply
a −16.5% decrease in the use of rail, with almost imperceptible changes in the use of air
(+0.4%) and cars or buses (−0.9%). The percentage change in the price of air travel would
mean an increase in train use (14.1%) and a reduction in air travel (−5.9%) and car/bus use
(−7.6%).

Different causes can be found for the nonstatistical significance of the coefficients
calculated for rail transport and the variability of the estimated values. This is a problem
that has been raised, in one form or another, in previous analyses. There are few studies of
passenger rail elasticities in the United States. Some of the studies that have been performed
estimate coefficients that are not statistically significant. Finally, there is a great deal of
variability in the elasticities calculated. See Appendix C, Table A8. On the one hand,
the demand for rail transport might be influenced by some factors not considered in the
model. The conclusions of Wardman [99], who points out in his UK study that “the critical
importance of GDP for rail demand growth is quite clear” (p. 15), may be relevant. On the
other hand, the lack of rail demand data concerning seat types, tickets for journey types,
etc., and the fact that the data sample is smaller in size make this value difficult to estimate.
The complexity of the pricing strategy and the importance of detailed data on the prices
paid by different demanders is highlighted in the study of Cirillo and Hetrakul [40], who
stated that “Amtrak’s pricing strategy is more complicated than the one presented in this
paper. We have not taken into account cancellation behaviour, various discounts, guest
reward programmes and special fare schemes” (p. 21). In general, data on and knowledge
of Amtrak’s fare policy need to be improved.

4. Discussion

Based on the objectives set out at the beginning of this research, the following results
have been obtained. On the one hand, the method used and the way of obtaining the
data and reconstructing the usable series have been shown to enable comparisons of the
quantifications made for the different routes and conclusions to be reached for the routes
as a whole and for each route individually. In this sense, the procedure makes it possible,
in a relatively simple and rapid way, to relate the elasticities of demand thus estimated and
the effectiveness of the different public policies to be applied to improve the sustainability
of passenger transport in the United States on domestic routes using the data available
from public statistical bodies. In summary, a method based on microeconomic theory and
annually available data has been applied with relative success. On the other hand, the
elasticities of demand for passenger transport on domestic routes in the United States have
been estimated, although the estimate is not significant in relation to rail transport. Further
research is needed on the explanatory factors of transport and the need for a more reliable
understanding of the behaviour of rail passenger transport.

A statistically significant estimate of the elasticity of demand for air and road passenger
transport has been achieved for the main US domestic routes: the average values calculated
for the routes indicate that all income elasticities are positive (normal goods). While air
transport demand is slightly inelastic and road transport demand is slightly elastic, both
close to unity, rail demand is highly inelastic (although the estimate is not reliable due to
the high coefficient of variation). This implies a crucial fact for planning future transport
infrastructure and services in the United States: future income increases in the United
States will lead to a roughly proportional increase in demand for air and road transport
at the route level (somewhat higher for the latter mode). Although the exact value of the
income elasticity of rail transport in the US has not been quantified with certainty, it should
be reasonably low. It appears that demanders, given the current characteristics of rail
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transport in the US, tend to increase their demand for this mode very little in response to
rising incomes. Thus, demand pressure will be differential for each of the modes. However,
it is possible to note, at least as an approximation, the apparent differences between the
different routes.

All the Hicksian elasticities show consistent signs of being competing services, with
all the modes of transport being net substitutes. However, these elasticities are very low,
and the price substitution effects are relatively weak. Moreover, all modes of transport
have negative Marshallian demand own-price elasticities, although their values are less
than one. Increases in transportation prices or costs produce a less-than-proportional
reduction in the use of this service. This means that demanders have little propensity to
stop using a transport type or to switch between transport modes. That is, in the face of
price movements and differential price changes between modes, the demander has a high
propensity to continue to use a particular mode of transport on US domestic routes. This
can be because “transport is a derived demand and tends to be inelastic” (Oum et al. [28],
p. 8). Moreover, the Marshallian demand for air and car/bus transport shows that the two
are strongly complementary to each other. This is because the income effect has a much
stronger impact than the substitution effect; that is, the change in real income resulting
from a change in prices has a greater influence than the direct impact of prices on switching
between modes.

In general, the proportionally smaller demand response to price increases, and the
reduced or non-existent transmission of demand from one mode to another at the route
level (as shown by the values of the cross-price elasticities), indicate that fiscal or carbon
price actions require very high price increases to produce significant reductions in transport
demand, which are always proportionally smaller than the price increase and, consequently,
entail high costs for consumers. While the fact of the inelastic price elasticity of demand for
energy implies as an additional effect that a tax on CO2 production would strongly increase
tax revenues (Halsnaen et al. [100], p. 153), it should be asked, in the face of high increases
in transportation costs, what social and political impact this would have. Barrett and Chen
indicate that “prices, particularly of food and fuel, seem to be particularly important” for
explaining recent social unrest [101]. This would indicate that public policy interventions
through regulation would be more successful in the interests of sustainability (legal changes
to the types of vehicles or types of fuel to be used). The most notable measure of this kind is
that from the State of California, which has banned new gas-powered cars by 2035 (Emma
Newburger [102]). Nakamura and Hayashi [103] argue that the introduction of a price
on CO2 output would reduce emissions by 5%, while the fuel efficiency improvement is
estimated to be more than 20% (although it could generate the opposite effect of increasing
travel demand and traffic congestion). Major investments in the infrastructure of different
modes are also possible at the route level, which would change either the time taken from
one end of the route to the other by each mode, or the possibility of interchanging one mode
for another (e.g., rail terminals in the vicinity of airports). Major changes in infrastructure
would also change the demand for each mode.

Moreover, since increased income generates greater proportional increases in the
demand for road transport, investment policies for this mode are needed in anticipation
of an expanding economic cycle to avoid infrastructure congestion. Similarly, as the
substitution effect between modes is very weak, measures should be taken to increase the
exchange of demand between modes. The direct interconnection of airports by rail and
via the routes offered by Amtrak seems to be a crucial element. Such a connection already
exists, for example, at the Baltimore/Washington International Airport station, and allows
travellers to arrive or depart on Amtrak’s Northeast Corridor routes (Amtrak [69]). In
addition, price elasticity is also key in estimating the impact of changes in fuel prices based
on oil price fluctuations.

Another interesting result of this study is the existence of a certain heterogeneity in
the distribution of the estimated demand elasticities. This necessarily requires the study of
the underlying and differential factors of each route, as well as the design of efficient public
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transport policies for each route. However, any effective public policy should quantify
costs and benefits, which requires a view of all transportation routes as a whole.

Overall, therefore, a strategy for reducing greenhouse gas emissions into the environ-
ment should seek to replace fossil fuels with cleaner modes of energy, especially for those
modes that will see the greatest increase in demand: planes, cars, and buses. This should
primarily be performed with electric engines using electricity produced from renewable
sources or sustainable aviation fuel (OEE&RE [104], or otherwise using equivalents for
vehicle engines.

This research could be extended in several directions in future research. The first
and most immediate objective in this field is to confirm the findings of this research by
analysing domestic routes in other locations and expanding the sample size to achieve
greater precision. In particular, it is necessary to further estimate the demand for intercity
trains in the United States and, in general, in all countries of the world. In addition,
the geographical expansion of the study would benefit from extending the research to
international transport routes. On the other hand, constructing and estimating a dynamic
demand model that considers the possible impact of time would also be of great interest.
Moreover, incorporating additional factors related to consumer preferences into the model
would be of great value.
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Appendix A.

Table A1. Selection of 20 routes. Data for 2017, quarter 2. Data: BTS (2023a) [68].

CITY 1 CITY 2 Non-Stop Market Miles
(Using Radian Measure)

Air Passengers
Per Day

Miami, FL
(Metropolitan Area)

New York City, NY
(Metropolitan Area) 1139 16,799

Chicago, IL Orlando, FL 1005 4695

New York City, NY
(Metropolitan Area) Orlando, FL 989 11,317

Miami, FL
(Metropolitan Area)

Washington, DC
(Metropolitan Area) 946 6474

Boston, MA
(Metropolitan Area) Chicago, IL 867 5148

Denver, CO Los Angeles, CA
(Metropolitan Area) 862 5853

Atlanta, GA
(Metropolitan Area)

New York City, NY
(Metropolitan Area) 795 7759
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Table A1. Cont.

CITY 1 CITY 2 Non-Stop Market Miles
(Using Radian Measure)

Air Passengers
Per Day

Orlando, FL Washington, DC
(Metropolitan Area) 787 5620

Chicago, IL New York City, NY
(Metropolitan Area) 773 12,372

San Francisco, CA
(Metropolitan Area) Seattle, WA 696 6857

Chicago, IL Washington, DC
(Metropolitan Area) 622 6306

Atlanta, GA
(Metropolitan Area)

Miami, FL
(Metropolitan Area) 594 4725

Las Vegas, NV San Francisco, CA
(Metropolitan Area) 414 7011

Los Angeles, CA
(Metropolitan Area) Sacramento, CA 404 5709

Los Angeles, CA
(Metropolitan Area)

San Francisco, CA
(Metropolitan Area) 372 22,488

Los Angeles, CA
(Metropolitan Area) Phoenix, AZ 370 4975

Buffalo, NY

New York City, NY
(Metropolitan Area)
(Maple, Empire and

Lake Routes)

326 1697

Chicago, IL St. Louis, MO
(Lincoln Route) 258 1193

Chicago, IL Detroit, MI
(Wolverine Route) 235 1400

Portland, OR Seattle, WA
(Cascades Route) 129 819

Table A2. Quantity and price data for an example route (Chicago to New York City), in log-changes,
Dqit = lnqit – lnqit − 1 y Dpit = lnpit – lnpit − 1, where i = 1, 2.

Year
Number of Passengers Prices

Air Car/Bus Air Car/Bus

2001 −0.1003 −0.1140 0.1044

2002 0.0631 0.3878 −0.2229 −0.1188

2003 −0.0206 0.0351 0.0081 0.0787

2004 0.0872 0.0027 −0.0189 0.0014

2005 0.0476 0.1563 −0.0597 0.0734

2006 0.1074 −0.0299 −0.0476 0.0693

2007 0.0356 0.0000 −0.0384 0.0036

2008 −0.1385 0.0416 0.2470 0.1208

2009 −0.0562 −0.1511 −0.1547 −0.1171

2010 0.0983 0.0223 0.0489 0.1225

2011 0.0378 0.0102 0.0289 0.0531
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Table A2. Cont.

Year
Number of Passengers Prices

Air Car/Bus Air Car/Bus

2012 0.0232 −0.0967 0.0430 0.0954

2013 −0.0151 −0.0219 0.1064 0.0089

2014 −0.0056 0.0065 0.0706 −0.0518

2015 0.0866 0.1093 −0.1598 −0.1045

2016 0.0779 −0.0692 −0.1021 −0.1137

2017 0.0336 −0.0748 −0.0236 0.1716

2018 0.0034 −0.0017 0.0760 0.0498

2019 −0.0165 −0.0862 0.0390 0.1551

Table A3. Divisia indexes, Miami to Washington. Volume: DQt = ∑3
i=1 w′tDqit.

Year Rail Air Car/bus Sum (DQgt)

2001 − −0.0145 −0.0163 −
2002 − 0.0070 0.1265 −
2003 − 0.0264 0.0099 −
2004 − 0.0494 0.0018 −
2005 − 0.0218 −0.0373 −
2006 − −0.0020 0.0094 −
2007 − 0.0028 −0.0044 −
2008 0.0019 −0.0227 0.0198 −0.0010

2009 −0.0002 −0.0034 0.0560 0.0525

2010 0.0009 0.0081 −0.0111 −0.0021

2011 0.0012 0.0346 −0.0137 0.0222

2012 0.0003 0.0064 0.0156 0.0224

2013 0.0001 0.0196 −0.0133 0.0064

2014 0.0007 −0.0091 0.0248 0.0165

2015 −0.0002 0.0265 0.0327 0.0590

2016 −0.0022 0.0141 0.0169 0.0287

2017 −0.0008 0.0185 0.0130 0.0307

2018 −0.0005 −0.0168 −0.0145 −0.0319

2019 0.0013 −0.0215 −0.0727 −0.0928

Appendix B. Detailed Results

Statistical tests are applied to detect four possible problems: autocorrelation, het-
eroscedasticity, or non-normality of the regression residuals (Breusch–Godfrey test [105,106],
Breusch–Pagan test [107], Anderson–Darling normality test [108]), as well as the non-
statistical significance of the multiple equation conditions (likelihood ratio test [109] and
Theil’s F-test [110]) (using language R version 4.2.3, packages lmtest, nortest [97,111,112]).
The problems encountered are indicated at the end of the tables.
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Table A4. Estimated conditional coefficients. Equation (12). The first 10 routes studied.

Routes

Car Fares: Gasoline Cost. Bus Fares: Diesel Cost Average (t, t−1)
Unconditional/

Conditional Budget
Shares

Marginal
Budget Share

Slutsky
Coefficients

Slutsky
Coefficients

Slutsky
Coefficients

Route. Period. Transport Mode Values θi πi1 Train πi2 Air πi3 Car/Bus $it

Los Angeles/
Phoenix Air (i = 1). Coefficients 0.5523 −0.0008 0.0008 0.0071

2007 to 2019 Standard
errors(SE) 0.124 0.0005 0.0005 0.4349

Pr(>|t|) 0.0012 0.1407 0.1407

Car/bus (i = 2). Coeff. 0.4477 0.0008 −0.0008 0.0093

SE 0.124 0.0005 0.0005 0.5651

Pr(>|t|) 0.0048 0.1407 0.1407

San Francisco
(Oakland)/Los

Angeles (1)
Train (i = 1) Coeff. −0.0162 −0.0006 0.0004 0.0002 0.0004

2007 to 2017 SE 0.0328 0.0004 0.0003 0.0004 0.0221

Pr(>|t|) 0.6269 0.0999 0.1728 0.5511

Air (i = 2). Coeff. 0.2776 0.0004 −0.0022 0.0019 0.0071

SE 0.0592 0.0003 0.0005 0.0005 0.4252

Pr(>|t|) 0.0002 0.1728 0.0078 0.0014

Car/bus (i = 3). Coeff. 0.7386 −0.0005 0.0019 −0.0014 0.0093

SE 0.0548 0.0003 0.0005 0.0005 0.5527

Pr(>|t|) 0 0.126 0.0014 0.0131

Los Angeles/
Sacramento (2) Train (i = 1) Coeff. −0.0124 −0.0001 0 0.0001 0.0004

2007 to 2019 SE 0.0205 0.0002 0.0002 0.0002 0.0219

Pr(>|t|) 0.5507 0.6253 0.8197 0.7911

Air (i = 2). Coeff. 0.3952 0 −0.0037 0.0037 0.0071

SE 0.0982 0.0002 0.0011 0.001 0.4225

Pr(>|t|) 0.0007 0.8197 0.0026 0.0017

Car/bus (i = 3). Coeff. 0.6172 0.0001 0.0037 −0.0038 0.0093

SE 0.0928 0.0002 0.001 0.001 0.5556

Pr(>|t|) 0 0.7911 0.0017 0.0009

Las Vegas/
San Francisco Air (i = 1). Coeff. 0.1299 −0.0018 0.0018 0.007

2003 to 2019 SE 0.0575 0.0008 0.0008 0.416

Pr(>|t|) 0.0404 0.0445 0.0445

Car/bus (i = 2). Coeff. 0.871 0.0018 −0.0018 0.0098

SE 0.0576 0.0008 0.0008 0.584

Pr(>|t|) 0 0.0445 0.0445

Atlanta/Miami Air (i = 1). Coeff. 0.3823 −0.0013 0.0013 0.0068

2003 to 2017 SE 0.0877 0.0008 0.0008 0.4086

Pr(>|t|) 0.0009 0.1253 0.1253

Car/bus (i = 2). Coeff. 0.6177 0.0013 −0.0013 0.0099

SE 0.0877 0.0008 0.0008 0.5914

Pr(>|t|) 0 0.1253 0.1253

Chicago/
Washington DC (3) Train (i = 1) Coeff. 0.0068 −0.0003 0.0003 0 0.0004

2007 to 2019 SE 0.0348 0.0005 0.0005 0.0002 0.0221

Pr(>|t|) 0.8473 0.4638 0.4786 0.9299

Air (i = 2). Coeff. 0.3638 0.0003 −0.0005 0.0002 0.0071

SE 0.1417 0.0005 0.0008 0.0008 0.4252

Pr(>|t|) 0.0181 0.4786 0.5502 0.7846

Car/bus (i = 3). Coeff. 0.6294 0 0.0002 −0.0002 0.0093

SE 0.1456 0.0001 0.0008 0.0007 0.5527

Pr(>|t|) 0.0004 0.9668 0.7846 0.7702
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Table A4. Cont.

Routes

Car Fares: Gasoline Cost. Bus Fares: Diesel Cost Average (t, t−1)
Unconditional/

Conditional Budget
Shares

Marginal
Budget Share

Slutsky
Coefficients

Slutsky
Coefficients

Slutsky
Coefficients

Route. Period. Transport Mode Values θi πi1 Train πi2 Air πi3 Car/Bus $it

Atlanta/New York Air (i = 1). Coeff. 0.5028 −0.0011 0.0011 0.0068

2003 to 2017 SE 0.1023 0.0005 0.0005 0.4086

Pr(>|t|) 0.0004 0.0381 0.0381

Car/bus (i = 2). Coeff. 0.4972 0.0011 −0.0011 0.0099

SE 0.1023 0.0005 0.0005 0.5914

Pr(>|t|) 0.0004 0.0381 0.0381

Chicago/New York Train (i = 1) Coeff. 0.2426 −0.0022 0.0022 0.007

2003 to 2019 SE 0.0906 0.0009 0.0009 0.416

Pr(>|t|) 0.018 0.0245 0.0245

Air (i = 2). Coeff. 0.7574 0.0022 −0.0022 0.0098

SE 0.0906 0.0009 0.0009 0.584

Pr(>|t|) 0 0.0244 0.0244

San Francisco/
Seattle (4) Air (i = 1). Coeff. 0.6559 −0.0009 0.0009 0.007

2003 to 2017 SE 0.1403 0.0005 0.0005 0.416

Pr(>|t|) 0.0004 0.1125 0.1125

Car/bus (i = 2). Coeff. 0.344 0.0009 −0.0009 0.0098

SE 0.1403 0.0005 0.0005 0.584

Pr(>|t|) 0.0279 0.1125 0.1125

Orlando/
Washington (5) Train (i = 1) Coeff. 0.0073 −0.0004 0.0005 −0.0001 0.0004

2003 to 2019 SE 0.0403 0.0003 0.0004 0.0002 0.0221

Pr(>|t|) 0.8589 0.2398 0.2076 0.476

Air (i = 2). Coeff. 0.4082 0.0005 −0.0016 0.0011 0.0071

SE 0.1072 0.0004 0.0008 0.0007 0.4252

Pr(>|t|) 0.0014 0.2076 0.0482 0.1244

Car/bus (i = 3). Coeff. 0.5845 −0.0001 0.0011 −0.001 0.0093

SE 0.1096 0.0002 0.0007 0.0007 0.5527

Pr(>|t|) 0 0.5843 0.1244 0.1469

(1) Approximately 10.5% of passengers use this on the Oakland (SF)–Los Angeles route (Amtrak Ridership
Statistics [72]). This relative irrelevance, about 45 thousand passengers per train with more than 8 million air
passengers in 2017, would justify the non-statistical significance of the coefficients associated with the train. In
addition, several of the regression assumptions (non-normality, autocorrelation of the residuals, and non-relevance
of the multi-equation restrictions) are not met. (2) On this route, LA–Sacr., car transport prices are used, including
not only the cost of petrol but also the total cost of all items, including the cost of vehicle use and purchase,
pro-rated by mileage. The regression results improve significantly with this option. (3) Chicago–Washington
DC, a number of conditions are not met. Multi-equation restrictions significantly worsen the results: likelihood
ratio test, Pr(>Chisq) = 0.0000, Theil’s F-test: Pr(>F) 0.0051. Autocorrelation in the residuals of the train mode
regression: Breusch–Godfrey test for serial correlation of order up to 1, p value = 0.0038. Homoscedasticity
hypotheses are not satisfied in the car/bus mode regression: studentized Breusch–Pagan test, p value = 0.06083;
the normality of the residuals is not in the road transport regression. Anderson–Darling normality test, p value
= 0.0191. (4) Accidents and interruptions occur that do not allow access to a sufficiently long homogeneous
series. For this reason, the train mode of transport is not included in the regression. The regression also fails the
hypothesis of non-autocorrelation of residuals in the road transport equation in terms of meeting autocorrelation.
Breusch–Godfrey test, p value = 0.07928. The same holds for the hypothesis of normality of these residuals:
Anderson–Darling normality test, p value = 0.02037. (5) There is an Amtrak route called Auto Train (855 miles).
By including the number of passengers and the average ticket, the regression does not meet the set conditions.
This is plausibly due to the variety of prices and services offered by the route: sleepers or not, Auto Train car
or not. See, for example, Sibdari et al. (2008) [113], where base cost and upgrade cost are distinguished. When
disregarding the data for the train route, the regression is relevant and meets the conditions. This is probably
because the maximum number of travellers taking the ends of the route does not exceed 10% of the travellers
using air transport. For example, in 2018, about 2 million people travelled by air, while 225 thousand people were
transported by train.
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Table A5. Estimated conditional coefficients. Equation (12). The following 10 routes studied, plus
Orlando/Washington (two modes).

Routes

Car Fares: Gasoline Cost. Bus Fares: Diesel Cost. Average (t, t−1)
Unconditional/

Conditional Budget
Shares

Marginal
Budget Share

Slutsky
Coefficients

Slutsky
Coefficients

Slutsky
Coefficients

Route. Period. Transport
Mode Values θi πi1 Train πi2 Air πi3 Car/Bus $it

Orlando/
Washington (3) Air (i = 1). Coeff. 0.4413 −0.0018 0.0018 0.0068

2003 to 2019 SE 0.0858 0.0009 0.0009 0.4086

Pr(>|t|) 0.0002 0.0646 0.0646

Car/bus (i = 2). Coeff. 0.5587 0.0018 −0.0018 0.0099

SE 0.0858 0.0009 0.0009 0.5914

Pr(>|t|) 0 0.0648 0.0648

Denver/Los Angeles
(6) Air (i = 1). Coeff. 0.5755 −0.0012 0.0012 0.007

2003 to 2019 SE 0.0857 0.0006 0.0006 0.416

Pr(>|t|) 0 0.0481 0.0481

Car/bus (i = 2). Coeff. 0.4246 0.0012 −0.0012 0.0098

SE 0.0858 0.0006 0.0006 0.584

Pr(>|t|) 0.0002 0.0481 0.0481

Boston/Chicago Air (i = 1). Coeff. 0.4051 −0.0008 0.0008 0.007

2004/2019 SE 0.0786 0.0004 0.0004 0.4219

Pr(>|t|) 0.0002 0.0839 0.0839

Car/bus (i = 2). Coeff. 0.5955 0.0008 −0.0008 0.0096

SE 0.0788 0.0004 0.0004 0.5781

Pr(>|t|) 0 0.0843 0.0843

New York/Orlando Air (i = 1). Coeff. 0.4159 −0.0014 0.0014 0.0068

2003 to 2017 SE 0.097 0.0004 0.0004 0.4086

Pr(>|t|) 0.0011 0.0045 0.0045

Car/bus (i = 2). Coeff. 0.584 0.0014 −0.0014 0.0099

SE 0.097 0.0004 0.0004 0.5914

Pr(>|t|) 0.0001 0.0045 0.0045

Chicago/Orlando Air (i = 1). Coeff. 0.5035 −0.0012 0.0012 0.0068

2003 to 2017 SE 0.0638 0.0005 0.0005 0.4086

Pr(>|t|) 0 0.0238 0.0238

Car/bus (i = 2). Coeff. 0.4964 0.0012 −0.0012 0.0099

SE 0.0638 0.0005 0.0005 0.5914

Pr(>|t|) 0 0.0237 0.0237

Miami/Washington Train (i = 1) Coeff. 0.0045 −0.0002 0.0002 0 0.0004

2007 to 2019 SE 0.0265 0.0002 0.0002 0.0001 0.0221

Pr(>|t|) 0.867 0.4536 0.5206 0.9988

Air (i = 2). Coeff. 0.3341 0.0002 −0.001 0.0008 0.0071

SE 0.1063 0.0002 0.0006 0.0005 0.4252

Pr(>|t|) 0.0054 0.5206 0.1039 0.1437

Car/bus (i = 3). Coeff. 0.6614 0 0.0008 −0.0008 0.0093

SE 0.1073 0.0001 0.0005 0.0005 0.5527

Pr(>|t|) 0 0.9424 0.1437 0.1383

New York/Miami Air (i = 1). Coeff. 0.3166 −0.0012 0.0012 0.007

2003 to 2019 SE 0.1414 0.0005 0.0005 0.416

Pr(>|t|) 0.0419 0.0281 0.0281

Car/bus (i = 2). Coeff. 0.684 0.0012 −0.0012 0.0098

SE 0.1416 0.0005 0.0005 0.584

Pr(>|t|) 0.0003 0.0281 0.0281
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Table A5. Cont.

Routes

Car Fares: Gasoline Cost. Bus Fares: Diesel Cost. Average (t, t−1)
Unconditional/

Conditional Budget
Shares

Marginal
Budget Share

Slutsky
Coefficients

Slutsky
Coefficients

Slutsky
Coefficients

Route. Period. Transport
Mode Values θi πi1 Train πi2 Air πi3 Car/Bus $it

Chicago/St. Louis Train (i = 1) Coeff. 0.0038 −0.0004 0.0002 0.0002 0.0004

2007 to 2019 SE 0.0548 0.0005 0.0005 0.0005 0.0219

Pr(>|t|) 0.9457 0.4748 0.6912 0.739

Air (i = 2). Coeff. 0.2697 0.0002 −0.0003 0.0001 0.0071

SE 0.166 0.0005 0.0013 0.0013 0.4225

Pr(>|t|) 0.1208 0.6912 0.8078 0.9249

Car/bus (i = 3). Coeff. 0.7266 0.0002 0.0001 −0.0006 0.0093

SE 0.1626 0.0005 0.0013 0.0012 0.5556

Pr(>|t|) 0.0002 0.739 0.9249 0.6357

Buffalo/New York
City (7) Train (i = 1) Coeff. 0.0074 −0.0002 0.0002 0 0.0004

2006 to 2019 SE 0.0091 0.0001 0.0001 0.0001 0.0219

Pr(>|t|) 0.4276 0.0935 0.1836 0.7555

Air (i = 2). Coeff. 0.939 0.0002 −0.0002 0 0.0071

SE 0.0363 0.0001 0.0005 0.0006 0.4225

Pr(>|t|) 0 0.1836 0.7931 0.9671

Car/bus (i = 3). Coeff. 0.0536 0 0 0 0.0093

SE 0.0372 0.0001 0.0006 0.0006 0.5556

Pr(>|t|) 0.1644 0.9262 0.9671 0.9487

Portland/Seattle Train (i = 1) Coeff. −0.0015 0 −0.0002 0.0002 0.0004

2003 to 2019 SE 0.0125 0.0001 0.0001 0.0001 0.0219

Note (A) Pr(>|t|) 0.9048 0.7046 0.1259 0.1833

Air (i = 2). Coeff. 0.6754 −0.0002 −0.0012 0.0014 0.007

SE 0.0804 0.0001 0.0007 0.0007 0.4069

Pr(>|t|) 0 0.1259 0.115 0.0609

Car/bus (i = 3). Coeff. 0.3261 0.0002 0.0014 −0.0016 0.0098

SE 0.0802 0.0001 0.0007 0.0007 0.5713

Pr(>|t|) 0.0004 0.2138 0.0609 0.0367 0.0216

Chicago/Detroit (8) Train (i = 1) Coeff. 0.0104 −0.0002 0.0001 0.0002 0.0004

2003 to 2018 SE 0.0172 0.0002 0.0002 0.0002

Pr(>|t|) 0.5504 0.2353 0.6085 0.3286

Air (i = 2). Coeff. 0.5554 0.0001 −0.0018 0.0017 0.0069

SE 0.0917 0.0002 0.0007 0.0007 0.4049

Pr(>|t|) 0 0.6085 0.0179 0.0229

Car/bus (i = 3). Coeff. 0.4342 0.0001 0.0017 −0.0018 0.0098

SE 0.0927 0.0002 0.0007 0.0007 0.5734

Pr(>|t|) 0.0001 0.4231 0.0229 0.0147

(6) Denver–Los Angeles. The regressions on air and on car/bus do not meet the homoscedasticity hypothesis:
studentized Breusch–Pagan test; data: air, p value = 0.0652; car/bus p value = 0.065. (7) Train data is the sum of
three services: Lake, Maple, and Empire. Air data sum up three routes: Buffalo to NY City, NY City to Rochester,
and NY City to Syracuse. (8) Statistical tests say that multi-equation restrictions are not relevant. Introducing
them would make the fitting results significantly worse. Likelihood ratio test: Pr (>Chisq) 0.06557. (A) Increased
Seattle–Portland train frequency in 2006 to 4 daily and introduced service to Vancouver (BC) in August 2009 [114]
(eliminating the need for commuters to alight and connect in Seattle). In December 2017, service frequency was
to increase from 4 to 6 per day, but this did not ultimately occur due to a derailment, which also meant service
restrictions until spring of the following year and a possible short-term effect on demand [115].
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Appendix C. A Brief Comparative Review in the Scientific Literature

Table A6. Elasticities at the national level, unless indicated otherwise: road transport.

Road Fuel Price Elasticity Values Income Elasticity

Oum et al. (1990) [28] Car: −0.1 to −1.10. Bus: −0.1 to −1.30. N.E.

Goodwin (1992) [29]
Traffic: −0.16 (short-term),
−0.33 (long-term).

Bus: −0.41 (−0.28, short-term)
N.E.

Johansson and Schipper (1997) [116] Car: −0.05 to −0.55 (long-term). Car: 0.65 to 1.25 (long-term).

Paulley et al. (2006) [117] Bus: −0.36 (UK). Bus: 0 (short−term, UK).
−0.15 to −0.63 (long-term).

Goodwin et al. (2004) [118] Personal motor−vehicle:
−0.1 (short-term), −0.3 (long-term).

Personal motor−vehicle: 0.2 in the
short-term and 0.5 in the long-term

(volume of traffic)

Holmgren (2007) [30] Public transport: 0.009 to
−1.32 (mean value −0.38). N.E.

Hymel et al. (2010) [119] Personal motor-vehicle: −0.026
(short-term), −0.135 (long-term) (2004). 0.5

Escañuela (2019) [33] −0.45, −0.29
(Northeast Corridor, NEC, route level) 0.65, 0.42 (NEC, route level)

Table A7. Elasticities at the national level, unless indicated otherwise: air transport.

Air Price Elasticity Values Income Elasticity

Oum et al. (1990). [28] From −0.7 to −2.1. N.E.

Brons et al. (2002) [120] −1.146 (although there are estimates from 0.21 to −3.20) N.E.

Kincaid and Trethaway (2007) [121] Route level, short-haul: −1.54, long-haul: −1.40.
National level: (−0.88, −0.80) N.E.

Smyth and Pearce (2008) [122] Route Level: −1.4 (−1.54 short-haul routes).
National Level: −0.8 (−0.88 short-haul routes)

1.8 to 2.2.
(Depending on route length)

Chi et al. (2012) [123] −1.2 a −1.5 (2000),
−2.5 to −3.3 (2005) (p. 89) N.E.

Clewlow et al. (2014) [124] By route (Europe), elasticity with respect to jet fuel price:
−1.863 to −2.304. N.E.

Gundelfinger (2018) [31] −0.62 0.81

Escañuela (2019) [33] −0.73, −0.84 (NEC, route level) 1.55, 1.88 (NEC, route level)

Table A8. Elasticities. Rail passenger transport.

Rail Price Elasticity Values Income Elasticity

Jones and Nichols (1983) [125] (UK) −0.64 N.E.

Doi and Allen (1986) [126] (US) −0.245 N.E.

Oum et al. (1990) [28] Rail intercity −0.30 to −1.18 N.E.

Goodwin (1992) [29] −0.79 N.E.

Douglas and Karpouzis (2009) [127]

(Sydney metropolitan rail, 1969–2008,
annual data, parameters with the
expected sign, but none of them

significant at the 95% confidence level
except the constant) −0.283

(Real GDP pc) 0.74

Hortelano et al. (2016) [128] (Short-term, Spain, high-speed rail) −0.6 N.E.
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Table A8. Cont.

Rail Price Elasticity Values Income Elasticity

Brumerčíková et al. [129]
(Slovak Rep., cross price elasticity, oil

prices, depending ob the year) positive
and negative elasticities

(Slovak Republic, depending on the year)
positive and negative elasticities

Escañuela (2019) [33] −0.44, −0.47 (NEC, route level) 0.13, 0.20 (NEC, route level)

Zeng et al. (2021) [25]
(China) −1.049 to −1.090; (China,
cross-price elasticities of demand,
train–air, train–car) approx. 0.001

N.E.

Wijeweera and Charles (2023) [130] (Australia, Melbourne) −0.07 N.E.
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