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Abstract: Forestlands in the southeastern U.S. generate a great variety of ecosystem services that
contribute to the well-being of humans and nonhumans alike. Despite their importance, forests
continue to be lost to other land uses such as agricultural production and urban development.
Advancements in remote sensing and machine learning techniques have facilitated land use/land
cover (LULC) change projections, but many prior efforts have neglected to account for social and
policy dimensions. We incorporated key socio-economic factors, conservation policies, societal
preferences, and landscape biophysical features into LULC projection techniques under four different
development scenarios. We applied this approach in the Upper Flint watershed, which flows south
from the Atlanta, Georgia metropolitan area and is characterized by extensive urbanization and
associated deforestation. Our results suggest that incorporating social and policy drivers in future
LULC projection approaches leads to more realistic results with higher accuracy levels, offering
decision-makers, development planners, and policymakers better opportunities to forecast the effects
of anticipated changes on the availability of ESs in the future. Conservation organizations and public
agencies can benefit from such analysis to identify regions requiring conservation interventions for
prioritizing their conservation efforts. We used publicly available data for the conterminous U.S.,
hence our approach can be replicable in other study regions within the nation.

Keywords: LULC projection; urbanization; deforestation

1. Introduction

Anthropogenic activities are the principal drivers of change in terrestrial ecosystems [1].
Land cover and land management changes affect exchanged energy, water, aerosol, and
greenhouse gas (GHG) fluxes between the land and atmosphere [2]. Alteration of land
use and land cover (LULC) patterns can significantly affect natural ecosystem functioning
and the ecosystem services (ESs) they provide to human societies, not only at a local scale,
but also through GHG fluxes and changes in radiative transfer contributing to changes in
atmospheric chemistry and thermal and moisture balance at global scales [2]. Growing
concern over the impacts of LULC changes on ESs has prompted scientists, decision-makers,
policymakers, and other stakeholders to use LULC projections in forecasting and exploring
the effects of anticipated changes on the availability of ESs [3]. Simulating ESs can be
accomplished via LULC projections that model current and alternative trajectories and help
to identify the most vulnerable ecosystems for sustainable land management practices or
conservation purposes. These projections can also serve to evaluate the costs and benefits
of varied land management decisions [4].

Advancements in remote sensing, GIS capabilities, and machine learning techniques [5]
have allowed for the development of varied projection models that are diverse in their
conceptual foundations, thematic foci, spatial characteristics, and modeling methodologies.
Cellular automation (CA) in conjunction with Markov chain (MC) analysis has historically
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been one of the most popular approaches [6] and has been used in diverse regions to
analyze past, present, and future land-use changes [7–10]. This approach incorporates both
spatial and temporal components of land-cover dynamics in detecting past and simulating
future land-use change patterns [11]. Moreover, projections from such models have been
applied to model changes in various ecosystem services [3,12–16]. However, general mod-
els, including many that employ CA-MC processes, fail to explain transitions as a function
of human decision-making, despite the fact that LULCs are continually affected by a variety
of human-driven forces [10,17].

As it is desirable to use available models with maximum generality, realism, and
precision of understanding and predicting systems [18], in this study we aim to combine a
CA-MC model with other relevant variables to calculate land-use transition possibilities
for the Upper Flint River Watershed near Atlanta, Georgia. We use publicly available and
spatially explicit data for the conterminous United States to run our projection models,
once with key socio-political variables and once without them, to determine whether
incorporating these factors drives meaningful change in projected future land uses. Based
on this analysis, we draw conclusions regarding the value of incorporating social, political,
and economic variables in LULC projection models.

2. Background
2.1. Drivers of Land-Use Change in U.S. Urban Areas

The anthropogenic driving forces of LULC change include demographic factors, afflu-
ence, political structure, economic factors, land tenure patterns, and landowners’ attitudes
and values [17]. These driving forces can change over time for many reasons, including in
response to economic cycles, infrastructure development, policy change, and changes in
social attitudes [19,20]. For example, since the mid-20th century, many American metropoli-
tan areas have experienced remarkable growth in population and associated development.
In many cases this has been characterized by expanding urbanization, spreading outward
from an urban core towards the suburbs and exurbs such that, in many regions, urban
expansion rates exceed net population growth rates [21]. The conversion of undeveloped
land to residential, industrial, and associated uses not only alters landscapes but can result
in the loss of important ESs as forests and other natural or semi-natural land covers are
replaced by the built environment [22].

Forestlands generate a wide range of ESs that contribute to human well-being, in-
cluding carbon sequestration, nutrient retention, water purification, drought and flood
mitigation, habitat provisioning for a variety of species, and timber production [23–26].
Forest conversion to other land uses such as agricultural production and urban devel-
opment alters the provisioning of these ESs [27]. Conversion to urban development has
been reported as an especially acute threat to the availability of provisioning ESs [28,29].
These ES losses occur as the result of soil erosion, lower water and food supplies, higher
urban storm water runoff, reduced carbon stocks, fragmented landscapes, and diminished
biodiversity [24,30,31]

While some drivers of LULC change operate on decadal time scales, others develop
much more rapidly [32]. For example, in the US the coronavirus (COVID-19) pandemic
that began in 2020 not only affected public health, but also prompted many residents to
seek a new lifestyle characterized by seclusion from crowded public places and the use of
personal in place of public transportation. According to the US Census Bureau, e-commerce
sales increased by 43% in 2020. The demands associated with the pandemic accelerated a
trend toward remote job opportunities and remote or hybrid options for university and
graduate coursework, all of which affected residential patterns and associated markets. The
pandemic also triggered substantial declines in income, increases in unemployment, and a
long-lasting impact globally in many sectors including energy, transportation and logistics,
and manufacturing industries [33,34]. At the same time, it accelerated preexisting trends
favoring suburban and exurban development in areas of high domestic in-migration [19].
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2.2. Public Policy Drivers and Constraints on LULC

The public policy system for natural resources in the U.S. includes multiple, often
overlapping, policy tools at federal, state, county, and municipal levels that range from
mandatory to voluntary in their application. Examples of mandatory policies include the
Endangered Species Act and the Clean Water Act. The Endangered Species Act prohibits
any activity that could directly or indirectly harm any species listed as “endangered” [35]
and restricts many activities that could harm species listed as “threatened”. The Clean
Water Act relies upon states, federally recognized tribes, and territories to manage non-
point source pollution (pollution that results from activities across the landscape such as
farming, forestry, construction, and associated runoff). Non-point source management
often occurs through voluntary programs, but enforcement mechanisms exist to ensure
that states are not overly permissive in their water quality regulation.

In addition to mandatory policies, there is a growing trend toward voluntary and
market-based policy mechanisms that use economic incentives in place of threats of pun-
ishment. Examples include preferential taxation of undeveloped forestland, the use of
conservation easements (sales of development rights that leave the other core ownership
rights intact), state and federal cost-share programs, economic support for wood-based
bioenergy, and conservation land purchases from willing sellers to incentivize forest conser-
vation efforts [36]. The majority of forestland in the U.S. is owned and managed by private
owners including individuals, families, trusts, estates, and corporations; family forest
owners (formerly termed “non-industrial forest owners”) own more acreage in aggregate
than do corporate owners. Research shows that ownership motivations for family forest
owners go well beyond maximizing timber production to include factors such as “beauty
or scenery”, “protection or improvement of wildlife habitat”, and “recreation” [37]. Con-
sidering such diverse motivations, incentive-based policies can encourage private forest
owners to maintain their forestlands and receive technical assistance, annual payments, or
reductions in tax obligations in return [38,39].

2.3. Integrating Social, Economic, and Policy Factors into LULC Modeling

LULC change modeling based on CA-MC uses historical land-use changes as a guide to
future scenario development [40]. Under this approach, at least two LULC maps with a time
interval are used to assess LULC transition patterns. Transitions in land cover in each pixel
in future time steps are then calculated based on past land-use trends [41], the spatial neigh-
borhood of each pixel, or a desired or predicted land-cover abundance at a broader scale [3].
Although these models can be spatially detailed and ecologically meaningful in predicting
future LULCs and associated ES effects [40], there are numerous anthropogenic forces that
should be incorporated into these models to help land managers anticipate potential effects
of LULC changes on a variety of ecological and social processes [27]. Future LULC projection
models that lack landowner decision-making processes and policy incentives and disincen-
tives cannot be expected to simulate future LULCs realistically [42]. Hence, some scientists
have worked to develop more reliable models to project future LULC patterns by including
econometric factors (e.g., Gross Domestic Production, income, poverty rate) [16,43–45] or by
combining biophysical features and voluntary and regulatory policies [3,10,27]. The current
study builds upon previous attempts to develop a realistic model to project future LULCs by
incorporating prominent socio-economic factors, mandatory and voluntary policies, societal
preferences, and landscape biophysical features within a CA-MC approach. For this study
we used publicly available data for the entire conterminous U.S. so that our approach can be
replicable in other study regions within the nation.

3. Study Area

Georgia, located in the southeastern U.S., is one of the nation’s fastest-growing
states [46]. The Atlanta Metropolitan Area (AMA) is experiencing one of the highest
population growth rates in the country due to a combination of natural increase and both
domestic and international in-migration [47]. The AMA had a population of approximately
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4.95 million people in 2020 and the population is projected to exceed 6 million by 2040 [48].
The Upper Flint watershed (UFW), located in the southern part of the AMA, is an impor-
tant watershed in terms of providing habitat for many endangered and threatened species,
water resources for agriculture and personal consumption, and recreational opportunities.
The Flint is Georgia’s second longest river and is one of the rivers included in the tri-state
water dispute among the states of Georgia, Alabama, and Florida regarding flows in the
Apalachicola-Chattahoochee-Flint (ACF) River Basin [49]. With an area of 682,188 hectares,
the UFW covers portions of 19 counties. Larger cities located in this region include College
Park, Fairburn, Fayetteville, Newnan, Peachtree City, Riverdale, Tyrone, Union City, Manch-
ester, and Woodberry [49,50]. The northern extent of the UFW is traversed by over 46 miles
of major transportation corridors and is the site of Hartsfield-Jackson Atlanta International
Airport and its supporting businesses. The Flint River, Camp Creek, and Morning Creek
watersheds in southeastern Fulton County and northwestern Clayton County also include
a relatively large amount, 15 percent, of high- or medium-density residential lands [49].
The Flint River and its tributaries provide numerous provisioning ESs such as water for
agricultural, industrial, and municipal uses along with varied regulating, supporting, and
cultural ESs; an example of the latter is recreational opportunities for local people. The
watershed is home to a diverse population of flora and fauna including several species that
are listed as endangered or threatened [51].

Extensive urbanization, inadequate stormwater controls, and deforestation have lim-
ited provisioning of some important ESs within the watershed [49,50]. Recent local reports
note an alarming decline in groundwater levels and streamflow coupled with increasing
water demands, leading to reduced water availability and increased pressure on water
resources [51,52]. Additionally, the region has been experiencing increases in average
annual temperatures and more frequent and intense precipitation events, which may have
implications for water quality and ecosystem health [51].

The elevation of the watershed ranges from 82 m to 410 m with an average of 212 m
above sea level [53]. Average annual precipitation from 2001 to 2021 is 1337 mm and
the mean annual temperature is 17.3 ◦C [54]. More than half of the UFW is covered by
forestlands; 25% of the watershed is categorized as evergreen forest, 20.3% as deciduous
forest, and 6.3% as mixed forest [55] (Figure 1).
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4. Methods

This section is divided to four main parts. The first part describes our approach to
analyzing patterns of land use transition within the UFW between 2011 and 2019 as a means
of projecting changes through 2040. The second part explains how conservation policies and
socio-economic variables were incorporated into our LULC projection approach. The third
part defines potential assumptions for future developments and patterns of LULC change
in the UFW under four various development scenarios, and the final part is dedicated to
the model validation process.

4.1. Land-Use and Land-Cover Projection

The module Land Change Modeler (LCM), developed as an empirically parameterized
land change projection tool embedded in the software TerrSet 19.0.7, was utilized to project
a LULC map for the UFW for the year 2040. The application of LCM across many disciplines
in varied geographic areas since its introduction in 2006 is well documented [10,27,56].
LCM uses two LULC maps from distinct periods as input data to analyze transitions among
land-cover classes. We used National Land Cover Database (NLCD) maps with 30m spatial
resolution (released every 5 years for the conterminous United States) as input data [55].
We used the 2001, 2006, 2011, 2016, and 2019 maps to generate the baseline for projecting
the 2040 LULC map for the UFW. Georgia Regional Commissions have prepared their
future land management and development plans; hence we utilized the same time frame to
incorporate local governments’ strategic planning timeline into our model.

To reduce the potential combination of transition sub-models and improve accuracy,
we modified the number of NLCD land-use classes from 15 to 9 (for more information
see the Supplementary, Table S1). We first used the 2011 and 2016 NLCD maps to project
LULC in 2019 using the LCM module and compared our projected map with the NLCD
2019. Further details of this step are provided below in the Model Validation section. As
the initial simulation showed over 90 percent accuracy level, we ran the projection for 2040
using the same process.

The initial historical land-use change assessment results represented 67 transition
categories among our 9 LULC classes, ranging from 31,000 ha to less than one hectare in total
area. To eliminate unnecessary details and erroneous changes derived from classification
errors and to maintain focus on the core objective of this study (projecting the conversion
of forestlands to urban areas), we narrowed down transition potentials to 20 categories
by including those related to forest or urban areas and larger than 20 ha in size [57]. We
then categorized transitions as “Deforestation”, “Afforestation”, “Pine plantation”, and
“Urbanization” sub-models. A sub-model is a group of transitions that share similar
underlying driving determinants when creating predictions [58].

The next step was to develop a candidate set of predictor variables to calculate the
probability of a pixel being converted from one land-cover class to another. These variables
can be either static or dynamic components. Static variables are unchanging over time,
while dynamic variables are time-dependent and should be recalculated over time during
the course of a prediction [57,58]. We set aspect, elevation, slope, and population growth
rate layers as our static variables and proximity to urban areas, and proximity to roads,
highways and railroads as our dynamic variables. Transition potentials were then created
using the Multi-Layer Perceptron (MLP) model, a tool for modeling complex non-linear
relationships [57–59].

During the LULC projection process, the model creates a square matrix of land-
cover transition probabilities based on an analysis of historical land-cover change; this
is known as the MC matrix. The MC model analyzes the probability of LULC changes
over time by developing a transition probability matrix. However, Markov analysis does
not consider the causes of land-use change, nor is it sensitive to spatial and geographical
setting [60,61]. Hence we used the MLP_MC as a combination of the MLP with an MC
model for spatiotemporal dynamic modeling [58]. The MLP provides an integration of
prominent driving factors of LULC changes under each sub-model while the MC matrix
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controls the temporal dynamics of the amount of change in any specific LULC transition [9].
See the Supplementary for examples of MC matrices used in this study.

The LCM generates two projected maps as hard and soft predictions. In hard predic-
tion, a projected map is produced for the prediction year in which each pixel is assigned to
a specific land-use class [62]. In soft prediction, the projected map indicates the vulnera-
bility to change, in which each pixel is assigned a value from zero to one. Lower values
indicate less vulnerability to change, while higher values indicate high susceptibility to
change [62,63].

4.2. Constraints and Incentives

Previous studies have suggested that the inclusion of driving forces in the LULC
projection process can help to create a more accurate model when compared to LULC
projections based solely on MC analysis [10,27,42,64]. TerrSet 19.0.7 software provides
the ability to incorporate anthropogenic driving forces into land-use change assessments
through the Constraints and Incentives (CI) panel. CI is a raster layer with pixels ranging
from 0 to a number slightly above 1. These values reflect land-use change probabilities
with regard to socio-economic factors or policies governing land uses. For instance, values
of 0 on the map are treated as an absolute development constraint and can represent,
for example, strictly protected areas or established conservation easements with no land
conversion possibilities, while values above 1 can represent factors promoting conversion of
forestlands to other uses. Values less than 1 but above 0 act as disincentives to change while
values greater than 1 act as incentives. We considered population growth rate, median
household income, regional commission development plans, broadband internet coverage,
and land parcelization as development incentives, and the presence of species listed under
the Endangered Species Act, wetland and riparian zone protection programs, regional
commission conservation plans, established conservation easements, and high conservation
value forests (HCVF) as development constraints. See the Supplementary for information
about the significance of these CIs and the main sources for acquiring related data.

4.3. Future Land Planning Scenarios

The majority of existing LULC projections attempt to determine optimal locations
for urban development or intensive agriculture while minimizing negative externalities
on other land-use functions [8,16,27,65], to provoke policy discussions based on scientific
assessments to help portray the future status of complex ecosystems to identify policy
alternatives [10,42,66–68], or to explore potential impacts of LULC changes on ecosys-
tems to inform land-use planning for sustainable economic development and nature
conservation [10,66,69]. To be most effective, LULC projections develop multiple alter-
native scenarios, defined as narratives of potential socioeconomic and environmental
trajectories based on starting assumptions [65,69,70]. Scenarios represent “what if” sit-
uations, useful in exploring and mapping the consequences of modeled changes in the
studied system. Scenarios help to incorporate certain reasonable assumptions such as
demographic trends or people’s attitudes into LULC projections [67]. In this study, we
modeled potential future changes under four main scenarios, each of which used a distinct
CI layer (Table 1). While each scenario differs in the effect of constraints and incentives, the
population growth rate is held constant across the four scenarios.

4.4. Baseline

The baseline or “Business as Usual” scenario assumes that future land-use changes
in the UFW follow the same pattern as did transitions between 2011 and 2019. All con-
straint/incentive factors incorporated into the CI layer are weighted equally and have
equal impact on development decision making, except for conservation easements and
regional commission conservation plans. The latter were coded as zero in the CI layer (no
possibility of conversion), since development in established easements and lands dedicated
to regional conservation purposes is assumed to be unlikely.
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Table 1. The driving forces affecting land-use transitions incorporated into development Constraints
and Incentives (CI) layer under four development scenarios. “x2” shows that the contributing factor
was given twice the weight in the CI layer calculation; 0 values represent no change possibility.

Contributing Factors

Scenarios

B
us

in
es

s
as

U
su
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C
on

se
rv

at
io

n

U
rb

an
iz

at
io

n

M
ax

im
um

Fo
re

st
Pr

ot
ec

ti
on

In
ce

nt
iv

es

Population growth rate x1 x1 x2 x1

Median household income x1 x1 x2 x1

Regional commission development plan (2040) x1 x1 x1 x1

Broadband internet coverage x1 x1 x2 x1

Parcelization x1 x1 x2 x1

C
on

st
ra

in
ts

Presence of species listed under the Endangered
Species Act x1 x2 x1 0

Wetland and riparian zone protection x1 0 x1 0

Protection of HCVFs x1 x2 x1 0

Regional commission conservation plan (2040) 0 0 x1 0

Established conservation easements 0 0 0 0

4.5. Urbanization

This scenario represents a higher urban growth rate than the baseline. Under this
scenario, loosening of current conservation policies or greater pressure of market forces for
development favor transitions from other land uses to urban areas. Thus, development
incentive factors in the CI layer are weighted twice as much as the development constraints.
Although some studies suggest testing all pairs of NLCD maps available to identify the
time frame with highest urban growth rate to initiate the MC matrix for this scenario [10],
we chose to continue using the same MC matrix as for the baseline scenario to avoid
biases caused by including large occasional projects such as the Hartsfield-Jackson Atlanta
International Airport expansion project and establishment of the McIntosh Dam in the
UFW. Unlike in the baseline scenario, areas within regional conservation plans can still be
converted to urban development under this scenario. However, established conservation
easements remain coded as zero.

4.6. Conservation

The conservation scenario places greater emphasis on forest protection and restoration
while reflecting a plausible balance between socio-economic and ecological considerations.
Under this scenario, the introduction of incentive programs helps owners of forestlands
with higher conservation values maintain their properties undeveloped. This scenario also
assumes that conservation-based land-use policies focus on riparian zones by increasing the
width of buffer areas on main rivers to 100 m and secondary rivers to 30 m and requiring
forest protection or reforestation within the buffers. Our reasoning for such an increase
in buffer areas is that these areas help protect water bodies from nonpoint pollutants and
improve the water quality of streams once restored. In addition, urban development in
riparian zones is often costly due to land preparation construction precautions and flooding
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risks. As in other scenarios, urban development within buffer areas is prohibited. This
scenario used the same MC matrix as the baseline, while in the CI layer, development
constraints were weighted twice as much as were development incentives.

4.7. Maximum Forest Protection

This scenario portrays the maximum possible forest protection within the UFW, in
which, regardless of socio-economic pressures promoting urban sprawl, no existing forest-
land would be converted to urban areas. Moreover, forestlands with higher conservation
values, and those in riparian zones, would not be converted to any non-forest land uses.
While this scenario is not likely from a real-world policy perspective, it does serve as a
contrast to the other, more plausible, scenarios.

4.8. Model Validation

The validation procedure initially assesses the quality of the predicted LULC map
against a reference map to generate Kappa indices that indicate the level of agreement
between the two maps [8,9]. Since the use of Kappa indices has become the most prevalent
form of accuracy assessment in remote sensing and other fields [71], we first calculated
the Kappa indices of agreement Kno (overall accuracy of the simulation) and Klocation
(level of agreement of location) [72]. However, considering that there are uncertainties
associated with the reliability of Kappa indices, it is suggested that other techniques such
as a cross-tabulation matrix with two simpler summary parameters including Quantity
Disagreement and Allocation Disagreement be used to summarize and better represent the
error matrix [71,73,74]. In this method, the value of a disagreement measure is considered
substantial if it exceeds 0.1 [75].

The Validation panel in TerrSet allows the user to determine the quality of the predicted
land-cover map in relation to a map of actual land cover by running a 3-way crosstabulation
between the later land-cover map, the projected map, and a reference land-cover map [58].
In this study, we ran the LCM module using NLCD 2011 (earlier map) and NLCD 2016
(later map) with and without the baseline CI layer to project a LULC map for 2019. We then
assessed the projection accuracy against the NLCD 2019 as the reference map.

5. Results
5.1. Land-Use Transitions

Comparing the NLCD maps of 2011 and 2019, we see considerable exchanges in
Deciduous/Mixed Forest, Evergreen Forest, and Shrubland/Herbaceous classes that can
be explained as the timber harvest and reforestation stages of forests managed for tim-
ber, many of which are pine plantations. Monoculture pine plantations are common in
the southeastern U.S. and the final harvest is typically a clearcut, hence most of these
changes are temporary land-cover changes that do not necessarily reflect long-term land-
use changes. However, looking at net changes in each LULC class we see a dramatic
decrease in Deciduous/Mixed Forest followed by Hay/Pasture and Evergreen Forest, re-
spectively, while there is a considerable increase in the Barren and Urban classes as a result
of mining activities, road construction and transportation infrastructure establishment, and
urban expansion (Tables 2 and 3). See the figures in the Supplementary for examples of
these land-cover categories.
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Table 2. Changes in LULC classes from 2011 to 2019.

LULC Class
Loss Gain Net Change Net Change

Area (ha) Area (ha) Area (ha) %

Water −405 710 305 4
Urban −23 10,643 10,620 12
Barren −638 1154 516 18
Deciduous/Mixed Forest −26,176 15,884 −10,292 −6
Evergreen Forest −36,381 31,980 −4401 −3
Shrubland/Herbaceous −37,582 44,160 6578 9
Hay/Pasture −8863 4198 −4665 −6
Cultivated Crop −1215 1243 28 0
Woody Wetlands −488 1800 1311 2

Table 3. Annual average of land-use exchanges within the UFW in an 8-year time interval from 2011
to 2019; change from (rows) to (columns) where negative and positive values represent losses and
gains, respectively. Amounts represented are average annual changes in the area of each land use,
measured in hectares.
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Water 0 3 −5 −1 0 −14 −1 0 −16
Urban −3 0 −17 −292 −254 −169 −397 −40 −7
Barren 5 17 0 −6 −33 −38 −2 −1 0
Deciduous/Mixed Forest 1 292 6 0 556 208 −45 28 99
Evergreen Forest 0 254 33 −556 0 829 −86 −13 27
Shrubland/Herbaceous 14 169 38 −208 −829 0 19 47 19
Hay/Pasture 1 397 2 45 86 −19 0 −10 16
Cultivated Crop 0 40 1 −28 13 −47 10 0 7
Woody Wetlands 16 7 0 −99 −27 −19 −16 −7 0

Total 34 1180 57 −114,356 −489 731 −581 3 146

Reviewing the exchanges between land-use classes, we see that changes from all other
land uses to urban areas tend to be more permanent. In other words, there seem to be lower
possibilities for conversion of urban areas to other land-use classes. Hay/Pasture, Decidu-
ous/Mixed Forest, Evergreen Forest, and Shrubland/Herbaceous classes contributed to
increases in urban area (Figure 2).

We identified dominant land-use transitions in the UFW, categorized under Urbaniza-
tion, Forestry Practices, Afforestation, and Deforestation sub-models, in order to inform
the MLP module. After Forestry Practices, Urbanization is the most common form of
land-use transition, followed by conversion of forestlands to land uses other than urban
areas. Figure 3 portrays major land-use changes with an area over 20 hectares in the UFW.
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5.2. Validation Results

Overall, Kappa indices for the projected maps using the CI layer and with no CI layer
for LULC 2019 are 0.97 and 0.95, respectively. Tables 4 and 5 represent Kappa indices for
separate categories along with Quantity Disagreement, Allocation Disagreement, and Total
Disagreement for projected maps. The error matrices of the projected LULC map without
using the CI layer, and with the CI layer against the NLCD 2019 map as the true reference
image, are provided in the Supplementary.

Table 4. Accuracy assessment results for the projected LULC map of 2019 without using the CI layer.
QD = Quantity Disagreement; AD = Allocation Disagreement.

LULC Kappa QD AD Total
Disagreement

Water 0.99 0.00 0.01 0.01
Urban 0.98 0.01 0.02 0.02
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Table 4. Cont.

LULC Kappa QD AD Total
Disagreement

Barren 0.63 0.25 0.12 0.37
Deciduous/Mixed Forest 0.95 0.00 0.05 0.05
Evergreen Forest 0.90 0.01 0.09 0.10
Shrubland/Herbaceous 0.66 0.00 0.33 0.33
Hay/Pasture 0.99 0.00 0.01 0.01
Cultivated Crop 0.99 0.00 0.01 0.01
Woody Wetlands 1.00 0.00 0.00 0.00

Total 0.95 0.27 0.64 0.91

Table 5. Accuracy assessment results for the projected LULC map of 2019 using the CI layer.
QD = Quantity Disagreement; AD = Allocation Disagreement.

LULC Kappa QD AD Total
Disagreement

Water 0.99 0.00 0.01 0.01
Urban 0.98 0.02 0.00 0.02
Barren 0.63 0.30 0.07 0.37
Deciduous/Mixed Forest 0.97 0.00 0.03 0.03
Evergreen Forest 0.95 0.03 0.05 0.08
Shrubland/Herbaceous 0.74 0.05 0.20 0.25
Hay/Pasture 1.00 0.00 0.00 0.01
Cultivated Crop 1.00 0.01 0.01 0.01
Woody Wetlands 1.00 0.00 0.00 0.00

Total 0.97 0.41 0.37 0.78

5.3. Projected LULC 2040

We projected year 2040 LULC maps under Business as Usual, Urbanization, Conser-
vation, and Maximum Forest Protection scenarios (Table 6). To do this, we incorporated
socio-economic and policy factors in the LCM module by multiplying the CI layers of
each development scenario to calculate the possibility of land-use transitions under each
sub-model combined with MC values (Figure 4).

Table 6. Total area projections in hectares for different LULCs in 2040 compared to 2001 and 2009
area calculations.

NLCD
2001

NLCD
2019

Projected LULC 2040

Business as
Usual Urbanization Conservation

Maximum
Forest

Protection

Water 7552 8171 8310 8310 8310 8310
Urban 73,393 86,548 101,039 104,202 99,334 91,805
Barren 2537 2862 3257 3232 2875 2758
Deciduous/Mixed Forest 191,147 181,369 171,426 170,689 173,193 175,422
Evergreen Forest 183,350 170,777 172,109 171,067 172,621 176,177
Shrubland/Herbaceous 51,519 70,888 74,356 73,747 74,973 75,830
Hay/Pasture 94,288 83,108 72,528 72,278 73,176 73,176
Cultivated Crop 20,501 20,722 20,922 20,922 20,963 20,964
Woody Wetlands 56,780 56,621 56,618 56,618 56,623 56,624
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Focusing on Deciduous Forest, Evergreen Forest, Shrubland/Herbaceous, Urban, and
Hay/Pasture as land uses with considerable changes, we expect a decline in the Pasture
and Deciduous/Mixed Forest classes under all 2040 development scenarios. The total area
of Evergreen Forest is expected to remain roughly the same or to experience an increase
under all the future scenarios (the decline in the 2001–2019 period was largely due to the
establishment of Lake McIntosh near Peachtree City).

6. Discussion

In this research, we chose to use NLCD maps for 2011 and 2019 to study dominant
LULC changes, allowing the models to avoid being overly influenced by occasional massive
anthropogenic changes such as the McIntosh Dam establishment or the Atlanta Hartsfield-
Jackson expansion project that happened in earlier periods. We also used NLCD maps of
2011, 2016, and 2019 to compare observed changes in our projected LULC map for 2019
and validate our model.

Comparing the model validation results, we found that incorporating socio-economic
and policy factors through the CI layer helped to improve the projection approach, de-
creased total disagreements among classes, and slightly improved the Kappa indices for
LULCs. However, there remain considerable false projections among Shrub/Herbaceous
and Barren land as these two LULC classes are the most transient land uses in the region
due to prevailing forestry practices as well as activities such as solar panel installment,
establishment of road construction projects or mining activities. Moreover, land-use classes
with similar reflectance in satellite images may lead to classification confusion among some
LULC classes, hence there are classification errors associated with these two land uses that
can negatively affect the overall accuracy level of projected maps [56,76,77].

The LULC transition analysis shows that Barren, Urban, and Shrubland/Herbaceous
categories are increasing over time while Deciduous/Mixed Forest, Pasture, and Evergreen
Forest are declining. However, the apparent decline in Evergreen Forest and the increase in
Shrubland/Herbaceous is likely due to the timber harvest and re-establishment processes
typical of the southeastern U.S. Forest harvest and urbanization are the predominant LULC
change drivers in the UFW.
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Projected LULC maps of the UFW for the year 2040 under all of our hypothetical
development scenarios anticipate consistent expansion of urbanized area and consequently
a dramatic decline in the Deciduous/Mixed Forest category. Deciduous/Mixed Forest is
also losing ground via conversion to pure Evergreen Forest. At the same time, we anticipate
a constant increase in the Evergreen Forest and Shrubland/Herbaceous categories under all
development scenarios except for the Urbanization scenario, suggesting that the total area
of Evergreen Forest will remain relatively constant even under high urbanization pressures.

A comparison of our Business as Usual and Urbanization scenarios reveals that the
decline in Deciduous/Mixed Forest is almost the same in both scenarios, while under the
Business as Usual scenario we can expect an increase in Evergreen Forest. This indicates
that current conservation policies, mostly voluntary incentive programs, are more effective
in protecting the more commercially valuable Evergreen Forest than the potentially more
ecologically valuable Deciduous/Mixed Forest [56]. Comparing the Maximum Forest
Protection scenario with other development scenarios, we see that Deciduous/Mixed
Forest continues to decline at a slower pace while Evergreen Forest increases dramatically.
Small (less than 20 ha) parcels of Deciduous/Mixed Forest located in proximity to dense
developed areas are the most likely to be converted to urban areas as a result of urban
growth in rural areas, while the loss of larger Deciduous/Mixed Forest parcels in rural
areas farther from metropolitan areas is due to motivations for maximizing revenue from
forestry practices through conversion to intensive pine plantations.

Under the Urbanization scenario with a loosening of current conservation policies and
higher market pressure promoting development, we see a lower growth rate in Evergreen
Forest when compared to other scenarios. Evergreen Forest continues to expand, however it
does so at a lower rate than the loss of Deciduous/Mixed Forest. Loss of the latter category
is pronounced in the upper parts of the UFW. In other scenarios the total area of Evergreen
Forest remained constant or increased. The lower rate of Evergreen Forest expansion in the
upper parts of the UFW under the Urbanization scenario is likely due to parcelization and
the fact that forestry practices in small parcels cannot compete with the high development
market pressures within proximity to the AMA due to economies of scale. Our findings
are aligned with other studies focused on Georgia’s forest cover transitions suggesting
that Evergreen Forest is increasing in Georgia’s exurban and rural areas but decreasing in
proximity to urban areas [7,10,47,78,79].

Although our four scenarios provide marked contrasts with one another, all four are
informed by past patterns of LULC change. Novel policy or socio-economic dynamics could
alter trajectories in the UFW in ways that are currently difficult to anticipate. For example,
to date, Georgia forest owners have been relatively inactive in carbon offset markets,
but changes in market conditions or in climate policy could affect landowner decision-
making in ways that result in greater forest conservation or establishment. Likewise,
Woody Wetlands showed relatively little change under any scenario here, but very recent
changes in federal Clean Water Act interpretation could potentially result in the loosening
of restrictions on conversion of these valuable ecosystems to other land uses. At the same
time, sudden shifts or “tipping points” in climate feedbacks could make some current
land uses economically and ecologically inviable and open the possibility to expand other,
currently inviable, uses.

7. Conclusions

This work demonstrated that deforestation as a result of urban expansion can be
quantitatively projected to a future time point using the LCM model with reasonable
accuracy. Previous research on projection approaches has also suggested that the LCM
is suitable for simulating new development in regions with urban densities of less than
80 percent [74]. While our accuracy assessments represented an acceptable level even
without using the CI layer, the integration of socio-economic and policy factors through
the CI layer along with biophysical variables helped to include random, chance events
of new development far from existing urban areas and to better anticipate the trajectory
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of land-use changes in urbanized watersheds. This complements previous studies that
emphasize the importance of incorporating socio-economic variables [27,42,80,81] and the
proximity of roads [78], rivers, and areas with flat topography [10,80] to project complex
human-natural dynamics. However, based on the findings of this study, incorporating
socio-economic and policy factors into projection approaches adds more complexity to
projection models while adding only modest improvements in accuracy. Given the tradeoffs
between model complexity and errors, and the fact that adding details to a model does not
always guarantee an increase in its reliability [17], we believe users should rely on their
understanding of their study regions’ anthropogenic changes, available effective policies,
and demographic factors when deciding upon the level of desirable complexity in their
projection method.

Projecting LULC under various development scenarios helps decision-makers and
stakeholders explore the outcomes of different levels of change in demographic factors
or conservation policies. For instance, comparing results of the Business as Usual and
Urbanization scenarios showed that under a constant population growth rate, a slight
loosening of current conservation strategies accompanied by market pressures can lead to
excessive loss of forestlands, especially the valuable Deciduous/Mixed Forest category and
its numerous ESs. Despite the higher weight given to development constraint factors in
the Conservation scenario, we still see a constant decline in Deciduous/Mixed Forest. This
points to the need for more effective conservation strategies and policy tools if maintaining
the same level of available ESs in the future is desired, especially in watersheds with higher
urbanization pressures [10,79,82].

Comparing the LULC projection model validation results showed that including LULC
change driving forces via the CI layer helps to produce more reliable LULC projections. In
addition, this approach provides the opportunity to simulate and visualize the outcomes
of various hypothetical development scenarios that can be useful in development plan-
ning, natural resources management, risk assessment and management, policy design,
and decision-making processes. Our findings are aligned with previous studies empha-
sizing the importance of including socio-economic and policy factors in LULC projection
approaches [10,42,79,82].

8. Limitations and Uncertainties

In regions with extensive areas under intensive forestry practices, such as pine planta-
tions in the southeastern U.S., land-cover changes due to timber harvest and replantation
processes can cause misclassifications and reduce the overall accuracy level of projection
analysis. All of the data we used in this study are publicly available for the entire contermi-
nous United States, which makes this projection approach replicable in other regions within
the U.S. However, LULC change forces vary substantially across regions and users may
need to modify the approach based on local natural and anthropogenic factors, economic
activities, and state- to local-level policies.

Supplementary Materials: The following supplementary information can be downloaded at https:
//www.mdpi.com/article/10.3390/su151914270/s1. Table S1. LULC Class definitions and reclassifi-
cation IDs (source: https://www.mrlc.gov/data, accessed on 27 February 2021); Table S2. Species
listed as federally threatened or endangered under the Endangered Species Act within the UFW as of
2022; Table S3. An example of Markov chain matrix used for model validation using NLCD2011 and
NLCD 2016; Table S4. An example Markov chain matrix used for projecting LULC 2040 generated
based on NLCD 2011 and NLCD 2019; Table S5. Error matrix of the projected LULC without the CI
layer (rows) against the NLCD 2019 map (columns) as the reference image; Table S6. Error matrix of
the projected LULC using the CI layer (rows) against the NLCD 2019 map (columns) as the reference
image; Figure S1. Urban sprawl in Deciduous/Mixed forests in the UFW, GA; Figure S2. Solar panel
farms in the UFW, GA; Figure S3. Kaolin Mines within the UFW, GA; Figure S4. The Flint River, GA;
Figure S5. Deforestation due to road development in the UFW, GA; Figure S6. Deforestation due to
road development in the UFW, GA. References [83–97] are cited in supplementary materials.

https://www.mdpi.com/article/10.3390/su151914270/s1
https://www.mdpi.com/article/10.3390/su151914270/s1
https://www.mrlc.gov/data
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