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Abstract: To improve the reliability of the computational fluid dynamics (CFD) models of wind-
driven pollutant dispersion within urban settings, a re-calibration study is conducted to optimize
the standard k− ε model. A modified optimization framework based on the genetic algorithm is
adapted to alleviate the computational expenses and to further identify ranges for each empirical
coefficient to achieve the most reliable and accurate predictions. A robust objective function is
defined, incorporating both the flow parameters and pollutant concentration through several linear
and logarithmic measures. The coefficients are trained using high-quality and full-scale tracer
experiments in a mock urban arrangement simulating a building array. The proposed ranges are
0.14 ≤ Cµ ≤ 0.15, 1.30 ≤ Cε1 ≤ 1.46, 1.68 ≤ Cε2 ≤ 1.80, 1.12 ≤ σε ≤ 1.20, and 0.87 ≤ σk ≤ 1.00. A
thorough evaluation of the predicted flow and concentration fields indicates the modified closure is
effective. The fraction of predictions within the acceptable ranges from measurements has increased by
8% for pollutant concentration and 27% for turbulence kinetic energy. The generality of the calibrated
model is further tested by modeling additional cases with different meteorological conditions, in
which the calculated validation metrics attest to the noteworthy improvements in predictions.

Keywords: CFD; pollutant dispersion; urban setting; ABL; RANS; Closure model optimization

1. Introduction

The continuous growth in the world’s population in recent decades and the need for
higher living standards have led to rapid urbanization worldwide [1,2]. However, despite
the countless benefits of the ongoing developments, several detrimental impacts on the
environment and public health are also inevitable. The emergence of industrial facilities,
along with the growth in the popularity of motor vehicles, have aggravated poor urban air
quality [3–5]. Additionally, the intensive construction of crucial infrastructures in response
to rapid urbanization has resulted in a compact and diverse arrangement of the buildings [6].
With these growing pressures, anticipating and controlling the possible health hazards
of living in compact regions has become a topic that requires attention. The constantly
changing layout of urban areas affects the wind flow patterns, which, if not properly
planned, can aggravate poor air quality by progressively worsening urban ventilation
performances [7]. Therefore, to mitigate the possibility of pollutant accumulation, assessing
the wind flow field and the dispersion patterns around the buildings prior to construction
is strongly advised [8,9].

Full-scale field measurements and reduced-scale laboratory experiments (i.e., wind
tunnels and water channels) have been used in the past to investigate wind flow and dis-
persion patterns around the buildings and to further identify design shortcomings [10–14].
Even though field measurements can account for the realistic atmospheric state, the un-
controlled meteorological conditions make it costly to independently study influencing
parameters and collect data that can be used to predict dispersion patterns [15].
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Reduced-scale experiments can be performed in a controlled arrangement, facilitating
parametric studies. However, in addition to missing actual environmental effects, this
method has some disadvantages, such as complicated scaling and similarity issues [16].
The apparent complexities, limitations, and high costs associated with the experimental
methods have limited their applications to general cases mainly used for model validation
studies. Therefore, the need for a more effective and practical approach has made computa-
tional fluid dynamics (CFD) very popular among environmental researchers and urban
planners [17,18].

CFD can estimate the pollutant concentration and other flow characteristics on ev-
ery grid point in a computational domain and is generally less costly than experiments.
However, the numerical modeling of the urban dispersion flow within the atmospheric
boundary layer (ABL) is quite challenging due to its turbulent nature with large-scale
recirculation zones and three-dimensional strain fields [11]. Therefore, considering ap-
propriate assumptions and modeling settings at every step of the process is essential to
having a reliable and efficient CFD model . That includes efforts to evaluate the applicable
approaches to treat the governing equations, examples being Reynolds-averaged Navier–
Stokes (RANS) and large eddy simulations (LES) [19]. LES was found to produce relatively
richer results than RANS by resolving the large and most prominent eddies; however,
that comes with prohibitively greater computational demands. Given the large size of the
computational domain in urban dispersion studies and the focus in the mean quantities
of flow characteristics (assuming a continuous release of the pollutant from the source),
RANS has remained quite popular in resolving the Navier–Stokes equations [20–23].

The time-averaged treatment of this completely chaotic and randomized phenomenon
(i.e., turbulent atmospheric dispersion flow) can be achieved by applying the Boussinesq
hypothesis to model the intermittent shear fluxes [24]. However, neglecting the available
fluctuations during the momentum transport (using modeled turbulence viscosity) under-
mines the reliability of the CFD model predictions. Under-prediction of the turbulence
kinetic energy (TKE) or inaccurate representation of the separation points and the reattach-
ment lengths in flows around bluff bodies are among the few well-established flaws of
RANS [25]. Several closure models, along with their modifications, have been introduced
over the years to remediate these deficiencies. Notably, these models were developed in the
context of conventional classical flows (e.g., fully developed turbulent channel flow, simpli-
fied wall-bounded, or free shear flow, etc.), but their applications can be extended to a wide
range of engineering problems [26]. Despite the apparent disparity between the nature of
the mentioned classical flows and the ABL flow, common two-equation closures, such as
standard k− ε [27], realizable k− ε [28], renormalization group (RNG) k− ε [29], and the
shear stress transport (SST) k−ω [30] have been widely used in urban studies [15,31]. To
ensure the reliability of an urban dispersion model, conducting a sensitivity study to select
the most suitable closure for the specific case of interest is advised [32–35]. Moreover, the ac-
curacy of the selected model in the context of ABL can be further improved by re-calibrating
the empirical coefficients to better fit the critical features of this particular flow.

The majority of CFD codes employ the revised values offered by Launder and
Spalding ([27]) as the default closure coefficients for the standard k− ε model (Cµ = 0.09,
Cε1 = 1.44, Cε2 = 1.92, σk = 1, and σε = 1.3). Previous researchers have made efforts to
modify the closure coefficients with the purpose of improving the representation of the
urban flow in various cases. As one of the initial attempts, Detering [36] modified the
original definition of coefficients for modeling the neutrally stratified, one-dimensional
atmospheric flow over flat and irregular terrain (e.g., hills, valleys, etc.). In this work,
Cµ was assumed to be inversely proportional to the depth of the atmospheric boundary
layer, which consequently led to a new set of constants (Cµ = 0.03, Cε1 = 1.13, Cε2 = 1.9,
σk = 0.77, and σε = 1.29). Later, Bechmann proposed a hybrid RANS/LES method based
on the standard k− ε model and adopted a Cµ = 0.03, as suggested for atmospheric flows
over irregular terrain, instead of the original value of 0.09 for industrial flows [37]. The
number of unknowns was reduced in this proposed adjustment by keeping Cε2, σk, and σε
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the same as the standard values but calculated Cε1 = 1.30 using an empirical correlation
between the model constants in the ABL. The mentioned correlation was developed by
Richards and Hoaxy [38], assuming constant shear stress in the atmospheric surface layer,
resulting in an equilibrium between shear production and viscous dissipation. The results
of Bechmann’s model of flow over Askervein hill showed an improved accuracy com-
pared to the ones offered by Detering. However, it could not be confidently distinguished
whether this progress was mainly due to the re-calibration of coefficients or the proposed
hybrid model.

The modification of the standard k− ε model was further extended to a more compli-
cated scenario by Guilass et al. [39], in which the airflow within a regular street canyon
was considered. The authors performed a Bayesian calibration to tune four out of the five
constants by excluding σε and calculating it directly via the correlation between the model
constants within the ABL [38]. The vertical profile of the TKE at the center of the street
canyon was considered as the optimization objective, and the results of the 135 CFD runs
were processed to determine a set of constants that produced the preferable match with
the wind tunnel measurements (Cµ = 0.12, Cε1 = 1, Cε2 = 2.1, σk = 0.46, and σε = 0.42). In
another work by Zahid Iqbal and Chan [40], an investigation of the wind flow field around
a cross-shaped building at the pedestrian level was conducted. The modification of the k− ε
closure model in this attempt was based on the proposed coefficients by Guilass et al. [39].
The number of unknowns was reduced to simplify the process by just varying Cµ at four
equal intervals within the range of 0.09–0.12 while keeping the values of σk = 0.53 and
σε = 0.5 constant, as suggested by Edeling et al. [41]. Setting the normalized velocity field
as the modification objective in their study, Cµ = 0.12 was shown to provide the least
discrepancies with wind tunnel measurements, though the superiority of the tuned model
over the one proposed by Guilass et al. [39] was insignificant. This conclusion heightens
the importance of calibrating the whole set of coefficients simultaneously to accomplish a
worthwhile improvement, in contrast to alleviating the computational complexity by just
doing a linear sensitivity study on a selected coefficient.

The demonstrated uncertainty inherent in these coefficients implies the necessity of
their objective modification within the reference frame of generic case studies. Because of
the non-linear relationship between coefficients, a complete closure optimization for ABL
flow in large models (e.g., compact urban settings) becomes substantially more challenging.
Implementing data assimilation methods, such as the Bayesian calibration, demands a
large number of CFD runs, creating the need for more robust optimization approaches to
obtain the best coefficient set. In this regard, Shirzadi et al. [42] used stochastic optimization
combined with the Monte Carlo sampling scheme and adopted the streamwise velocity
around an isolated building as the optimization objective. They used available wind tunnel
measurements to introduce a set that better represents the flow characteristics compared
with the standard model (Cµ = 0.146, Cε1 = 1.489, Cε2 = 2.801, σk = 1, and σε = 0.373).
Shirzadi et al. later performed a parametric sensitivity study to evaluate the possibility
of improving the numerical simulation of cross-ventilation in compact urban regions [43].
They did not use an optimization framework in this study but mitigated the associated
computational costs by considering 10 uniformly distributed values for each coefficient
within the recommended ranges. The resultant set only offered modifications to Cε2 and
σε (3.2 and 0.35, respectively), while keeping the rest of the coefficients the same as their
original values. The aptness of the suggested coefficients was examined using wind tunnel
measurements of the wind pressure difference over the faces of the central building (i.e., the
objective function in this study). Even though an improved agreement with measurements
was observed, the accuracy of the calibrated model was found to be inadequate and in
need of further efforts [44].

Objectives

Following the previous endeavors, this study aims to enhance the reliability and
generality of the closures in ABL dispersion studies. Based on the presented review, a
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well-tested set of coefficients that accurately represents the pollutant concentration field
within an urban array has yet to be developed. The current research is part of a project to
improve the existing practices in dispersion modeling. In our previous paper, the effects
of several critical modeling decisions (e.g., closure model, inflow boundary conditions,
computational domain size, and turbulent Schmidt number) were investigated, and a
relatively efficient framework was introduced [35]. Considering different venting scenarios
(i.e., various source locations), the standard k− ε model coupled with the locally variable
turbulent Schmidt number (Sct) was found to be the most efficient setup with the least
calculated deviations from field measurements. Therefore, the present study conducts a
thorough optimization of the standard k− ε closure by incorporating the recommended
modeling settings.

The importance of selecting a high-quality data set for the robust calibration of the
turbulence model constants is undeniable. Among all of the previous attempts reviewed,
none included the pollutant concentration field in their defined focus parameters. Addi-
tionally, to the best of our knowledge, all earlier ABL calibration studies used reduced-scale
wind tunnel data produced in controlled and steady test arrangements. Full-scale field
measurements, however, have the effects of constantly varying the meteorological features
and realistic atmospheric conditions inherent in them, making them very valuable for
improving the time-averaged representation of an intrinsically unsteady phenomenon.
To this aim, the unique data set of the mock urban setting tests (MUST) is employed, as
it provides comprehensive measurements of both the concentration and airflow fields
throughout a compact building array (74 measuring points for the concentration field and
22 measuring points for the airflow field) [45]. Using full-scale field measurements of this
kind creates an unprecedented opportunity to account for realistic atmospheric features
that could potentially lead to a more accurate representation of the dispersion flow by
RANS simulations. Given the variation in the concentrations in a broad range inside the
domain (0.001–100 ppm), an exhaustive statistical analysis is carried out that includes both
the linear and logarithmic validation metrics. In addition to the optimization objective,
the predicted turbulence characteristics are also assessed to evaluate uncertainties of the
coefficients more extensively. Ultimately, three other test cases representing different mete-
orological conditions (e.g., inflow wind speed and turbulent kinetic energy, wind direction,
etc.) and source locations are modeled to further examine the generality of the proposed
set of constants for an idealized array simulating urban regions.

2. Mathematical Model

The pattern in which an emitted pollutant stream is dispersed in the ABL heavily
depends on the wind regime and flow features. In this regard, acquiring a solid under-
standing of urban flows is essential prior to characterizing the physics of this phenomenon.
The ABL generally refers to the lowest portion of the atmosphere, which can be divided
into two main sublayers. The outer region (i.e., the Ekman layer) makes up approximately
90% of this layer and shows a balance among pressure gradient, friction, and Coriolis
forces. The inner region (i.e., the surface layer) exhibits strong vertical fluxes of physical
quantities with negligible variation within its depth [46]. As our work aims to model
pollutant dispersion within a compact urban setting, the surface layer is the area of interest
in investigating the flow characteristics. Therefore, disregarding the Coriolis effects on the
direction of the urban wind flow is deemed an acceptable assumption. This claim can be
further argued by assessing the non-dimensional Rossby number (Ro), which quantifies
the ratio of inertial to Coriolis forces [47]. Given the typical velocity and length scales in
urban studies, Ro is estimated to be in the order of 103, which indicates a strong dominance
of inertial forces [35].

The atmospheric flows in urban areas with a horizontal length scale of less than
10 km are typically treated at the micro-scale range [48]. The CFD simulation of pollutant
dispersion within this spatial scope demands explicit modeling of the available structures.
These roughness elements, such as buildings of varying shapes and dimensions, intensify
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the turbulent nature of the ABL flows. This generates three-dimensional flow features, such
as flow separation, recirculation, and substantial directional change of the wind around
the bluff bodies. As a result, eddies with varying lengths and time scales are formed,
and modeling them requires special considerations. The RANS equations would be an
appropriate method to employ in cases dealing with time scales that are considerably
greater than turbulent fluctuations. On pollutant dispersion modeling in full-scale urban
geometries, the RANS equations provide an acceptable compromise between accuracy and
computational cost and are, therefore, adopted in this study.

The physics of a steady-state, incompressible, and iso-thermal flow within a neutrally
stratified atmosphere with no body forces can be described by time-averaged continuity
and momentum equations:

∂ui
∂xi

= 0 (1)

uj
∂ui
∂xj

= −1
ρ

∂p
∂xi

+ ν
∂2ui

∂x2
j
−

∂u′iu
′
j

∂xj
(2)

where ui and u
′
j are the mean and fluctuating velocity components in the Cartesian direc-

tions of xi and xj, respectively (i, j = 1, 2, 3). ρ is the air density, p is the time-averaged
pressure, and ν is the kinematic viscosity defined as ν = µ/ρ with µ being the dynamic vis-
cosity. The Reynolds stress tensor (u′iu

′
j) further promotes an enhanced diffusive transport

of momentum due to the fluctuating velocity components. However, this term introduces
additional unknowns, leading to more variables than the available equations. Assuming an
isotropic turbulent flow, the Boussinesq hypothesis can be applied to model these Reynolds
stresses in terms of mean velocity gradients:

−u′iu
′
j = 2

(
νtSij −

1
3

kδij

)
(3)

Sij =
1
2

(
∂ui
∂xj

+
∂uj

∂xi

)
(4)

k =
1
2

u′iu
′
i (5)

in which Sij represents the mean strain rate tensor, k is the turbulence kinetic energy (i.e.,
TKE), δ is the Kronecker delta, and νt denotes the eddy viscosity.

νt is a parameter defined as a property of the flow to reflect and control turbulence
through a form of viscosity, analogous to the role of molecular viscosity in a laminar
flow [49]. In order to mathematically close the governing equations, several eddy-viscosity
closure models have been developed over the years to approximate νt and provide sup-
plementary equations. These closures aim to model the eddy viscosity as a product of
turbulent velocity and length scales. Based on the argument made in the introduction, the
standard k− ε model is adopted in the current study to model νt and estimate all the other
turbulence quantities [49]. The TKE represents the turbulent velocity scale in this closure
and can be calculated using a transport equation as follows:

uj
∂k
∂xj

=
∂

∂xj

[(
ν +

νt

σk

)
∂k
∂xj

]
− u′iu

′
j
∂ui
∂xj
− ε (6)

where σk is a model constant referred to as turbulence Prandtl number, and ε represents the
dissipation rate of the TKE into internal energy (heat). The second term on the right-hand
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side of the Equation (6) serves as a source of TKE production (Pk), which can alternatively
be expressed in terms of the mean velocity shear stresses using the Boussinesq hypothesis:

Pk = −u′iu
′
j
∂ui
∂xj
≈ νt

(
∂ui
∂xj

+
∂uj

∂xi

)
∂ui
∂xj

(7)

In addition to the TKE, another turbulence quantity is required to estimate the associ-
ated length scales of eddies within the flow field. The appearance of the dissipation rate in
the form of a sink term in Equation (6) suggests that solving a transport equation for ε is a
logical choice to close the equation set. It is worth noting that the TKE equation remains
the same among all variants of k− ε closure, whereas the proposed equation for ε is what
distinguishes these models. Using the standard version of the k− ε model, the transport of
ε can be resolved by:

uj
∂ε

∂xj
=

∂

∂xj

[(
ν +

νt

σε

)
∂ε

∂xj

]
+

ε

k
(Cε1Pk − Cε2ε) (8)

σε, Cε1, and Cε2 are the model’s empirical constants that were derived through intensive data
fitting with a number of classical flows [27]. The TKE and dissipation rates resulting from
supplementary equations can be further used in Equation (9) to estimate the eddy viscosity.
The factor of proportionality in this equation, Cµ, is another empirical model constant.

νt = Cµ
k2

ε
(9)

The dispersion of the pollutant within the resolved wind and turbulence fields can be
modeled by solving the Eulerian advection–diffusion transport equation. Considering a
neutrally buoyant and inert gas emitting from a source point without initial momentum,
the Reynolds averaging method is once again employed to decompose the instantaneous
quantities (i.e., velocity components and scalar concentration) into their mean and fluctuat-
ing elements:

uj
∂c
∂xj

=
∂

∂xj

(
D

∂c
∂xj

)
−

∂u′jc
′

∂xj
+ S

′
(10)

where c and c
′

are the mean and fluctuating scalar concentrations, respectively. S
′

denotes
the scalar source term, and D represents the molecular diffusivity defined as the ratio of
molecular viscosity to molecular Schmidt number (D = ν

Sc ). Equation (10) is coupled with
the RANS equation system in one-way under the assumption of a passive scalar, which
considerably reduces the computational cost and modeling complexity [50].

The convective transport of the scalar concentration due to the fluctuating velocities
(i.e., unresolved flow field) is expressed by u′jc

′ . With an analogy similar to the Boussinesq
hypothesis (i.e., the random isotropic motion), the standard gradient diffusion hypothesis
(SGDH) assumes that the turbulent convective transport of a scalar occurs in the direction
of the time-averaged concentration gradient [51]. From this, the turbulent scalar transport
can be approximated as follows:

−u′jc
′ = Dt

∂c
∂xj

(11)

Similar to eddy viscosity, eddy diffusivity (Dt = νt
Sct

) is also a property of the tur-
bulence and not of the fluid. On another note, a normalized definition of pollutant con-
centration (C∗) is used in this work for making comparisons between predictions and
measurements. In this equation, Ure f is the upstream reference velocity, C is the predicted
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or measured concentration at a given location, Hre f is a reference length scale, and qs is the
volumetric flowrate at which the pollutant is being released from the source.

C∗ =
10−6Ure f CH2

re f

qs
(12)

The turbulent Schmidt number, Sct, is a variable in the scalar transport equation that
substantially affects the accuracy of the predicted concentration field. Having in mind
that the turbulent mass flux is approximated through a closure assumption (i.e., SGDH), a
universal value of Sct cannot be determined [52]. To this end, similar to the coefficients of
the eddy-viscosity turbulence models, obtaining case-dependent Sct might be a practical
approach. However, in addition to the time demanding sensitivity studies required by this
approach, several experimental and validated numerical studies have demonstrated the
strong local variability of Sct [53,54]. As part of our ongoing efforts to improve the reliability
of the urban dispersion modeling, the proposed framework in [35] is adopted in this study.
Following these recommendations, a well-tested locally variable Sct is incorporated into the
advection–diffusion equation. The aforementioned Sct formulation accounts for the local
state of turbulence and estimates the optimum value in every computational node [55].
The implementation of the locally variable Sct further strengthens the dependency of the
transport equation on the flow-related parameters. Using Equation (13), Sct is defined as:

log(Sct) = 0.6617 Sc− 0.8188 Ret
0.01 − 0.00311 S− 0.0329 Ω (13)

Ret =
k2

νε
(14)

S =
k
ε

√√√√1
2

(
∂ui
∂xj

+
∂uj

∂xi

)2

(15)

Ω =
k
ε

√√√√1
2

(
∂ui
∂xj
−

∂uj

∂xi

)2

(16)

where Ret is the turbulent Reynolds number, S is the strain rate invariant, and Ω is the
vorticity rate invariant.

3. Closure Model Calibration

The empirical coefficients of RANS closures were primarily tuned to provide a satisfac-
tory compromise between accuracy and applicability to a broad range of flows. However,
a review of the previous studies shows that these coefficients are not universal, implying
they can be further adjusted for turbulent flow in case studies that were not originally con-
sidered [56]. This paper addresses the identified research gaps by developing an adjusted
set of coefficients suitable for ABL dispersion flows within a generic form of urban settings.

A vital step in this process is deciding on the appropriate output constraints upon
which to base the modification of the model coefficients. To improve the reliability of
the air quality assessments in urban regions, a closure re-calibration is carried out, in
which the pollutant concentration field and the flow field parameters (velocity and TKE)
are set as the test parameters. The training case study is taken from a comprehensive
full-scale measurement campaign ([45]), which integrates realistic environmental effects.
A preliminary investigation of this dispersion data set shows the wide-ranging variation
in the concentrations throughout the domain, ranging from 100 ppm near the source to
0.001 ppm downstream and away from the centerline (five orders of magnitude). Thus,
specific considerations are required to define and evaluate the validation metrics for scalar
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concentrations by including logarithmic criteria, as using the typical linear measures alone
would bias the fitting toward high-concentration zones.

We have chosen three linear and two logarithmic measures to examine the agreement
of our numerical predictions with full-scale dispersion measurements. These measures were
defined by Chang and Hanna [57], and their reliability and effectivity were exhaustively
tested using several full-scale dispersion datasets [58]:

FB =
(Co − Cp)

0.5(Co + Cp)
(17)

NMSE =
(Co − Cp)2

Co Cp
(18)

MG = exp(ln Co − ln Cp) (19)

VG = exp[(ln Co − ln Cp)2] (20)

FAC2 =
1
N

N

∑
i=1

ni

ni =

{
1 if 0.5 ≤

∣∣∣ Co
Cp

∣∣∣ ≤ 2

0 otherwise

(21)

Co and Cp are observed and predicted concentrations, respectively, while an overbar
denotes the average over the dataset with N sampling points. FB and MG are fractional
and mean geometric biases, respectively, metrics that measure the overall under/over-
prediction. NMSE is the normalized mean square error, and VG is the geometric variance,
quantifying the linear and logarithmic scatter of the predictions, respectively. FAC2 is
another linear metric that denotes the fraction of predictions within the factor of 2 of
the measurements. The necessity of analyzing all these measures lies in the nature of
the atmospheric pollutant distribution. Linear metrics could be inordinately affected by
the random extreme values, while logarithmic treatments might reflect a more balanced
interpretation of them [58]. The ideal value of these performance measures and their
acceptable ranges for field experiments are presented in Table 1. The application of these
metrics is not limited to evaluating the predicted concentration field, as they also can be
effectively considered to assess all the other flow parameters. Nevertheless, FAC2 might
not be an adequately robust criterion for measuring the deviations between the observed
and modeled velocity and TKE fields. Preliminary investigations indicated that even
models with relatively deficient accuracy exhibit FAC2 larger than 85% for velocity and
TKE. Hit-Rate (HR), on the other hand, sets more strict criteria and, therefore, could be an
appropriate substitution for FAC2. As it can be deduced from Equation (22), HR gives the
fraction of data points in which the relative deviation of predictions is within 25% of the
measured values. Pi and Mi are the predicted and measured values of a parameter at data
point i, respectively. An HR of at least 66% is required for the CFD model to be considered
valid [59].

HR =
1
N

N

∑
i=1

mi

mi =

{
1 if

∣∣∣ Pi−Mi
Mi

∣∣∣ ≤ 0.25

0 otherwise

(22)
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Table 1. The ideal value and the recommended ranges for validation metrics [58].

Validation Metrics FB NMSE MG VG FAC2 HR

Ideal value 0 0 1 1 1 1
Acceptable ranges −0.3–0.3 0–4 0.7–1.3 1–1.6 0.5–1 0.66–1

Having the focus parameters defined as discussed, employing a systematic and so-
called “economic” optimization scheme is utterly crucial to modify the input variables (i.e.,
closure coefficients). In our work, a recommended optimization framework ([44]) is adopted
and modified to carry out a rigorous calibration of the standard k− ε model (adjusting all
five coefficients) in the context of a large model (i.e., full-scale urban dispersion flow).

The inherent uncertainties of the empirical coefficients, combined with their highly
nonlinear and synergistic effects on the output variables, make any linear sensitivity ap-
proach ineffective in obtaining an optimized set. Despite that, simple screening techniques
can still be adopted to determine the input variables with the most influence on the valida-
tion metrics [42]. Here, the relative contribution of each closure coefficient to the predicted
concentration field will be assessed by quantifying its elementary effect [60]. For a selected
validation metric denoted by G, which is assumed to be a function of the vector of coeffi-
cients F = ( f1, · · · , fm), the first derivative term of the Taylor series can be used to give a
measure of the elementary effect for each coefficient:

Ei(F) =
[G( f1, · · · , fi + ∆i, · · · , fm)− G(F)]

∆i
(23)

where m is the number of coefficients to be assessed, and ∆i are step lengths determined
to account for the variation of the ith coefficient within a given range. Furthermore, the
mean Ei and the standard deviation σEi of the elementary effects related to each input
variable must be calculated. The interpretation of these quantities provides valuable insight
into the possibility of prioritizing some coefficients over others, potentially simplifying
the optimization exercise [61]. Therefore, any coefficient that demonstrates negligible
and quasi-linear impacts on output variables can be ignored at the optimization stage by
keeping it at its standard value. The modified value of this coefficient can be obtained later
by performing a sensitivity analysis while the optimized values for other closure constants
are considered.

The amended list of the coefficients, together with their revised ranges from the
previous step, should be put through the calibration process. The eddy-viscosity closure
coefficients are pragmatic in definition; hence, their optimum value for producing reliable
and accurate outputs (i.e., pollutant concentration distribution and flow parameters in this
study) cannot be attained through a deterministic approach. An appropriate optimization
scheme can be implemented in such cases to effectively navigate the performance variation
caused by the random but targeted variation of the coefficients in the considered parameter
space. To mitigate the effects of the available uncertainties on output variables, two
intrinsically analogous and robust objective functions are defined to be used at two levels
of the optimization [62]:

O f 1 =
l

∑
i=1

(Gi − Γi)
2 (24)

O f 2 =
l

∑
i=1

[(Gi − Γi)
2 + σGi

2] (25)

Equation (24) is employed for assessing the performance of each analyzed set, aiding
in the deliberate choice among them in every optimization trial, while Equation (25) con-
tributes to refining the ranges following each iteration of optimization. For the validation
metric i, Gi is its calculated value for each considered coefficient set with Gi and σGi as
its mean and standard deviation over each optimization iteration, respectively. Γi is the
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ideal value for the ith validation metric, and l is the number of metrics included in this
calibration study. The ranges for all input variables should be adjusted to minimize the
objective function O f 2. The first term in Equation (25) ensures the accuracy of the model,
while the second term ensures its reliability by reducing the variation in output responses
within the proposed ranges.

Considering the complex and multidimensional parameter space in this work, the
genetic algorithm (GA) was adopted and carefully adjusted to carry out the calibration
exercise. GA is an optimization technique inspired by the natural selection analogy that
facilitates reaching an optimal solution through evolution [63]. It offers balanced exploita-
tion (cross-over) and exploration (mutation) of the search space, which effectively produces
populations of new coefficient sets with a higher potential for success. Different adjust-
ments of GA were tested to form a framework that best serves the re-calibration study in
this work. Random selection of the coefficient sets from investigated ranges is carried out
by employing the Monte-Carlo sampling method [64]. Using this selected population, the
probability density function (PDF) of the validation metrics is calculated by repeatedly
running CFD simulations. A rank-based selection based on the calculated O f 1 values
(Equation (24)), along with a uniform cross-over approach, is found to be more efficient
in exploring the parameter space. A cross-over probability of 75% is considered, which
falls within the recommended limits [65]. To explore new regions in the space that are not
properly examined during the cross-over step, the generated off-springs (new sets) should
be also mutated. In this regard, a Gaussian operator for the mutation step is adopted
to introduce controlled perturbations to each coefficient of the sets with a probability of
10%. The new sets of coefficients generated in each iteration of the optimization process
replace the sets from the previous step, and the optimal ranges for each individual coeffi-
cient are refined accordingly until the defined objective function O f 2 reaches its converged
minimum values.

Further investigations are required to evaluate the performance of the modified k− ε
closure. To this aim, both the standard and optimized k− ε model will be considered next
for a comparative study (Table 2). In the end, the generality of the proposed set will be
further tested by modeling three supplementary test cases.

Table 2. Standard and revised values of k− ε empirical constants with their predetermined variation
ranges.

Closure Coefficients Cµ Cε1 Cε2 σk σε

Original value [27] 0.09 1.44 1.92 1.00 1.30
Ranges 0.03–0.16 Equation (32) 1.20–3.20 0.50–1.40 0.30–1.30

4. Description of Case Studies

The unique dispersion dataset of the mock urban setting test (MUST) [45] was invalu-
able to calculate the objective function for calibrating the k− ε turbulence closure. MUST
was sponsored by the U.S. Defense Threat Reduction Agency (DTRA) to provide a reliable
resource that includes the meteorological and dispersion data to validate and verify the
accuracy of the dispersion models and CFD simulations. An idealized urban-like geometry
was designed in this experiment that consisted of a 10 by 12 array of shipping containers
placed in the center of the test domain over relatively flat ground with a ground roughness
of z0 = 0.045 m. Figure 1 illustrates the schematic of the MUST geometry, along with the
dimensions of the obstacles (i.e., containers), spacing between obstacles, and site configura-
tions. In total, 68 trials were performed in which propylene gas (C3H6) was released from
37 different locations that can be classified into six main types with assigned letters A to F
(Figure 1a). It is noteworthy that the elevation at which the aforementioned sources are
located varies among all trials and should be identified prior to finalizing the CFD models.
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Figure 1. MUST experiment schematic; (a) Dimensions and source locations, (b) Top planar view
with samplers locations.

Exhaustive measurements of the concentration field were carried out at 74 sampling
points distributed throughout the array. Forty sensors were spread in four horizontal
sampling lines of 1–4 (shown by black circles), and the remaining 32 sensors were installed
on the central 32 m tower and four 6 m towers of TA, TB, TC, and TD, positioned in each
quadrant (Figure 1b). The mean velocity and turbulence measurements were obtained
using several sensors installed on all towers and masts (22 measurement points). That
includes the 32 m central tower, four 6 m towers, two 16 m pneumatic masts upstream and
downstream of the array, and four 1.15 m tripods. The specifications of all sampling points
considered in this calibration study are given in Table 3. The MUST data were further
processed for time-averaged studies by conditionally sampling all measurements to extract
200 s in each trial with the lowest recorded temporal variation in the mean upstream wind
speed and direction [66].

Table 3. Specifications of all MUST sampling points considered in the calibration study.

Location
Sensors

Quantity Type Elevation

Tracer Flow Tracer Flow Tracer Flow

Lines 1, 2, 3, and 4 12, 9, 9, and 10 0 dPID a − 1.6 m −
Central tower 8 4 dPID 3D-SA b 1, 2, 4, 6, 8, 10, 12, and 16 m 4, 8, 16, and 32 m
TA, TB, TC, and TD 6 each 2 each UVIC c 3A-UA d 1, 2, 3, 4, 5, and 5.9 m 2.4, and 6 m
S and N 0 3 each − 2D-SA e − 4, 8, and 16 m
Tripods 0 1 each − 3D-SA − 1.15 m

a Digital photo-ionization detector; b 3-dimensional sonic anemometer; c Ultra-violet ion collector; d 3-axis
Ultrasonic anemometer; e 2-dimensional sonic anemometer.

This paper considers four different trials: one as the training case to be used in the
calibration study and three as test cases (TC-1 to TC-3), to evaluate the generality of the
proposed coefficient set for various inflow boundary conditions and pollutant source
locations. Table 4 summarizes all four cases with their main characteristics. This includes
the averaged inflow velocity (S04) and direction (α04) at 4 m height, source type and its
elevation (Zs) with respect to ground, the tracer release rate (qs), and the Monin–Obukhov
length (LMO). The positive value of α04 is measured counter-clockwise from the y-axis.
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Table 4. Summary of selected trials of MUST experiment for RANS calibration study.

Case Study Trial I.D. Source Type qs (
l

min ) Zs (m) S04 (m
s ) α04 (deg) LMO (m)

Training case 2682320 D 225 2.6 4.55 −39 170
TC-1 2681829 F 225 1.8 7.93 −41 28, 000
TC-2 2692250 E 225 1.3 3.38 36 130
TC-3 2672150 A 200 0.15 2.30 36 150

5. CFD Simulation

Performing a reliable and accurate CFD simulation strongly depends on modeling de-
cisions at the setup stage. To this end, the following subsections deal with the general CFD
settings and considerations, mesh independence study, and the importance of remediating
the artificial horizontal inhomogeneity (i.e., the undesirable streamwise gradients in the
vertical profiles of flow variables).

5.1. General Settings

The pollutant dispersion within a compact urban setting is modeled on a high-
resolution grid using the ANSYS CFX commercial code. The 3D steady-state RANS equa-
tions coupled with the Eulerian transport equation are discretized and solved by employing
the hybrid finite element/volume method. High-resolution schemes are considered to
evaluate advection terms and turbulence numerics, and the Rhie–Chow algorithm was
adopted to implement pressure-velocity coupling. To ensure convergence of the solution,
target values of root mean square (RMS) normalized residuals were set to 10−6 and 10−9

for flow variables and tracer concentrations, respectively. The minimum size of the com-
putational domain was determined based on the recommendations of Tominaga et al. [67]
and Franke et al. [68]. The additional domain sizes were examined to specify the proper
dimensions for the MUST geometry to eliminate the possibility of any artificial flow ac-
celerations around the buildings and destructive backflow at the boundaries. Taking the
height of the obstacles as H, distances from the MUST array are revised to 14H from the
inlet, 10H from lateral boundaries, 20H from the outlet, and 12H from the top boundary.
This ensures that the results are domain independent. Figure 2 illustrates a schematic of
the computational domain. As can be seen, the rectangular domain is oriented so that the
inflow wind stream is perpendicular to the inlet and outlet faces.

No slip

Inlet

Average relative 
pressure of zero

Symmetry

Symmetry

Symmetry

20 H

14 H

10
 H

12
 H

10
 H

Figure 2. Computational domain.

The next crucial step in setting up a CFD model is to define the proper constraints at the
limits of the computational domain (i.e., boundary conditions). Assuming an equilibrium
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atmospheric surface layer, the inflow velocity and turbulence profiles can be approximated
by [38]:

U(z) =
uτ

κ
ln
(

z + z0

z0

)
(26)

k(z) =
u2

τ√cµ
(27)

ε(z) =
u3

τ

κ(z + z0)
(28)

where uτ is the friction velocity, κ is the Von Kármán constant with the value of 0.4 [38],
and z0 is the aerodynamic roughness. Having a reference velocity at a reference height
(Table 4), Equation (26) can be used to calculate uτ for each case study.

An average relative pressure of zero is specified at the outlet boundary. The top and
lateral limits are set as symmetry. The faces of each container are treated as smooth walls
with no-slip boundary conditions, while the ground is considered to be a rough wall with a
physical roughness of z0. The scalable wall function is employed to resolve the velocity and
turbulence quantities near the walls. The given uniform ground roughness also represents
the roughness of the upstream terrain that is not considered in the domain. This implies
having a fully-developed atmospheric flow at the inlet, which, ideally, should not reflect
any streamwise gradient as it progresses through the domain [69]. However, horizontal
heterogeneity is a known issue in ABL flow simulations that needs to be carefully evaluated
before claiming the reliability of the results [68].

5.2. Grid Convergence Study

Generating a high-quality grid has a pivotal impact on reducing the discretization
error and enhancing the convergence of the solution. In the current study, a nested domain
was defined in which the inner domain encloses the MUST array. As a consequence of
taking this approach, the large empty portion of the domain was meshed using structured
hexahedral elements, which improves the overall rate of convergence [70]. Unstructured
tetrahedral cells are used to mesh the regions near the blocks within the inner domain,
while several prismatic layers are considered near the solid surfaces (i.e., ground and faces
of the blocks) to properly capture boundary layer gradients.

Following the “best-practice” guidelines in computational wind engineering, the
sensitivity of the CFD model results to the grid resolution should be carefully assessed [67].
In this regard, three successive grid resolutions of coarse, medium, and fine were examined
with 6.39, 9.68, and 14.62 million computational nodes, respectively. The vertical profile
of normalized velocity at the central 32 m tower and the horizontal profile of normalized
pollutant concentration at the second sampling line are compared to assess the uncertainty
of results due to the grid size. As Figure 3a illustrates, there are trivial deviations between
the resultant velocity profiles using all three grid refinements, which necessitates evaluating
a more sensitive variable (i.e., concentrations). Figure 3b, however, implies that employing
the grid with medium refinement would be the appropriate choice with respect to the
computational cost and dependency of the predictions to mesh sizes.

Additionally, another grid sensitivity study proposed by Celik et al. [71] was conducted
to calculate the grid convergence index (GCI). The predicted pollutant concentration at
74 sampling points was selected as the variable of interest. For detailed mathematical steps
and calculations of this investigation, please refer to our previous paper [35]. Considering
the second-order discretizations used in this work and assuming a safety factor of 1.25 as
suggested by Roache [72], the average relative error and GCI for the two finer grids are
2.09% and 5.94%, respectively. Comparing these quantities with ones of the coarse-medium
case (average relative error of 4.93% and GCI of 14.05%) further justifies the decision to use
the grid with medium refinement. For the selected grid, the building edges were divided
into 20 elements and a 5-layer inflation region was considered for all the solid surfaces with



Sustainability 2023, 15, 14317 14 of 31

a growth rate of 1.07 to ensure y+ values were well within the acceptable range of 30 to 300.
It is worth noting that the simulations were run on a workstation with two 18-core Intel
Xeon Gold 5220 CPUs (36 cores in total) and 256GB of RAM. On average, a fully converged
solution for each CFD run was achieved in approximately 4–5 h.
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Figure 3. Mesh sensitivity of (a) normalized velocity at 32 m central tower and (b) normalized
concentration at the second horizontal sampling line.

5.3. Horizontal Homogeneity

To ensure that the numerical uncertainty is kept to a minimum, the horizontal homo-
geneity of the flow must be first verified. A lack of homogeneity in the incident velocity
profile can lead to erroneous results [70]. To account for the roughness of the wall, the
majority of the commercial codes modify the wall function based on the equivalent sand
grain roughness (i.e., ks) approach [69]. As shown below, this method seems to capture the
homogeneity of the flow better compared to other methods, such as replacing the no-slip
with a constant shear boundary condition [73]. In order to incorporate the wall roughness
into the CFX simulation, Equation (30) along with the modified wall function, Equation (31),
are used [69]:

ks = 29.6z0 (29)

k+s =
uτks

ν
(30)

UP
uτ

=
1
κ

ln
[

uτyP

ν(1 + 0.3νk+s )

]
+ 5.2 (31)

where UP is the velocity at the center of the first cell next to the wall, and k+s is the
dimensionless sand grain roughness. These equations and the proper value of aerodynamic
roughness were used to study the homogeneity of the incident profile in an empty domain.

Figure 4 shows the velocity, TKE, and dissipation rate at three cross-sections in an
empty domain. As can be seen, the horizontal homogeneity for the velocity and dissipation
rate was near completely achieved with a mean average error of 1.3% and 1.7%, respectively.
However, the TKE profile seems to display a small degree of streamwise inhomogeneity in
regions close to the ground, reaching a mean average error of 2.4%. The analytical solution
to the horizontally homogeneous atmospheric boundary layer requires the production of
turbulence to be balanced by the dissipation at a constant rate leading to a uniform value
for the TKE normal to the ground. However, as indicated in the work of the previous
researchers [23] and from Figure 4, TKE varies with distance to the ground. The reason
for this over-generation of turbulence in the vicinity of the wall in the k− ε model was
previously discussed by Richards [74], and the inconsistent discretization of the turbulence
production term at the wall is described as the source of this excessive generation.
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Figure 4. The velocity, TKE and turbulence dissipation rate profiles in an empty domain.

6. Results and Discussion

The suggested numerical scheme and the described methodology for closure model
optimization in previous sections are employed to improve the accuracy and reliability of
the RANS method in modeling the ABL dispersion flow within compact urban regions.
First, the results of the optimization study are presented and discussed. Later, the modified
closure is evaluated by comparing its resulting performance measures with ones of the
standard model and other analogous works. Finally, the generality of the proposed model
is examined by simulating three different case studies.

6.1. Closure Re-Calibration

Comprehensive optimization of the k− ε model demands the re-calibration of all five
empirical coefficients. Given the large size of the computational domain in this work (i.e.,
full-scale compact urban setting), this process becomes prohibitively expensive in terms
of computing time and power. In this regard, taking specific considerations is crucial to
make this study more feasible and practical. A reasonable approach to achieve this goal
is to reduce the number of variables that require simultaneous tuning. The necessity of
maintaining a horizontally homogeneous flow in the atmospheric surface layer encouraged
Richards to devise a relationship between the constants of the k− ε closure [38]. With this
condition, the turbulence model, inflow profiles, and the resulting ground shear due to the
aerodynamic roughness would be in equilibrium. Therefore, four out of the five constants
(Cµ, Cε1, Cε2, and σε) must take appropriate values to satisfy Equation (32). Accordingly,
one of these four coefficients can be arbitrarily excluded from the re-calibration process, as
it can be determined as a function of the remaining three. Following the recommendation
of the previous studies, Cε1 was omitted from the optimization process in this work [37,75].

Cε1 = Cε2 −
κ2√
Cµσε

(32)

A further simplification of closure optimization may be possible by investigating the
elementary effects of each coefficient on the objective parameters. To this aim, each constant
is varied independently in a predetermined range, while other constants, except for Cε1,
are kept at their original values. The preliminary ranges for closure coefficients in this work
are specified conservatively based on the previous studies reviewed in Section 1 (Table 2).
Considering 25 equally spaced values within each range, a total of 100 CFD runs was
carried out and processed for this part of the study.

Prioritizing the accurate prediction of the concentration field, the elementary effects
of input variables (coefficients) on this parameter are presented in Figure 5. As it can be
deduced, increasing Cµ leads to more accurate predictions of the concentration field (higher
FAC2), while similar arguments cannot be made for the other constants. For instance,
higher levels of FAC2 are generally associated with smaller values of Cε2. Ranging σε
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from 0.3 up to values of approximately 1.15 enhances the model accuracy, whereas its
further increase reduces the resulting FAC2. The variation in σk within its range exhibits
considerably milder but analogous impacts on FAC2 to the ones in σε. As discussed in
Section 3, despite the undeniable importance of FAC2 as a measure of accuracy, the quality
of the predicted concentration field should not be judged solely based on this metric.

For this reason, two linear measures of FB and NMSE for the predicted concentration
field, and their logarithmic counterparts, MG and VG, are also included in the objective
function. Figure 5 displays a drop for both FB and MG as Cε2 and σε increase, while
opposite trends are shown for Cµ and σk. Given the definition of the validation metrics,
smaller amounts of FB and MG indicate stronger scalar dispersion and lower predicted
concentrations at sampling points. It is worth noting that a VG greater than 1 and positive
values of FB reflect under-predictions of the concentration field. However, due to the
unavoidable presence of compensation errors in the calculations of FB and MG, there
may be instances of significantly inaccurate predictions in which these metrics take their
ideal values. To avoid such a misinterpretation of the systematic errors, it is necessary
to simultaneously calculate and explain NMSE and VG metrics, which also quantify the
available random errors (scatter of predictions from measurements) [58]. Lower values of
NMSE and VG that correspond to smaller scatters are shown in Figure 5 to be gained by
larger values of Cµ and σk within ranges of 0.1 to 0.16 and 0.9 to 1.4, respectively. Conversely,
adopting smaller values of Cε2 between 1.2 and 2 considerably mitigates the scatters. For σε

ranging from 0.3 to 0.6, the drastic fall of VG compared to the relatively moderate reduction
of NMSE suggests that data points with exceedingly low concentrations may have overly
influenced this logarithmic measure. Therefore, it is expected that the optimal value of σε

falls within the range of 0.8 to 1.2, which is in agreement with the recommended ranges
acquired by analyzing the other validation metrics.

A further examination of Figure 5 implies minimal sensitivity of all validation metrics
in response to the variation in σk compared to the rest of the coefficients. Such observation
advocates the exclusion of σk from the optimization study to reduce computational expenses.
However, the reliability of this decision must be assessed beforehand by quantifying the
elementary effects of closure coefficients on output parameters using Equation (25). Heat
maps are used as shown in Figure 6 to qualitatively compare the mean (E) and standard
deviation (σE) of the quantified contribution of each coefficient to the output parameters.
By employing this color-coded scheme, we can promptly visualize the relative influence
each parameter has on the validation metrics. This approach provides a concise assessment
without the need for overwhelming numerical data and could serve as a complementary
visualization to the other presented figures in this work. A larger value of E for an input
variable suggests its relatively greater net impact on the validation metrics, while a larger
quantity of σE reflects its highly non-linear response or stronger interaction effects by other
input variables on output parameters [60].

As Figure 6 implies, the variation in Cµ shows the highest order of influence on all
validation metrics with the most significant level of interaction effects with other fac-
tors. This remark was expected as Cµ not only contributes to the modeled eddy viscosity
(Equation (9)) and, consequently, scalar diffusion (Equation (11)), it also plays a part in
the estimation of the inflow TKE profile (Equation (27)). The sensitivity of the validation
metrics to variation in σε and Cε2 show roughly the same order of significance, which can
be categorized as the second and third most influential factors, respectively. Finally, the
calculated E and σE of the output responses to σk variation hold the lowest orders relative to
ones of other coefficients. Accordingly, it is reasonable to claim that the validation metrics
are considerably less sensitive to σk, and this coefficient can be ignored at the optimization
step. This statement is moreover supported by some of the previous studies [37,56]. Given
the fact that σk does not also correlate with other coefficients through Equation (32), its
modified value can be obtained later by conducting a direct sensitivity study.
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Figure 5. Elementary effects of closure coefficients on (a) linear and (b) logarithmic validation metrics.
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Figure 6. Comparing (a) E and (b) σE of the elementary effects of closure coefficients on the validation
metrics.

The distinct responses of the model’s accuracy to the variation in each closure constant
demonstrate the necessity of implementing a more rigorous approach to navigate towards
an optimized set. To this aim, the Monte-Carlo sampling method is used to generate
random selections of Cµ, Cε2, and σε within their associated ranges, while Cε1 is estimated
by Equation (32), and σk is kept at its standard value of 1. Given the definition of the
proposed objective functions (Equations (24) and (25)), the GA optimization scheme aims at
revising these ranges after each main iteration to detect ones in which the model coefficients
collectively correspond to a minimum value of O f 2. Uniform distributions of probability
are assumed for all coefficients in their variation ranges, and 40 sample sets are generated
randomly to produce the initial population for the optimization process.

Figure 7 reveals scatter plots presenting the PDFs of FAC2 and HR for the predicted
concentration and TKE fields, respectively. These plots offer valuable insights into the
variation and distribution of these metrics across the last 100 investigated coefficient sets
during the re-calibration process. As can be seen, both the concentration and TKE fields
exhibit noteworthy sensitivity to the variations among coefficient sets, which are evidenced
by the widespread and diverse clustering of data points in the provided PDFs. The observed
similarity and consistency between both the output responses (i.e., FAC2 and HR), further
attest to the strong dependency of the predicted concentration field on the accuracy of the
predicted TKE field, which justifies the definition of the objective function as described in
Section 3.

C ε2

1.2
1.3

1.4
1.5

1.6
1.7

1.8

C
μ

0.13
0.14

0.15
0.16

σ
ε

0.9

1

1.1

1.2

FAC2

0.8

0.78

0.76

0.74

0.72

0.7

(a)

C ε2

1.2
1.3

1.4
1.5

1.6
1.7

1.8

C
μ

0.13
0.14

0.15
0.16

σ
ε

0.9

1

1.1

1.2

HR

0.9

0.86

0.82

0.78

0.74

0.7

(b)

Figure 7. Variation in validation metrics during the re-calibration (a) FAC2 for pollutant concentration
and (b) HR for TKE.

To better investigate the dependency of the model’s output responses on closure
sets, Figure 8 illustrates surface plots of FAC2 resulting from variations in the considered
closure constants during the re-calibration process. As can be concluded, higher fractions
of predictions within FAC2 of measurements are generally achieved for quantities of Cµ

ranging from 0.13 to 0.16. Increasing Cµ from its standard value of 0.09 could result in
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relatively lower eddy viscosity and inflow TKE to be estimated, which could remediate
the known flaw of the standard k − ε model: excessive over-prediction of the TKE [76].
The shown results in Figure 8 further suggest that decreasing σε from its original value of
1.3 increases the probability of acquiring predictions with overall higher associated FAC2.
Lower quantities of this constant basically result in promoting the diffusive transport of
the rate of viscous dissipation; however, a general conclusion cannot be drawn due to
the complex linked relationship of the TKE and ε and the heavy modeling applied to
Equation (8) [77]. The optimal values of σε vary between 1 and 1.2. Cε2 appears as a factor
for the sink term available in the ε transport equation and is expected to substantially affect
the predicted turbulence field and, consequently, the resulting pollutant concentration field.
The most accurate representation of the pollutant concentration field for the generic case of
a compact urban setting is shown to be obtained by smaller values of Cε2 than its standard
value, differing between 1.6 and 1.8.

Figure 8. Surface plots of FAC2 variation for pollutant concentration field during the calibration process.

The quality of the predictions within the detected ranges for closure constants that
contribute to the highest calculated FAC2 should be further examined. In this regard, the
concentration-related output responses of the remaining validation metrics to different sets
of closure coefficients are presented in Figure 9. Noting that the calculated NMSE remains
well inside the acceptable limits and near its ideal value (0.35 ≤ NMSE ≤ 0.55), it was
decided to mainly focus on the FB, VG, and MG metrics and omit the NMSE variation
contours in this paper. As can be seen, both the linear and logarithmic measures of the
model’s systematic errors (i.e., FB and MG, respectively) exhibit roughly similar trends in
response to the closure modification.

The analysis of Figure 9 suggests that the most desirable measures of FB and MG
are attained as Cµ takes values between 0.12 and 0.15, while 1.68 ≤ Cε2 ≤ 1.80 and
1.12 ≤ σε ≤ 1.20. The variation in FB and MG within the given ranges reflects an overall
under-prediction of the concentration field compared to the observations. On the other
hand, evaluation of the resulting scatter from measurements (i.e., VG) identifies the optimal
ranges of coefficients as 0.14 ≤ Cµ ≤ 0.16, 1.50 ≤ Cε2 ≤ 1.80, and 1.05 ≤ σε ≤ 1.20. These
findings further emphasize the importance of collectively assessing the validation metrics,
as well as the synergistic effects of closure coefficients on model outputs. The optimal
ranges can be extracted from the intersections of the identified spans to ensure the greatest
reliability of predictions (FAC2). The proposed ranges in this work are 0.14 ≤ Cµ ≤ 0.15,
1.68 ≤ Cε2 ≤ 1.80, and 1.12 ≤ σε ≤ 1.20, in which a closure set of Cµ = 0.147, Cε = 1.344,
Cε2 = 1.693, and σε = 1.196 produces the most accurate and reliable predictions.
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Figure 9. Variation in FB, VG, and MG for pollutant concentration field during the calibration process.

The optimal value of σk is successively derived by conducting a sensitivity study
using the standard k− ε model in which the modified coefficients are implemented. As
expected, all the output parameters demonstrate relatively weak sensitivity to the vari-
ation of this coefficient, with FAC2 being the least responsive (Figure 10). Increasing σk
weakens the diffusive transport of TKE, consequently leading to larger turbulence mass
diffusivity (i.e., Dt). This behavior of Dt enhances the under-prediction of the pollutant
concentrations at the plume centerline, which justifies the consistent increase in FB shown
in Figure 10a. Considering all the validation metrics together while prioritizing FAC2 (i.e.,
the model’s accuracy), the range of 0.87 ≤ σk ≤ 1.00 is suggested, with σk = 0.927 being
the optimal value.
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Figure 10. Sensitivity of the (a) linear and (b) logarithmic validation metrics to the variations in σk.

6.2. Performance and Generality Evaluation

The performance of the improved closure model with the proposed coefficient set
(Cµ = 0.147, Cε1 = 1.344, Cε2 = 1.693, σε = 1.196, and σk = 0.927) is evaluated in this
section. Figure 11 depicts the iso-surfaces of pollutant concentration (C∗ = 10−2) flooded
by TKE contours that were predicted by all the considered revisions of the k− ε turbulence
model. Even though the overall form of the predicted plume by both the optimized
and standard turbulence closures display roughly similar shapes due to the interactions
between flow and structures, the predicted volumes of the selected iso-surface exhibit clear
differences. As for the TKE, the proposed model in this work resulted in considerably lower
values compared to the other revision (i.e., the standard version). The distinct differences
observed among these models highlight the necessity of such re-calibration practices and
lays the foundation for a more meticulous investigation of their performances. In this
regard, rigorous statistical comparisons are subsequently required to further elucidate the
strengths and weaknesses of the studied models.

(a) (b)

Figure 11. Normalized concentration iso-surfaces (C∗ = 10−2) flooded with TKE, predicted by
(a) standard, and (b) optimized revision of k− ε turbulence model.

The validation metrics of the predicted concentration field by all revisions of the
standard k− ε are calculated and presented in Table 5. The most accurate reproduction
of the concentration field was obtained using the optimized closure in this work, with
80% of the predictions within FAC2 of measurements. Evaluating all validation metrics
together, the decisive superiority of the optimized closure for the generic case of a compact
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urban setting is apparent. The positive quantities of FB show the general under-prediction
of the concentration field using all these revisions. The presented MG values further
support this observation. Considering FB values of 0.13 and 0.21 by the original and
optimized versions, respectively, these models demonstrate slight under-predictions of the
concentration field. In terms of the recorded scatters, the optimized model in the current
study strongly outperforms the other revision with VG= 1.63.

Table 5. Performance evaluation of the modified closure model in predicting the pollutant concentra-
tion field.

Closure Revision FB NMSE MG VG FAC2

Standard [27] 0.13 0.41 0.98 1.82 0.72
Current study 0.21 0.40 1.05 1.63 0.80

A more rigorous interpretation of statistical measures in Table 5 is possible by ana-
lyzing the predicted concentration profiles throughout the domain. Figure 12 maps the
concentration field at four horizontally distributed sampling lines. As can be seen, the
proposed models by the previously revised set under-predict the concentrations at all sam-
pling lines (more severely farther from the source), which justifies its corresponding larger
values of FB and MG. On the contrary, the original and optimized models over-predict the
concentrations at the first two sampling lines. As the plume progresses downstream, the
intensity of over-prediction decreases gradually until concentrations are entirely under-
predicted at sampling line 4. It is also worth mentioning that the variation in the field
measurements along the horizontal line closely resembles the profiles generated by the
present optimized model.
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Figure 12. Comparison of the predicted concentration fields at horizontal sampling lines.

The predicted vertical profiles of pollutant concentrations are shown and compared in
Figure 13. Given the direction of the upstream wind flow, two towers, TA and TD, did not
detect any tracer quantities and were, thus, excluded from this study. As illustrated, the
optimized model predicts relatively lower concentration levels along the vertical sampling
lines, resulting in improved agreements with the field measurements. It should also
be noted that the reproduced plume by the optimized models successfully exhibits the
expected Gaussian shape as it passes through the selected vertical lines. To further evaluate
the overall capability of the proposed model, a scatter diagram for all 74 sampling points is
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presented in Figure 14. The improved accuracy of the predictions by the optimized model
is apparent by showing smaller scatters, which further supports the lowest calculated
VG of 1.63 (Table 5). In addition to sampling points with higher concentrations (near the
source and plume centerline), the profound improvement in predictions for points with
lower concentrations (near the plume’s edges and far from the source) is also evident,
which implies a more accurate reproduction of the pollutant spread throughout the domain.
As a result, a greater fraction of predictions is shown between the FAC2 lines using the
optimized model, with almost no data point outside the FAC5 lines.
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Figure 13. Comparison of the predicted concentration fields at vertical sampling lines. The solid line
represents the exact match between predictions and observations.
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Figure 14. Scatter plot between the observed and predicted concentrations at all sampling points for
the standard and optimized closure sets.

The capability of the proposed coefficient set in capturing the wind and turbulence
fields must also be examined to ensure the reliability of predictions exhaustively. Table 6
compares the calculated validation measures for both the predicted velocity and TKE
fields obtained by optimized and standard versions of the k − ε model. As previously
discussed in Section 3, FAC2 is not an adequately strict metric for this part of the evaluation
study and is replaced by HR. It should also be noted that the measurements of one of
the sensors of tower TA, both sensors of tower TD, and one sensor of the upstream mast
S are missing from the MUST data set and therefore are excluded from calculations. In
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terms of the flow field, approximately similar performances by both models are observed,
with validation metrics well within the acceptable ranges. The predicted velocity fields are
slightly overestimated (negative values of FB and MG below 1), and quantities of NMSE
and VG suggest low scatter. A minimum HR of 66% is required to consider predictions as
valid, which is obtained by all models.

As is expected, implementing different versions of coefficient sets leads to contrasting
representations of the turbulence field. As suggested by the validation metrics, the standard
revision of the k− ε coefficient sets substantially overestimates TKE compared to the opti-
mized model. The cross-comparison of the considered coefficient sets and their associated
impacts on the model’s outputs argue that large values of Cε2 might be the most influencing
factor in TKE over-prediction. The appearance of a greater quantity of Cε2 in the form
of a factor to the source term in Equation (8), promotes the production of ε. Considering
the coupled relationship of Equations (6) and (8), it is expected that the production rate
of TKE is large where its dissipation rate is large [24], which justifies considerably lower
values of TKE predicted by the optimized set in this work compared to ones obtained by
the standard version.

Table 6. Performance evaluation of the modified closure model in predicting the velocity and TKE
fields for the training case study.

Closure Revision
Velocity

FB NMSE MG VG HR

Standard [27] −0.03 0.03 0.93 1.05 0.72
Current study 0 0.03 0.96 1.04 0.78

TKE

FB NMSE MG VG HR

Standard [27] −0.15 0.05 0.87 1.04 0.67
Current study −0.03 0.02 0.98 1.02 0.94

The qualitative examination of the predicted turbulence field can be carried out by
investigating the resulting TKE profiles at several locations within the building array.
Figure 15 depicted the vertical variations of TKE at two different sample locations: at the
center of the array (central tower) and on tower TC, positioned nine rows into the array. It
is worth noting that the predicted TKE fields show major dissimilarities at lower elevations,
where the flow is primarily affected by the presence of objects, but they asymptotically
converge as the array’s influence disappears aloft. Figure 16 is provided to facilitate a
point-to-point comparison and evaluation of the predicted flow field parameters using the
standard and optimized k− ε models at the 18 measuring points (which has measurements)
spread across the MUST test domain. The statistical data for the predicted velocity field pre-
sented in Table 5 are further supported by Figure 16a, showcasing insignificant differences
between the performances of these two models. Furthermore, a clear trend is observed for
both the velocity and TKE, implying that the standard version of the turbulence model
generally returns higher values of these parameters. The considerable difference in the
predicted TKE values, despite what is noted for the velocity field, highlights the ample
improvement achieved by the optimized model in the predictions. As was already men-
tioned, TKE plays a pivotal role in the accurate representation of the concentration field
through the definitions of the eddy viscosity, Sct, and consequently, the eddy diffusivity.
This improved agreement can be attributed to the optimized model’s ability to represent
turbulent mixing and dispersion more accurately, resulting in a more realistic depiction of
the concentration distribution in the flow field.
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Figure 15. Vertical profiles of the predicted TKE (a) at 32 m central tower and (b) at the tower TC.
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(b)
Figure 16. Point-to-point evaluation and comparison of the predicted flow field across the test domain:
(a) Velocity, (b) TKE. The error bars represent a 25% deviation from the experimental measurements.

As for the final step of this optimization study, the generality of the proposed set must
be tested prior to claiming its utility. To this aim, three test cases are considered (Table 4),
in which the performance of the optimized model is comparatively evaluated. As can be
seen, all the test cases are selected to cover a diverse range of situations in terms of the
tracer source type and location, array orientation, mean wind speed, and atmospheric
condition. Referring to Figure 1b, the source in the training case is roof-based (i.e., type D)
and positioned on container J9. For the test cases of TC-1, TC-2, and TC-3, the sources are,
respectively, located between containers K8 and L8 (type F), 24 m upstream of container L1
(type E) and immediately upstream of container J3 (type A). In order to consider the distinct
array orientations, cases with different incident directions of wind flow that generate
unique flow structures are chosen. The precise prediction of the scalar concentration field
strongly depends on the accurate reproduction of flow and turbulence fields [15]. Therefore,
by defining these test cases, opportunities to assess the extent of the applicability of the
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developed coefficient set were created. To further explore the limitations and uncertainties
associated with the proposed framework, two atmospheric stability classes of fully neutral
(TC-1), and stable near neutral (TC-2 and TC-3) are considered. Detailed evaluation studies
are carried out for all three test cases, for which the corresponding statistical measures are
given in Table 7.

Table 7. Validation metrics for three selected test cases during the generalizability study.

Case Revision
Velocity

FB NMSE MG VG HR

TC-1 Standard −0.09 0.02 0.91 1.03 0.78
Optimized −0.07 0.01 0.94 1.03 0.89

TC-2 Standard 0.13 0.08 1.03 1.07 0.67
Optimized 0.15 0.06 1.05 1.07 0.72

TC-3 Standard 0.25 0.30 1.07 1.16 0.78
Optimized 0.26 0.28 1.09 1.15 0.78

TKE

FB NMSE MG VG HR

TC-1 Standard 0.05 0.03 1.07 1.05 0.83
Optimized 0.09 0.01 1.09 1.01 0.94

TC-2 Standard 0.13 0.04 1.07 1.08 0.72
Optimized 0.18 0.01 1.11 1.02 0.89

TC-3 Standard 0.08 0.03 0.97 1.06 0.83
Optimized 0.11 0.01 1.02 1.02 1.00

Concentration

FB NMSE MG VG FAC2

TC-1 Standard 0.11 0.68 1.08 2.11 0.64
Optimized 0.18 0.58 1.10 1.93 0.69

TC-2 Standard 0.12 0.47 1.10 1.52 0.70
Optimized 0.19 0.45 1.17 1.41 0.76

TC-3 Standard 0.10 0.59 1.12 2.03 0.67
Optimized 0.16 0.50 1.14 1.84 0.71

The analysis of the presented data demonstrates the validity of the predicted flow
fields in all test cases. However, consistent with our earlier statements, the reproduced
velocity fields demonstrate minimal sensitivity to the modification of the closure coefficients.
The same argument does not hold for pollutant concentration and TKE fields. Concerning
TKE, the modified closure achieves noticeable enhancements in the accuracy and quality
of predictions. In line with the output responses of the training case, a relatively more
intense under-prediction of TKE by the optimized closure is observed, which has resulted
in relatively higher quantities of FB and MG. The slightly higher levels of FB and MG,
however, have modified the predictions in a manner that has led to smaller overall scatters
(lower VG and NMSE) and raised HR in all three test cases. Having a more accurate and
reliable representation of the flow and turbulence parameters, an improvement in the
predicted concentration field is consequently expected.

Any changes to solutions for Equations (6) and (8) (i.e., using a revised coefficient set)
modify the estimated eddy viscosity (νt) and, accordingly, the turbulence mass diffusion
(Dt) in Equation (10). Additionally, Dt is also affected by the definition of Sct in this work
(i.e., Equation (13)), which shows an explicit dependency on the local characteristics of
turbulence. These contributions result in strong sensitivity of the predicted concentration
field to different editions of closure constants, which is established by the presented data in
Table 7. The evaluation of the validation metrics together exhibits an overall boost in the
quality and reliability of predictions for the three test cases. Therefore, the potential appli-
cability of the trained closure set for time-averaged modeling of atmospheric dispersion
flow in compact urban settings is attested.
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7. Conclusions

In an effort to improve the accuracy of the steady atmospheric dispersion modeling in
the context of a compact urban setting, a re-calibration study is carried out on the empirical
constants of the standard k − ε model. To this aim, in addition to the flow parameters
(velocity and TKE), the pollutant concentration field is also selected as the parameter of
focus, implemented through the definition of five different validation metrics (three linear
and two logarithmic). An optimization scheme based on the GA algorithm is adopted here
with some modifications to systematically select sets of coefficients from predetermined
ranges to evaluate and eventually identify variation spans with the highest associated
model’s accuracy. The comprehensive and high-quality dispersion dataset of full-scale
field measurements in an urban-like geometry (i.e., the MUST experiment) was used to
re-calibrate the model constants. In order to evaluate the performance of the optimized
closure, the quality of predictions for concentration, velocity, and TKE fields are further
compared with the ones of the standard model. Finally, the general applicability of the
modified set to other cases is examined by modeling three distinctive test cases with
different inflow velocities, source locations, building orientations, and atmospheric states.
The main steps and key findings of this study can be summarized as follow:

• Considering the large size of the model, making specific arrangements is essential to
alleviate the associated computational costs. In this regard, the established relationship
among Cµ, Cε1, Cε2, and σε within the atmospheric surface layer is utilized to omit Cε1
from the optimization study, as it can be calculated using the other three constants.

• A screening method was used to quantify each constant’s direct and interactional
effects on the validation metrics. As suggested by the results, the model’s outputs
reflect a relatively minimal sensitivity to σk, which justifies the decision to exclude
this coefficient from the optimization step and find its optimal value later through a
simple sensitivity study.

• The rigorous analysis of all validation metrics together, while prioritizing achieving
the highest quantities of FAC2, has led to recommending the optimal ranges for the
generic case of a compact urban setting as follows: 0.14 ≤ Cµ ≤ 0.15, 1.68 ≤ Cε2 ≤ 1.80,
1.12 ≤ σε ≤ 1.20, and 0.87 ≤ σk ≤ 1.00.

• Given the proposed ranges in this work, a closure set is found to generate predictions
that agree best with the selected field measurements of this study, which consists of
Cµ = 0.147, Cε = 1.344, Cε2 = 1.693, σε = 1.196, and σk = 0.927.

• An exhausting assessment of the statistical measures resulting from the comparative
study indicates that the optimized closure significantly outperforms the other revision
in reproducing the concentration and TKE fields, while both editions yield roughly
similar results for the velocity field. Relative to predictions by the standard model,
the FAC2 for the concentrations (among 74 sampling points) and HR for the TKE field
(among 18 sampling points) are increased by 8% and 27%, respectively.

• The investigation of the general applicability of the proposed modifications suggests
that except for the predicted velocity field, in which only minor improvements are
observed, the closure model successfully enhances the quality and reliability of pre-
dictions for concentrations and the TKE field in all three test cases.
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Abbreviations/Nomenclature

ABL Atmospheric boundary layer
CFD Computational fluid dynamics
FAC2 Fraction of the predictions within a factor of 2 of the observations
FB Fractional bias
GA Genetic algorithm
GCI Grid convergence index
HR Hit-Rate
LES Large eddy simulations
MG Mean geometric bias
MUST Mock urban setting tests
NMSE Normalized mean square error
PDF Probability density function
RANS Reynolds-averaged Navier–Stokes
RNG Renormalization group
SST Shear stress transport
VG Geometric variance
C Scalar concentration, ppm
Cp Predicted concentration
Co Observed concentration
C∗ Normalized scalar concentration
Cε1, Cε2, Cµ Constants in the k− ε model
D Molecular diffusivity, m2s−1

Dt Eddy diffusivity, m2s−1

Ei Elementary effect of model coefficients
Ei Mean elementary effect
Hre f Reference height, m
k Turbulent kinetic energy (TKE), m2s−2

ks Sand grain roughness, m
k+s Dimensionless sand grain roughness
Mi Measured value
O f i Objective function ith
Pi Predicted value
Pk TKE production rate, m2s−3

qs Scalar volumetric flowrate, m3s−1

Ret Turbulent Reynolds number
Ro Rossby number
S Strain rate invariant
Sij Strain rate tensor, s−1

Sc Schmidt number
Sct Turbulent Schmidt Number
ui Component of mean velocity, ms−1

u
′

i Component of fluctuating velocity, ms−1

uτ Friction velocity, ms−1

UP Velocity at the center of the first cell next to the wall, ms−1

Ure f Reference velocity, ms−1

xi component of space coordinate, m
z0 Aerodynamic roughness, m
δij Kronecker delta
ε Turbulent dissipation rate, m2s−3
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κ Von Karman constant
µ Dynamic molecular viscosity, kgm−1s−1

ν Kinematic molecular viscosity, m2s−1

νt Eddy viscosity, m2s−1

ρ Density, kgm−3

σε, σk Constants in the k− ε model
σEi Standard deviation of the elementary effect
ω Specific dissipation rate, s−1

Ω Vorticity rate invariant

References
1. 2018 Revision of World Urbanization Prospects; Technical Report; United Nations Department of Economics and Social Affairs

(UNDESA): New York, NY, USA, 2018.
2. Yang, Y.; Guangrong, S.; Chen, Z.; Hao, S.; Zhouyiling, Z.; Shan, Y. Quantitative analysis and prediction of urban heat island

intensity on urban-rural gradient: A case study of Shanghai. Sci. Total Environ. 2022, 829, 154264. [CrossRef] [PubMed]
3. Li, Z.; Ming, T.; Liu, S.; Peng, C.; de Richter, R.; Li, W.; Zhang, H.; Wen, C.Y. Review on pollutant dispersion in urban areas-part A:

Effects of mechanical factors and urban morphology. Build. Environ. 2021, 190, 107534. [CrossRef]
4. Lu, C.; Cao, L.; Norbäck, D.; Li, Y.; Chen, J.; Deng, Q. Combined effects of traffic air pollution and home environmental factors on

preterm birth in China. Ecotoxicol. Environ. Saf. 2019, 184, 109639. [CrossRef]
5. Jin, X.; Yang, L.; Du, X.; Yang, Y. Sensitivity analyses of ultrafine particle dispersion inside an isolated street canyon. Powder

Technol. 2016, 304, 143–156. [CrossRef]
6. Xia, Y.; Guan, D.; Jiang, X.; Peng, L.; Schroeder, H.; Zhang, Q. Assessment of socioeconomic costs to China’s air pollution. Atmos.

Environ. 2016, 139, 147–156. [CrossRef]
7. Li, Z.; Ming, T.; Shi, T.; Zhang, H.; Wen, C.Y.; Lu, X.; Dong, X.; Wu, Y.; de Richter, R.; Li, W.; et al. Review on pollutant dispersion in

urban areas-part B: Local mitigation strategies, optimization framework, and evaluation theory. Build. Environ. 2021, 198, 107890.
[CrossRef]

8. Hu, Y.; Xu, F.; Gao, Z. A Comparative Study of the Simulation Accuracy and Efficiency for the Urban Wind Environment Based
on CFD Plug-Ins Integrated into Architectural Design Platforms. Buildings 2022, 12, 1487. [CrossRef]

9. Blocken, B.; Stathopoulos, T. CFD simulation of pedestrian-level wind conditions around buildings: Past achievements and
prospects. J. Wind. Eng. Ind. Aerodyn. 2013, 121, 138–145. [CrossRef]

10. Gough, H.L.; Luo, Z.; Halios, C.H.; King, M.F.; Noakes, C.J.; Grimmond, C.S.; Barlow, J.F.; Hoxey, R.; Quinn, A.D. Field
measurement of natural ventilation rate in an idealised full-scale building located in a staggered urban array: Comparison
between tracer gas and pressure-based methods. Build. Environ. 2018, 137, 246–256. [CrossRef]

11. Mattar, S.J.; Nezhad, M.R.K.; Versteege, M.; Lange, C.F.; Fleck, B.A. Validation Process for Rooftop Wind Regime CFD Model in
Complex Urban Environment Using an Experimental Measurement Campaign. Energies 2021, 14, 2497. [CrossRef]

12. Li, B.; Li, C.; Yang, Q.; Tian, Y.; Zhang, X. Full-scale wind speed spectra of 5Year time series in urban boundary layer observed on
a 325m meteorological tower. J. Wind. Eng. Ind. Aerodyn. 2021, 218, 104791. [CrossRef]

13. He, Y.; Liu, Z.; Ng, E. Parametrization of irregularity of urban morphologies for designing better pedestrian wind environment in
high-density cities—A wind tunnel study. Build. Environ. 2022, 226, 109692. [CrossRef]

14. Hang, J.; Chen, G. Experimental study of urban microclimate on scaled street canyons with various aspect ratios. Urban Clim.
2022, 46, 101299. [CrossRef]

15. Lateb, M.; Meroney, R.N.; Yataghene, M.; Fellouah, H.; Saleh, F.; Boufadel, M.C. On the use of numerical modelling for near-field
pollutant dispersion in urban environments: A review. Environ. Pollut. 2016, 208, 271–283. [CrossRef] [PubMed]

16. Hajra, B.; Stathopoulos, T. A wind tunnel study of the effect of downstream buildings on near-field pollutant dispersion. Build.
Environ. 2012, 52, 19–31. [CrossRef]

17. Blocken, B. 50 years of Computational Wind Engineering: Past, present and future. J. Wind. Eng. Ind. Aerodyn. 2014, 129, 69–102.
[CrossRef]

18. Hassan, A.M.; ELMokadem, A.A.; Megahed, N.A.; Abo Eleinen, O.M. Urban morphology as a passive strategy in promoting
outdoor air quality. J. Build. Eng. 2020, 29, 101204. [CrossRef]

19. Blocken, B. LES over RANS in building simulation for outdoor and indoor applications: A foregone conclusion? Build. Simul.
2018, 11, 821–870. [CrossRef]

20. Guo, D.; Zhao, P.; Wang, R.; Yao, R.; Hu, J. Numerical simulations of the flow field and pollutant dispersion in an idealized urban
area under different atmospheric stability conditions. Process Saf. Environ. Prot. 2020, 136, 310–323. [CrossRef]

21. Reiminger, N.; Vazquez, J.; Blond, N.; Dufresne, M.; Wertel, J. CFD evaluation of mean pollutant concentration variations in
step-down street canyons. J. Wind. Eng. Ind. Aerodyn. 2020, 196, 104032. [CrossRef]

22. Nezhad, M.R.K.; Lange, C.F.; Fleck, B.A. Evaluating the Validity of Computational Fluid Dynamics Model of Dispersion in a
Complex Urban Geometry Using Two Sets of Experimental Measurements. Int. J. Mech. Mechatronics Eng. 2023, 17, 78–86.

23. Keshavarzian, E.; Jin, R.; Dong, K.; Kwok, K.C. Effect of building cross-section shape on air pollutant dispersion around buildings.
Build. Environ. 2021, 197, 107861. [CrossRef]

http://doi.org/10.1016/j.scitotenv.2022.154264
http://www.ncbi.nlm.nih.gov/pubmed/35247415
http://dx.doi.org/10.1016/j.buildenv.2020.107534
http://dx.doi.org/10.1016/j.ecoenv.2019.109639
http://dx.doi.org/10.1016/j.powtec.2016.07.060
http://dx.doi.org/10.1016/j.atmosenv.2016.05.036
http://dx.doi.org/10.1016/j.buildenv.2021.107890
http://dx.doi.org/10.3390/buildings12091487
http://dx.doi.org/10.1016/j.jweia.2013.08.008
http://dx.doi.org/10.1016/j.buildenv.2018.03.055
http://dx.doi.org/10.3390/en14092497
http://dx.doi.org/10.1016/j.jweia.2021.104791
http://dx.doi.org/10.1016/j.buildenv.2022.109692
http://dx.doi.org/10.1016/j.uclim.2022.101299
http://dx.doi.org/10.1016/j.envpol.2015.07.039
http://www.ncbi.nlm.nih.gov/pubmed/26282585
http://dx.doi.org/10.1016/j.buildenv.2011.12.021
http://dx.doi.org/10.1016/j.jweia.2014.03.008
http://dx.doi.org/10.1016/j.jobe.2020.101204
http://dx.doi.org/10.1007/s12273-018-0459-3
http://dx.doi.org/10.1016/j.psep.2020.01.031
http://dx.doi.org/10.1016/j.jweia.2019.104032
http://dx.doi.org/10.1016/j.buildenv.2021.107861


Sustainability 2023, 15, 14317 30 of 31

24. Versteeg, H.K.; Malalasekera, W. An Introduction to Computational Fluid Dynamics, 2nd ed.; Pearson Education: Harlow, UK, 2007.
25. Tominaga, Y. Flow around a high-rise building using steady and unsteady RANS CFD: Effect of large-scale fluctuations on the

velocity statistics. J. Wind. Eng. Ind. Aerodyn. 2015, 142, 93–103. [CrossRef]
26. Glover, N.; Guillas, S.; Malki-Epshtein, L. Statistical calibration of CFD modelling for street canyon flows. In Proceedings of

Building Simulation 2011: 12th Conference of International Building Performance Simulation Association, Sydney, Australia,
14–16 November 2011; pp. 1513–1520.

27. Launder, B.E.; Spalding, D.B. The numerical computation of turbulent flows. Comput. Methods Appl. Mech. Eng. 1974, 3, 269–289.
[CrossRef]

28. Shih, T.H.; Liou, W.W.; Shabbir, A.; Yang, Z.; Zhu, J. A new k-ε eddy viscosity model for high reynolds number turbulent flows.
Comput. Fluids 1995, 24, 227–238. [CrossRef]

29. Yakhot, V.; Orszag, S.A. Renormalization-group analysis of turbulence. Phys. Rev. Lett. 1986, 57, 1722–1724. [CrossRef] [PubMed]
30. Menter, F.R. Two-equation eddy-viscosity turbulence models for engineering applications. AIAA J. 1994, 32, 1598–1605. [CrossRef]
31. Pantusheva, M.; Mitkov, R.; Hristov, P.O.; Petrova-Antonova, D. Air Pollution Dispersion Modelling in Urban Environment

Using CFD: A Systematic Review. Atmosphere 2022, 13, 1640. [CrossRef]
32. Lateb, M.; Masson, C.; Stathopoulos, T.; Bédard, C. Comparison of various types of k–ε models for pollutant emissions around a

two-building configuration. J. Wind. Eng. Ind. Aerodyn. 2013, 115, 9–21. [CrossRef]
33. Hosseinzadeh, A.; Keshmiri, A. Computational Simulation of Wind Microclimate in Complex Urban Models and Mitigation

Using Trees. Buildings 2021, 11, 112. [CrossRef]
34. Narjisse, A.; Abdellatif, K. Assessment of RANS turbulence closure models for predicting airflow in neutral ABL over hilly

terrain. Int. Rev. Appl. Sci. Eng. 2021, 12, 238–256. [CrossRef]
35. Kavian Nezhad, M.R.; Lange, C.F.; Fleck, B.A. Performance Evaluation of the RANS Models in Predicting the Pollutant

Concentration Field within a Compact Urban Setting: Effects of the Source Location and Turbulent Schmidt Number. Atmosphere
2022, 13, 1013. [CrossRef]

36. Detering, H.W.; Etling, D. Application of the E-e turbulence model to the atmospheric boundary layer. Bound. Layer Meteorol.
1985, 33, 113–133. [CrossRef]

37. Bechmann, A.; Sørensen, N.N.; Bechmann, C.A.; Dtu, R. Hybrid RANS/LES method for wind flow over complex terrain. Wind.
Energy 2010, 13, 36–50. [CrossRef]

38. Richards, P.J.; Hoxey, R.P. Appropriate boundary conditions for computational wind engineering models using the k-ε turbulence
model. J. Wind. Eng. Ind. Aerodyn. 1993, 46–47, 145–153. [CrossRef]

39. Guillas, S.; Glover, N.; Malki-Epshtein, L. Bayesian calibration of the constants of the k-ε turbulence model for a CFD model of
street canyon flow. Comput. Methods Appl. Mech. Eng. 2014, 279, 536–553. [CrossRef]

40. Zahid Iqbal, Q.M.; Chan, A. Pedestrian level wind environment assessment around group of high-rise cross-shaped buildings:
Effect of building shape, separation and orientation. Build. Environ. 2016, 101, 45–63. [CrossRef]

41. Edeling, W.N.; Cinnella, P.; Dwight, R.P.; Bijl, H. Bayesian estimates of parameter variability in the k–ε turbulence model.
J. Comput. Phys. 2014, 258, 73–94. [CrossRef]

42. Shirzadi, M.; Mirzaei, P.A.; Naghashzadegan, M. Improvement of k-epsilon turbulence model for CFD simulation of atmospheric
boundary layer around a high-rise building using stochastic optimization and Monte Carlo Sampling technique. J. Wind. Eng.
Ind. Aerodyn. 2017, 171, 366–379. [CrossRef]

43. Shirzadi, M.; Naghashzadegan, M.; Mirzaei, P.A. Improving the CFD modelling of cross-ventilation in highly-packed urban areas.
Sustain. Cities Soc. 2018, 37, 451–465. [CrossRef]

44. Shirzadi, M.; Mirzaei, P.A.; Tominaga, Y. RANS model calibration using stochastic optimization for accuracy improvement of
urban airflow CFD modeling. J. Build. Eng. 2020, 32, 101756. [CrossRef]

45. Biltoft, C. Customer Report for Mock Urban Setting Test; U.S. Defense Threat Reduction Agency: Fort Belvoir, VA, USA, 2001.
46. Emeis, S. Wind Energy Meteorology, 2nd ed.; Green Energy and Technology; Springer: Zug, Switzerland, 2018; pp. 31–56.

[CrossRef]
47. Speranza, A.; Lucarini, V. Environmental Science, Physical Principles and Applications. In Encyclopedia of Condensed Matter

Physics; Bassani, F., Liedl, G.L., Wyder, P., Eds.; Elsevier: Oxford, UK, 2005; pp. 146–156. [CrossRef]
48. Blocken, B.; Tominaga, Y.; Stathopoulos, T. CFD simulation of micro-scale pollutant dispersion in the built environment. Build.

Environ. 2013, 64, 225–230. [CrossRef]
49. Wilcox, D.C. Turbulence Modeling for CFD, 3rd ed.; DCW Industries: La Canada, CA, USA, 2006.
50. Warhaft, Z. Passive Scalars in Turbulent Flows. Annu. Rev. 2003, 32, 203–240. [CrossRef]
51. Rossi, R.; Iaccarino, G. Numerical simulation of scalar dispersion downstream of a square obstacle using gradient-transport type

models. Atmos. Environ. 2009, 43, 2518–2531. [CrossRef]
52. Tominaga, Y.; Stathopoulos, T. Turbulent Schmidt numbers for CFD analysis with various types of flowfield. Atmos. Environ.

2007, 41, 8091–8099. [CrossRef]
53. Koeltzsch, K. The height dependence of the turbulent Schmidt number within the boundary layer. Atmos. Environ. 2000,

34, 1147–1151. [CrossRef]

http://dx.doi.org/10.1016/j.jweia.2015.03.013
http://dx.doi.org/10.1016/0045-7825(74)90029-2
http://dx.doi.org/10.1016/0045-7930(94)00032-T
http://dx.doi.org/10.1103/PhysRevLett.57.1722
http://www.ncbi.nlm.nih.gov/pubmed/10033528
http://dx.doi.org/10.2514/3.12149
http://dx.doi.org/10.3390/atmos13101640
http://dx.doi.org/10.1016/j.jweia.2013.01.001
http://dx.doi.org/10.3390/buildings11030112
http://dx.doi.org/10.1556/1848.2021.00264
http://dx.doi.org/10.3390/atmos13071013
http://dx.doi.org/10.1007/BF00123386
http://dx.doi.org/10.1002/we.346
http://dx.doi.org/10.1016/0167-6105(93)90124-7
http://dx.doi.org/10.1016/j.cma.2014.06.008
http://dx.doi.org/10.1016/j.buildenv.2016.02.015
http://dx.doi.org/10.1016/j.jcp.2013.10.027
http://dx.doi.org/10.1016/j.jweia.2017.10.005
http://dx.doi.org/10.1016/j.scs.2017.11.020
http://dx.doi.org/10.1016/j.jobe.2020.101756
http://dx.doi.org/10.1007/978-3-319-72859-9
http://dx.doi.org/10.1016/B0-12-369401-9/00735-X
http://dx.doi.org/10.1016/j.buildenv.2013.01.001
http://dx.doi.org/10.1146/annurev.fluid.32.1.203
http://dx.doi.org/10.1016/j.atmosenv.2009.02.044
http://dx.doi.org/10.1016/j.atmosenv.2007.06.054
http://dx.doi.org/10.1016/S1352-2310(99)00369-6


Sustainability 2023, 15, 14317 31 of 31

54. Longo, R.; Fürst, M.; Bellemans, A.; Ferrarotti, M.; Derudi, M.; Parente, A. CFD dispersion study based on a variable Schmidt
formulation for flows around different configurations of ground-mounted buildings. Build. Environ. 2019, 154, 336–347.
[CrossRef]

55. Longo, R.; Bellemans, A.; Derudi, M.; Parente, A. A multi-fidelity framework for the estimation of the turbulent Schmidt number
in the simulation of atmospheric dispersion. Build. Environ. 2020, 185, 107066. [CrossRef]

56. Shirzadi, M.; Mirzaei, P.A.; Naghashzadegan, M.; Tominaga, Y. Modelling enhancement of cross-ventilation in sheltered buildings
using stochastic optimization. Int. J. Heat Mass Transf. 2018, 118, 758–772. [CrossRef]

57. Chang, J.C.; Hanna, S.R. Air quality model performance evaluation. MEteorology Atmos. Phys. 2004, 87, 167–196. [CrossRef]
58. Hanna, S.R.; Hansen, O.R.; Dharmavaram, S. FLACS CFD air quality model performance evaluation with Kit Fox, MUST, Prairie

Grass, and EMU observations. Atmos. Environ. 2004, 38, 4675–4687. [CrossRef]
59. Wang, Q.; Wang, J.; Hou, Y.; Yuan, R.; Luo, K.; Fan, J. Micrositing of roof mounting wind turbine in urban environment: CFD

simulations and lidar measurements. Renew. Energy 2018, 115, 1118–1133. [CrossRef]
60. Campolongo, F.; Braddock, R. Sensitivity analysis of the IMAGE greenhouse model. Environ. Model. Softw. 1999, 14, 275–282.

[CrossRef]
61. Campolongo, F.; Braddock, R. The use of graph theory in the sensitivity analysis of the model output: A second order screening

method. Reliab. Eng. Syst. Saf. 1999, 64, 1–12. [CrossRef]
62. Koch, P.N.; Yang, R.J.; Gu, L. Design for six sigma through robust optimization. Struct. Multidiscip. Optim. 2004, 26, 235–248.

[CrossRef]
63. Goldberg, D.E. Genetic Algorithms in Search Optimization and Machine Learning; Addison-Wesley: New York, NY, USA, 1988.
64. Hammersley, J.; Handscomb, D. Monte Carlo Methods; Chapman and Hall: London, UK, 1964.
65. Gimenez, J.M.; Bre, F. Optimization of RANS turbulence models using genetic algorithms to improve the prediction of wind

pressure coefficients on low-rise buildings. J. Wind. Eng. Ind. Aerodyn. 2019, 193, 103978. [CrossRef]
66. Yee, E.; Biltoft, C.A. Concentration Fluctuation Measurements in a Plume Dispersing Through a Regular Array of Obstacles.

Bound.-Layer Meteorol. 2004, 111, 363–415. [CrossRef]
67. Tominaga, Y.; Mochida, A.; Yoshie, R.; Kataoka, H.; Nozu, T.; Yoshikawa, M.; Shirasawa, T. AIJ guidelines for practical applications

of CFD to pedestrian wind environment around buildings. J. Wind. Eng. Ind. Aerodyn. 2008, 96, 1749–1761. [CrossRef]
68. Franke, J.; Hellsten, A.; Schlünzen, K.; Carissimo, B. Best practice guideline for the CFD simulation of flows in the urban

environment-a summary. In Proceedings of the 11th Conference on Harmonisation within Atmospheric Dispersion Modelling for
Regulatory Purposes, Cambridge, UK, 2–5 July 2007.

69. Blocken, B.; Stathopoulos, T.; Carmeliet, J. CFD simulation of the atmospheric boundary layer: Wall function problems. Atmos.
Environ. 2007, 41, 238–252. [CrossRef]

70. Blocken, B. Computational Fluid Dynamics for urban physics: Importance, scales, possibilities, limitations and ten tips and tricks
towards accurate and reliable simulations. Build. Environ. 2015, 91, 219–245. [CrossRef]

71. Celik, I.B.; Ghia, U.; Roache, P.J.; Freitas, C.J.; Coleman, H.; Raad, P.E. Procedure for estimation and reporting of uncertainty due
to discretization in CFD applications. J. Fluids Eng. Trans. ASME 2008, 130, 0780011–0780014. [CrossRef]

72. Roache, P.J. Quantification of uncertainty in computational fluid dynamics. Annu. Rev. Fluid Mech. 1997, 29, 123–160. [CrossRef]
73. RahnamayBahambary, K.; Fleck, B.A. Effects of Inflow Parameters and Disk Thickness on an Actuator Disk inside the Neutral

Atmospheric Boundary Layer. Wind 2022, 2, 733–746. [CrossRef]
74. Richards, P.J.; Norris, S.E. Appropriate boundary conditions for computational wind engineering models revisited. J. Wind. Eng.

Ind. Aerodyn. 2011, 99, 257–266. [CrossRef]
75. Toja-Silva, F.; Peralta, C.; Lopez-Garcia, O.; Navarro, J.; Cruz, I. Roof region dependent wind potential assessment with different

RANS turbulence models. J. Wind. Eng. Ind. Aerodyn. 2015, 142, 258–271. [CrossRef]
76. Tominaga, Y.; Stathopoulos, T. CFD simulation of near-field pollutant dispersion in the urban environment: A review of current

modeling techniques. Atmos. Environ. 2013, 79, 716–730. [CrossRef]
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