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Abstract: Several modelling tools reported the climate change impact on the coffee agrosystems. This
article has adopted a systematic approach to searching out information from the literature about
different modelling approaches to assess climate change impacts or/and adaptation on coffee crops
worldwide. The review included all scientific publications from the date of the first relevant article
until the end of 2022 and screened 60 relevant articles. Most results report research conducted in
America, followed by Africa. The models assessed in the literature generally incorporate Intergov-
ernmental Panel on Climate Change (IPCC) emission scenarios (80% of manuscripts), particularly
Representative Concentration Pathways (RCP) and Special Report on Emission Scenarios (SRES), with
the most common projection periods until 2050 (50% of documents). The selected manuscripts contain
qualitative and quantitative modelling tools to simulate climate impact on crop suitability (55% of
results), crop productivity (25% of studies), and pests and diseases (20% of the results). According to
the analysed literature, MaxEnt is the leading machine learning model to assess the climate suitability
of coffee agrosystems. The most authentic and reliable model in pest distribution is the Insect Life
Cycle Modelling Software (ILCYM) (version 4.0). Scientific evidence shows a lack of adaptation
modelling, especially in shading and irrigation practices, which crop models can assess. Therefore, it
is recommended to fill this scientific gap by generating modelling tools to understand better coffee
crop phenology and its adaptation under different climate scenarios to support adaptation strategies
in coffee-producing countries, especially for the Robusta coffee species, where a lack of studies is
reported (6% of the results), even though this species represents 40% of the total coffee production.

Keywords: coffee agrosystems; climate change (CC); impact; adaptation; modelling; IPCC scenarios

1. Introduction

The last Intergovernmental Panel on Climate Change (IPCC) Report [1] gathered
extensive evidence that climate change had caused substantial damage and increasingly
irreversible losses over terrestrial and marine ecosystems and natural resources. Agriculture
is among the sectors most affected by climate change, mainly due to extreme events’
increased frequency and intensity, with worsening expectations [2].

Climate change is estimated to increase agricultural production and food access
pressures, especially in vulnerable regions, thus undermining food security and human
nutrition [1]. It has altered hydrological cycles; extreme events such as droughts, floods,
storms, heat waves, and other abnormalities on Earth are becoming more common [3,4].
The uncertainty in precipitation patterns, more intense rainfall, and the increase in soil
erosion are regarded as direct climate change impacts on the agrosystems [5,6], which
generate abiotic stress on biodiversity. Indeed, flooding and surface runoff are vehicles
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of soil nutrients, pesticides, and other harmful chemicals into freshwater, depleting soil
fertility and polluting groundwater resources [7]. Water scarcity and temperature rise affect
plants’ biochemical and physiological processes [8]. Increasing temperatures have also
caused a substantial decline in crop production and are considered a high risk for crops
in the future [9,10], especially at mid and low latitudes. The impact of climate change on
the productivity of several staple crops is foreseen to be critical in low-latitude tropical
regions [11].

Coffee is one of the most important crops in low-latitude regions where climate
changes are expected to impact agricultural systems heavily [2]. Thus, arable land in
tropical and subtropical regions may lose a considerable amount of such areas by 2050;
for example, South America may lose 1–21%, Africa 1–18%, Europe 11–17%, and India
2–4% [12]. Another study illustrated a critical level of water deficit (0.82 kPa) during
the flowering stage of Arabica coffee, after which the yield significantly declined, and
predicted that about 90% of countries will breach this benchmark if warming rises to 2.9 ◦C
by 2095 [13].

Coffee is cultivated worldwide by about 20–25 million smallholder farmers on
11 million ha of arable land spread across 60 tropical regions [14]. The international
trade in coffee commodities is ranked second after petroleum products. Developing coun-
tries contribute considerably to exports to more industrialised countries. The United States
imports approximately 23% of total traded coffee beans, while the European Union imports
about 43% [15]. The estimated coffee consumption is more than 400 billion cups per year,
and almost 100 million people are engaged in this industry and derive their income directly
or indirectly from coffee commodities [15,16].

The main commercial coffee species are Arabica (Coffea arabica L.) and Robusta (Coffea
canephora L.), accounting for 99% of the total coffee production, where the individual share
of both species is 60% and 40%, respectively [17]. Meanwhile, the worldwide prediction
for the productivity of Arabica coffee is 35.5% higher than that of Robusta coffee. Brazil,
Vietnam, Indonesia, and Colombia are the leading countries globally, contributing to 68%
of the international market [15]. The production of the major coffee species and cumulative
production by both species within the last five years, produced by the leading countries
worldwide, is shown in Figure 1.
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Climate changes affect coffee crop production due to more frequent insect and pest
diseases induced by climate variability [19]. Moreover, high temperatures and reduced
precipitation considerably affect the flowering and fruiting of coffee plants and the quality
of the beans [20,21]. Coffee crops begin to bloom after the first spring rainfall, but under
drought conditions, fewer flowers will sprout, consequently reducing fruit development.
On the other hand, under heavy rain conditions, yield loss occurs as flowers and fruits fall
off the tree [22,23]. The vegetative and reproductive phases are specifically dependent upon
temperature. Temperature rise accelerates the berry ripening, reducing the bean filling
duration. Low temperatures lead to defoliation and decreased photosynthesis, causing
fluctuation in leaf mass [24]. In addition, low seasonal rainfall is causing branch death,
reducing fruit setting resources and damaging coffee beans [25].

Arabica adapts better at high altitudes with an optimal temperature range of 18–22 ◦C;
in contrast, Robusta thrives at lower altitudes with optimal temperatures between 22 and
28 ◦C. However, neither species can produce abundant yields under adverse conditions
nor maintain beverage quality [26].

Several studies have modelled the impact of climate change on coffee production,
depicting an upward shift of the crop along with yield losses at lower latitudes [27,28].
Climate uncertainty will affect the coffee production of 9.5 billion kg year−1 obtained
in 2018, with a 50% reduction by 2050 in suitable environments, thus putting a heavy
toll on the coffee trade as a threefold rise in demand is also expected [29]. Specifically,
global warming will significantly affect coffee crop production worldwide, with a reduc-
tion in 2050 of up to 60% in southern Brazil [30], 90% in Nicaragua [19], and 30–60% in
Kenya [31]. Both Robusta and Arabica will be negatively affected by increasing temperature:
a 1 ◦C increase in minimum/maximum temperature (16.2/24 ◦C) could result in ≈14% or
350–460 kg ha−1 Robusta yield reduction [32], even though the Arabica favourable environ-
ment could be relocated to 300 m up the altitude gradient in Nicaragua [19]. In addition,
high temperatures would make coffee farming susceptible to fungal attacks, such as coffee
rust, at lower altitudes and borer damage at high elevations [33,34].

The available literature on coffee presents extensive insights and recommendations for
using models and other analytical tools to study climate change impacts and adaptations in
coffee production in different regions, such as [35] in Central America, [32] in Vietnam, [36]
in Brazil, [37] in Colombia, [38] in Uganda, [39] in Ethiopia, and many more. While the
impacts of climate change on coffee have been systematically studied [40], modelling tools
still have not received enough attention in terms of systematic review and classification.

The current review is designed for a comprehensive view of the models and tools
available to investigate the implications of climate change conditions on coffee growth
and yield. The study will also help identify the potential gaps and future trends for
research studies to improve modelling tools to guide farming towards sustainable and
resilient management of coffee cultivation under climate change conditions. With this
aim, a systematic review approach, already consolidated in the climate and agricultural
sciences [41–43], is applied to explore the different modelling tools used to investigate
climate change impacts and adaptation on the two major coffee species, Robusta and
Arabica. We gave special attention to highlighting the eventual capacity of the available
tools to assess the effectiveness of adaptation options.

2. Materials and Methods

The Collaboration for Environmental Evidence (CEE) described a systematic review
guideline in which PECO or PICO elements demonstrate the research question in various
components [44]. Based on a proper methodology, the research question was formulated,
and proposed the following:

“What are the analytical tools for coffee crop modelling under climatic uncertainties?”
Based on this question, we developed the PICO elements and the search keywords in

Table 1. Once created, we tested the keywords on different search engines, such as Web of
Science, Scopus, and Science Direct, on 27 July 2021 (Table 2). To reduce incompatibilities
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between various search engines, we avoided the excessive use of operators (e.g., wildcard,
Boolean, braces, etc.). We extracted the complete database on 13 February 2023.

Table 1. The breakdown of the research question into PICO components and related keywords.

PICO Description Keywords

Population
Coffee production, focusing on agrosystems and bean
production but excluding the processing phases following
post-harvest.

Coffee, crop, tree, production, agrosystems, farm.

The study includes impacts, adaptation, and resilience to all
climate variables (temperature, rainfall, CO2).

Intervention
The intervention is the tools used to assess impacts,
adaptation, and resilience to climate change—variability in
temperature and precipitation.

Climate change, impact, adaptation, resilience,
GHG emission, climate Variable.

The review will consider no time scale.It will include all
scenarios investigated in the literature.

Comparator Qualitative vs. quantitative models; mathematical vs.
biophysical models; spatial modelling.

Outcome Modelling techniques.
Models, modelling, tools, programming.Analytical tools.

Programming.

Table 2. Development, trial, refinement, and screening of search terms. The keywords in bold
represent the selected ones since they show a reasonable hit in all databases.

Search Term Science Direct WoS
(All Fields)

Scopus
(Title-Abs-Key) Comments

“climate change” AND coffee 5573 536 538

The search term might include
adaptation and resilience of coffee
to climate change. It will also
include other aspects related to
impacts and mitigation or
policy documents

“climate change” AND coffee
AND (impact OR resilience
OR adaptation)

4948 327 299

A good search term. A reasonable
number of hits, which include all
the words needed to answer the
research question.

“climate change” AND coffee
AND model AND (impact OR
resilience OR adaptation)

3946 113 89 Somehow restrictive search term.

“climate change” AND coffee
AND (model OR programme
OR tool)

5212 217 187

A good search term. A reasonable
number of hits which include all
the words needed to answer the
research question.

“climate change” AND coffee
AND (model OR programme
OR tool) AND (impact OR
resilience OR adaptation)

4707 149 118

A good search term. A reasonable
number of hits which include all
the words needed to answer the
research question.

climate AND coffee AND
(model OR programme
OR tool)

15,161 387 381

A good search term. A
reasonable number of hits which
include all the words needed to
answer the research question.

climate AND coffee AND
(model OR programme OR
tool) AND (impact OR
resilience OR adaptation)

11,453 187 147

A good search term. A reasonable
number of hits which include all
the words needed to answer the
research question.
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Besides database sources, the systematic review used search engines and organisation
websites in which a maximum of 50 ‘hits’ were recorded from each website (Table 3).

Table 3. List of academic database sources and websites used.

Database Sources Search Websites Organisation Websites

Web of Science (WoS) google.com (accessed on 13 February 2023). World Bank
Scopus googlescholar.com (accessed on 13 February 2023). FAO

Science Direct Consultative Group on International Agricultural
Research (CGIAR)
International Fund for Agricultural
Development (IFAD)
Natural Resources Institute
Climate Institute
Coffee & Climate
International Trade Centre
Fairtrade
Coffee Research Institute
International Coffee Organisation

For the literature screening, we adopted the following inclusion criteria: (i) sub-
ject relevant (anywhere in the world, small landholder farmer or commercial system);
(ii) type of intervention (climate scenario available in the literature, tools to assess impact
resilience to climate change); (iii) comparator (Spatial modelling); (iv) method (Qualitative
vs. quantitative modelling); (v) outcome (studies that consider production modelling).

The effect modifier restricted access to limited primary data, and less variability in
modelling and potential impacts (GHG emission scenarios, crop varieties, different produc-
tion systems and techniques, different agro-ecological conditions, etc.) was unavoidable.
Therefore, the review team agreed to adopt narrative analysis and, where possible, quan-
titative evidence instead of meta-analysis. Interpreting broad subjects with a narrative
approach is more suitable, producing a disparate range of outcomes. The narrative analysis
approach can acquire the attention of stakeholders and decision-makers by providing them
with research gaps in targeted research areas [40–43]. The review team carefully reduced
any source of biases in evaluating climate change mitigation and adaptation impacts on the
coffee cropping systems.

The literature review did not include a timeframe and was extended until 31 December
2022, based on different search keywords tested on 27 July 2021. Available literature
published in English was considered, without specific field restrictions. Keyword search
outcomes were recorded and exported to “Mendeley” (a bibliographic software package,
2.100.0). The inclusion criteria were applied by selecting relevant title papers, then abstract
evaluation, and, finally, reviewing full texts (Figure 2). Obtained data were tabulated
using a common spreadsheet format (i.e., MS Excel). During data extraction, transparency
was ensured to avoid heterogeneity in data documentation, and all the review steps were
recorded using the PRISMA checklist.
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3. Results

The results are divided into three different sections. They will first present a general
statistical analysis of the screened database, then assess the latter according to climate
change processes reviewed to address the models and tools found in the literature in the
final section.

3.1. Bibliometric Analysis

A total of 60 eligible studies were retrieved from the literature on modelling climate-
driven aspects related to coffee production (Figure 2). The documents were comprehen-
sively searched and categorised according to different categories: region, year of publication,
model type, data used to validate the models, coffee species, climate scenarios, climate
impact, and climate adaptation (Supplementary Materials). All documents showing sim-
ulation models and producing predictions for specific periods for data synthesis were
considered. The number of documents were identified and classified according to publica-
tion years. Indeed, even though not constantly linear, the trend over time in publication
numbers shows an increase over the last decade (Figure 3), with peaks in the number of
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publications in 2017 and 2022 (n = 8, and n = 9), while also 2011, 2015, 2018, and 2020 show
a consistent number of publications (i.e., 5 and 6).
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From another side, Figure 4 depicts the literature published on coffee production
in different countries, most of which relate to Brazil (n = 14). The research on the coffee
crop in Ethiopia is reported in seven documents, whereas we obtained a similar number
of documents (n = 2) for Indonesia, Tanzania, Mexico, Colombia, Zimbabwe, and Costa
Rica. Some articles combined studies including many countries (n = 14), and a few (n = 4)
analysed climate-related aspects of coffee crops worldwide.
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The available literature mainly focused on Coffea arabica L., as reported in Table 4. Most
documents included results for the American (South America = 18, North America = 15)
and the African (n = 20) continents and four papers carried out global research, focusing
on Coffea arabica L. species. A few documents did not define the assessed species (n = 6).
Among document types, the available literature is covered mainly by research articles (n = 55).

Table 4. The number of documents published in different continents, document types, and
coffee species.

Continents
Document Type Species

Total
Research Chapter Report Coffee arabica L. Coffea robusta L. Both Species Not Mentioned

North America 12 1 2 12 1 2 15
South America 18 15 1 1 1 18
Africa 18 1 1 15 2 1 2 20
Asia 3 1 1 1 3
Worldwide 4 3 1 4
Total 55 2 3 46 3 5 6 60

3.2. Processes Reviewed

The results identified two climate change processes using modelling tools: impacts
and adaptation. The values in Figure 5 refer to the percentage of documents related to
climate variability’s effect on coffee production.
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The climate impact is further divided into three categories: impact on suitability, impact on production,
and impact on pests and diseases.

The impacts of climate change on coffee production are thoroughly assessed in the
literature (82%, in particular, the climate suitability (55%), increased incidence of pests and
disease (20%), and decline in production (25%). A consistent number of reviewed studies
proposed different adaptation strategies (18%).

3.3. Analysis of Models and Tools

A model is a simplified representation of reality though a functional scheme that
allows one to investigate the properties of a system and, in some cases, predict its future
outcome. Different models were developed for coffee crops to estimate current and future
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production and distribution, considering climate variability as a driving factor. Based on
the review, the models were classified into deterministic, stochastic, and mixed stochas-
tic/deterministic (Table 5). Deterministic models do not account for randomness in data,
nor have a probability function, so a set of inputs and established relationships determines
the output.

Table 5. Classification of the reviewed models.

Model Types
Total

Deterministic Models Stochastic Models Deterministic and
Stochastic

M
od

el
C

at
eg

or
y

Regression models 12 3 15
Crop models 2 8 10
Species distribution models 3 30 1 34

Total Models 17 41 1 59

On the contrary, a stochastic model includes a random component that uses a distri-
bution as one of the inputs and results in a distribution as output. It presents data and
predicts outcomes that account for certain levels of unpredictability or randomness. In
addition, some models are stochastic and become deterministic after training. The training
installs rules into a network that prescribes its behaviours, so an untrained model shows
inconsistent behaviours. These models were included in the mixed model type.

The Eta model was excluded from this classification; it was used once in the literature
to assess future suitability ranges, expressed in percentage, of coffee in Southeast Brazil
based on annual mean water and temperature restrictions of the Arabica coffee [46].

Among the other 59 models identified in the literature, as reported in Table 5, 41 are
stochastic models. Species distribution models are the most common (n = 34), followed
by crop models (n = 10). Additionally, species distribution models include deterministic
and stochastic models. Hence, the total number of deterministic models is 17, most of them
being regression models (n = 12).

3.3.1. Models’ Categories

In addition to the first model’s classification, another conceptual modelling classifica-
tion was applied to the modelling tools based on the type of mathematical function/process
used to estimate climate change impacts and adaptation. This classification identified re-
gression, crop, and species distribution models as the three main categories (Table 5). A
description of each model category is reported in the following sections.

Regression Models

Regression models are simple models used to establish relationships between climate
(and other environmental) variables and crop outcomes by fitting regression equations.
These models are effective in detecting more general trends and projecting future scenarios.
The literature comprises various regression models, including non-linear regression mod-
els, multivariate analysis, AutoRegressive Integrated Moving Average (ARIMA) models,
climate-based statistical models, econometric models, Generalised Linear Model (GLM),
and the Generalised Additive Model (GAM).

Regression models are extensively used to study the impact of climate change on
coffee crop yields. Climate-based statistical models, such as those used by [22], predict
yields of Coffea arabica L. and Coffea robusta L. in India for specific years (2010–2012) based
on temperature, rainfall, and humidity variables. ARIMA models are employed by [47,48]
to assess the influence of climate change on coffee yield in Tanzania and Brazil. The
linear regression models predict coffee yield in Ethiopia until 2060 and investigate climate
suitability for Arabica coffee until 2080 [49,50].
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Non-linear regression equations are applied to study the effects of factors, such as
temperature, leaf wetness, and distribution in the sun and shade-grown systems, on coffee
rust and coffee crop vulnerability in Brazil and provide projections under climate change
until 2080 [51–54]. Bio-economic models are used to predict the impact of the Coffee Berry
Borer (CBB) on coffee crops in East Africa and examine the influence of climate on CBB in
both full-sun and shade-grown systems [55]. Various studies used econometric models to
investigate the correlation between coffee yield and climate variables and identify climate-
vulnerable areas in different countries, such as Mexico, Brazil, and Colombia. The principal
component analysis is also used to predict the vulnerability in Brazil’s coffee region to
climate change until 2080 [20,28,56].

Crop Process-Based Models

Crop models are process-based models that simulate the growth and development of
crops in specific environmental conditions, and simulate biogeochemical processes to pre-
dict crop growth and yields and optimise crop management strategies under present and
projected climatic conditions. However, these models require extensive effort in equations
and parameter calibration. In the existing literature, several crop models have been identi-
fied, including mechanistic models, the yield-safe model, the DynaCof model, dynamic
models, Irrigation Management System (IManSys) model, and agrometeorological models.

Several studies applying crop models (e.g., DynaCof) focus explicitly on agroforestry
systems and compare them with open sun-grown systems under changing climate variables
in Costa Rica, Guatemala, Nicaragua, Colombia, and Brazil [24,57–59]. The yield-safe model
determines coffee yield under changing climate scenarios in Ethiopia [21]. Agrometeorolog-
ical models incorporate irrigation methods to counter the effects of high temperatures and
frost from 2040 to 2070 in Brazil. Other studies focus on shade levels to mitigate drought
intensity in East Africa, and the IManSys model is used to calculate irrigation requirements
for coffee crops under IPCC scenarios in Hawaii [60–64].

Species Distribution Models

Species distribution models identify the distribution among environmental and spatial
gradients of a particular species and confirm the suitability of its niche, considering climate
impact and other environmental variables. Some reviewed models driven by machine-
learning algorithms [39] can investigate climate suitability and include Maximum Entropy
(MaxEnt), Random Forests (RF), Boosted Regression Trees (BRT), Generalised Boosted
regression Model (GBM), Support Vector Machine (SVM), and Multivariate Adaptive
Regression Spline (MARS) models. Moreover, other suitability models are (i) the agro-
ecological land elevation model for Coffea arabica L. (ALIECA), (ii) the EcoCrop Model, and
(iii) the crop niche selection for tropical agriculture (CaNaStA).

Furthermore, the ensemble modelling approach, which combines different models
to perform specific scientific activities, has become more common lately to ensure the
projections’ reliability and reduce modelling uncertainty. Other various modelling tools
exist for pest species distribution and disease occurrence. They are (i) the bio-economic
models, (ii) the empirical disease models, (iii) the Dinamica EGO model, (iv) the Climex
model, (v) the thermal constant model, and (vi) the Insect Life Cycle Modelling Software
(ILCYM). The species distribution models are more common in the literature.

The MaxEnt model is widely used to assess the climate suitability of Arabica coffee and
predict its future implications worldwide. The model uses various environmental factors as
explanatory variables, including temperature, precipitation, aridity, evapotranspiration, soil
slope, and land cover [65], to simulate (i) climate suitability in Nepal, Indonesia and Haiti,
(ii) the impact on indigenous Arabica coffee in Sudan and Ethiopia, (iii) the adaptation
strategy for coffee communities in Mexico, and (iv) to assess climate vulnerability in Puerto
Rico by 2099 and Mesoamerica by 2050 [66–70].

Furthermore, the MaxEnt model applied in Indonesia and Zimbabwe produced
climate suitability until 2050 and extended projections for China (2060) and Ethiopia
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(2070) [71–74]. It also assesses the coffee-pollinating species occurrence in Latin America
in response to climate variability (temperature, precipitation, and dry season) and sets
the suitable ecological zones in Costa Rica against temperature, elevation, and diurnal
range [75,76]. Finally, the MaxEnt model assesses agroforestry systems for adaptation in
Brazil and Mesoamerica by 2050, respectively, in response to temperature, precipitation,
and bioclimatic variables [30,77].

The influence of climate variability (temperature, rainfall, and evapotranspiration) on
Arabica agroclimatic zoning and coffee production was also investigated in Brazil using
Eta, a regional climate modelling tool [46].

Random Forest (RF) models are run worldwide to classify the agro-ecological zones for
Arabica coffee based on climate variables (temperature, precipitation, and dry months) [78].
An empirical disease model determined the incubation period of coffee rust (Hemileia
vastatrix) in response to maximum and minimum temperatures and interpolated them
to make predictions in Brazil [79]. Ecological modelling tools are also used to evaluate
Brazil’s phoma leaf spot distribution related to temperature and relative humidity [80].
The Dinamica EGO model produces the distribution of understorey coffee occurrences in
Ethiopia [81]. Generalised Regression Models (GRM) are applied globally to assess the
impact of Vapour Pressure Development (VPD) on Arabica coffee yield. In Ethiopia, GRM
evaluated the influences of extreme agroclimatic indicators on Arabica coffee’s overground
biomass (AGB) until 2060 [13,82].

In Zimbabwe, the Coffee White Borer (CWB) occurrence probability until 2050 is
assessed against temperature and precipitation factors by an ensemble of modelling ap-
proaches (BRT and GLM models) [34]. Another ensemble approach uses several machine-
learning algorithms (SVM, MaxEnt, and RF) to investigate the worldwide distribution of
coffee crops (Arabica and Robusta coffee) [27]. Another ensemble of modelling techniques
(GLM, MaxEnt, RF, MARS, GAM, and GBM) examines the resilience potential for Arabica
coffee in Ethiopia and the risk extinction of wild Arabica species in Ethiopian and Sudan
while taking into account several climate variables [83,84].

The MaxEnt and CaNaStA models also use climate variables, such as temperature
and precipitation, as an ensemble of models to generate climate suitability and the quality
of Arabica coffee in Nicaragua and evaluate adaptation and mitigation options in Cen-
tral America [19,85]. Moreover, an integrated approach of machine-learning algorithms
(BFT, RF, and SVM) investigate the influence of climate variability (temperature and pre-
cipitation) and topological (elevation, soil slope angle) and soil characteristics (pH, soil
Cation Exchange Capacity (CEC), apparent Bulk Density (BD), Soil Organic Carbon (SOC))
on the speciality of the coffee sector in Ethiopia under current and future scenarios [39].
Species distribution models (GAM, MaxEnt, and BRT) also predict Robusta’s ecological
and genomic vulnerability in its native region by 2050 [86].

The ALIECA model predicts the land suitability of Arabica coffee production using
agro-ecological variables in Central America. An EcoCrop model assesses the climate
suitability of a coffee-based cropping system in Uganda for the long term (2038) [87,88].
The Climex model accounts for the spatial distribution of CBB, considering the effect of
environmental variables (temperature, moisture parameters, and other environmental
constraints) [89]. Based on Brazil’s air and soil temperature, the thermal constant model
simulates the geographic distribution of coffee nematodes and leaf miners until 2080 [90].
Finally, the Insect Life Cycle Modelling software (ILCYM) predicts the coffee stink bug
(Antestiopsis thunbergii) in Tanzania based on the Establishment of Risk Index (ERI), the
Generation Index (GI), and the Activity Risk (AI) that corresponds to changes in critical
factors/thresholds linked to coffee stink bug distribution based on air temperature [91].

3.3.2. Climate Change Scenarios

A total of 48 papers analyse the impact of future climate change conditions. The
analyses follow the Intergovernmental Panel on Climate Change (IPCC) climate scenarios
based on the emission and concentration of greenhouse gases in the atmosphere. Over
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the years, the IPCC has developed several scenarios, including the Special Report on
Emission Scenarios (SRES) for the third and fourth Assessment Reports (AR3 in 2001 and
AR4 in 2007) [92], characterised by four qualitative storyline scenarios (A1, A2, B1, and B2)
representing different demographic, social, and technological advancements. Further, the
IPCC has recently developed advanced sets of scenarios: the Representative Concentration
Pathway (RCP) and the Shared Socioeconomic Pathway (SSP), presented in AR4 [93] and
AR6 [94], respectively. Both have a valid framework for projections until the end of the
current century (2100). However, the RCP provides the concentration of greenhouse gases
and radiative forcing levels associated with different emission pathways. In contrast,
the SSP setup has a different approach considering greenhouse gas emissions, including
population growth, economic development, energy use, land use, and other factors. The
RCP is further subdivided into RCP 2.6 (optimistic), RCP 4.5 and 6.0 (intermediate), and
RCP 8.5 (business as usual), and the set of the SSP scenarios are SSP126 (sustainable
development), SSP245 (middle of the road development), SSP370 (regional rivalry), SSP460
(inequity), and SSP585 (full fossil-fuelled development) pathways.

The available literature has been more consolidated over the last decade. Therefore,
the RCP are more prevalent than the SRES scenarios, commonly used by the literature
in the earlier years (2008–2019), and were gradually, but not entirely, replaced by the
RCP scenarios between 2015 and 2022. In the review results, the RCP scenarios prevail
(23 papers), followed by the SRES (21 manuscripts) and the SSP (4 studies) (Figure 6A).
The use and frequency of different scenarios across the results indicate that the highest
number of papers (n = 7) adopted RCP 4.5 and RCP 8.5, followed by RCP 4.5, SRES A2A,
SRES A2, and SRES A2 (n = 5 for each scenario). The other scenarios found in the literature
(RCP (2.6, 4.5, 6.0 and 8.5), SRES (A2 and B2), and SSP (126, 245, 370 and 585)) are adopted
in two research papers each (Figure 6B). The remaining scenarios were used only once in
the literature, including RCP (2.6 and 8.5), (2.6 and 6.0), (2.6, 4.5 and 6.0), (2.6, 6.0 and 8.5),
SRES (B1 and A2), (B1, and A1F1), (A2A, and A1F1), (A1B, A2A and B2A), (A2, B2, A2A
and B2A), (A1, A1B and B2), and SSP (126, 245 and 585) (Figure 6C,D).
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4. Discussions

The literature was extensively searched to put together information on published
modelling tools used to predict the impacts and adaptation of coffee agrosystems to climate
change. Arabica is at a greater risk between the two major coffee species than Robusta;
thus, research focused primarily on this species. Most models in the screened literature
have incorporated the IPCC scenarios and evaluated climate change’s impact on coffee
agrosystems. Less attention is given to the adoption of adaptation practices. Most models
have incorporated the IPCC scenarios, using projections until 2050, particularly the medium-
emission sub-scenario RCP 4.5, either solely or combined with other sub-scenarios. The
SERS’ high-emission scenarios (A2) were also commonly used in the reviewed literature.
The Supplementary Materials contain detailed information about each document screened
for review.

Among the various regression models, econometric models based on multiple regres-
sion equations, which integrate the economic and climate variables, are commonly used to
capture the effect of extreme events on coffee yield. The quadratic functional farm generates
multi-collinearity, which does not affect the model’s prediction but makes the estimator
less accurate [28]. The AutoRegressive Integrated Moving Average (ARIMA) is particularly
efficient in forecasting time series analysis, but its application with non-linear regression
can compromise the model’s accuracy [88]. The climate-based regression models monitor
the coffee crop under critical stages, considering the effect of climate variables to analyse
the coffee growth and developments at different growth cycles [22].

The MaxENT model is widely applied to determine the climate suitability of coffee
crops. The model output is 1, considered the maximum probability, and 0, where species
have a less suitable climate. The model calculates these values by dividing each weighted
variable’s sum by a scaling constant. This model is robust because it incorporates statistical
and machine-learning techniques. However, the parameter selection is crucial, otherwise,
the results may be biased. There is an inbuilt option to check the quality of the model
using the Area Under Curve (AUC) index, as it provides a single overall measure of model
accuracy [19,30].

A Random Forest (RF) model is also a popular machine learning classifier with high
efficiency over large datasets without overfitting [22]. The Crop Niche Selection in Tropi-
cal Agriculture (CaNaSTA) is built on Bayesian statistics, aiming to determine a species’
presence or absence and appraise the crop’s performance. However, this model only works
with its specific dataset format, and expertise in Bayesian statistics is also required, making
it complicated and time-consuming.
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Another model, EcoCrop (EC), determines the crop niche using environmental ranges,
expressed in percentage, producing overall crop suitability [61]. The model gives individual
suitability values for temperature and precipitation. Expert knowledge is essential for the
model’s accuracy in setting the crop parameters. The EcoCrop (EC) model can assess
climate suitability even with limited ecological and environmental information [80].

The ensemble modelling approach is more efficient in suitability-related tasks because
different machine learning and regression models perform together, highlighting mod-
elling uncertainty and conservative choices for specific tasks. For example, integrating RF,
CaNaStA, and MaxEnt has more precise results than the output produced by individual
models [29]. The Dinamica’s EGO model applies Weight of Evidence (WoE) to find the
coffee occurrence understorey [74]. The agro-ecological land elevation model for Coffea
arabica L. (ALIECA) is based on a Bayesian algorithm and provides information about
land suitability in percentages, but does not provide data about the presence or absence of
coffee crops. This model can also provide accurate results when the data are missing or
uncertain [81].

The literature has applied and described several models for Identifying pests in coffee
agroecosystems under climate change scenarios, including the ILCYM, climax, and thermal
constant models. All these models have their strengths, but the ILCYM model stands
out due to its ability to provide detailed information at a very high geographical scale,
resulting in more precise results than other pest distribution models. However, the thermal
constant model and ILCYM are based on temperature variables. They lack flexibility in
accepting other climate variables important for pest–crop interactions, such as rainfall
and relative humidity. Furthermore, neither model offers any crop or pest adaptation
options. In addition, these models require daily or hourly data on a short time scale
because pest–crop interactions may occur within 24 h [83,84]. The empirical disease and
non-linear regression models use air temperature to determine the occurrence and intensity
of diseases [72,89]. On the other hand, bioeconomic models are more flexible in considering
shading, coffee berry borer (CBB) infestation, and temperature to generate information
along with economic variables to estimate the shading value according to the disease
infestation intensity [48].

Crop models are commonly used to assess climate impacts against adaptation strate-
gies while modifying crop management systems. The available crop models recommend
the shading level for optimal coffee yield in various regions [19,51,52]. However, few
studies explored other adaptation options. As agrometeorological models, the Irrigation
Management System (IManSys) model and the Yield SAFE model have been developed to
enhance irrigation techniques and the efficiency of CO2 fertilisation in a coffee production
system [53,55,57]. All models obtained in each article are available in a supplementary file
submitted with this manuscript.

5. Conclusions

Various modelling approaches have been applied to determine the climate change
impact and adaptation of coffee agrosystems. The research adopted the systematic review
approach to assess and classify the available literature according to (i) categories (regression
models, crop models, species distribution models), (ii) types (deterministic, stochastic,
mixed), and (iii) processes (climate impacts, climate adaptation). The results also included
an assessment of the scenarios used to run different modelling tools.

In conclusion, machine learning models have complex algorithms and are stochastic,
which produce predictions in situations where data include uncertainty or randomness,
thereby generating more accurate results. The ILCYM model is particularly efficient in pest
distribution due to its flexibility in accepting multiple variables, thus providing reliable
data. The application of crop models was limited to a few studies on crop agrosystems.

Therefore, based on our results, we recommend intensifying adaptation research to
explore the best options for different case studies. We advocate applying crop models
to fill the gap for coffee phenology and propose adaptation strategies, for example, in-
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troducing new varieties, water conservation methods, shading management at various
altitudes, and soil organic matter management. The Robusta coffee species also needs to be
further investigated in the literature because it is underestimated, despite having a higher
adaptation potential.

We finally address these results to decision-makers to support scientific and applied
policy design and implementation in climate change resilience and adaptation.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/su151914582/s1.

Author Contributions: Data curation, M.F. and D.E.C.; Formal analysis, M.F. and D.E.C.; Investi-
gation, M.F. and D.E.C.; Methodology, M.F. and D.E.C.; Writing—original draft, M.F. and D.E.C.;
Writing—review & editing, M.F. and D.E.C., V.M., A.T., S.M. and D.S.; Supervision, V.M., A.T., S.M.
and D.S.; Funding acquisition, D.S. All authors have read and agreed to the published version of
the manuscript.

Funding: This work was developed within the framework of the strategic project “CAT4—Agriculture
Management Analysis for Adaptation” promoted by the Euro-Mediterranean Centre on Climate
Change (CMCC) Foundation.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest

References
1. IPCC. Summary for Policymakers. In Climate Change: Impacts, Adaptation, and Vulnerability; Pörtner, H.-O., Roberts, D.C.,

Poloczanska, E.S., Mintenbeck, K., Tignor, M., Alegría, A., Craig, M., Langsdorf, S., Löschke, S., Möller, V., et al., Eds.; Contribution
of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University
Press: Cambridge, UK; New York, NY, USA, 2022; pp. 3–33.

2. IPCC. Climate Change: Impacts, Adaptation and Vulnerability. In Contribution of Working Group II to the Sixth Assessment Report of
the Intergovernmental Panel on Climate Change; Pörtner, H.-O., Roberts, D.C., Poloczanska, E.S., Mintenbeck, K., Tignor, M., Alegría,
A., Craig, M., Langsdorf, S., Löschke, S., Möller, V., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA,
2022; p. 3056.

3. Anjum, S.A.; Xie, X.; Wang, L.; Saleem, M.F.; Man, C.; Lei, W. Morphological, Physiological and Biochemical Responses of Plants
to Drought Stress. Afr. J. Agric. Res. 2011, 6, 2026–2032. [CrossRef]

4. Shao, G. Understanding the Appeal of User-Generated Media: A Uses and Gratification Perspective. Internet Res. 2009, 19, 7–25.
[CrossRef]

5. Canal Daza, D.S.; Andrade, C.H.J. Mitigation-adaptation synergies of climate change of coffee (Coffea arabica) production sys-tems
in Tolima, Colombia [Sinergias mitigación-adaptación al cambio climático en sistemas de producción de café (Coffea arabica), de
Tolima, Colombia]. Rev. Biol. Trop. 2019, 67, 36–46. [CrossRef]

6. Angima, S.D.; Stott, D.E.; O’Neill, M.K.; Ong, C.K.; Weesies, G.A. Soil erosion prediction using RUSLE for central Kenyan
highland conditions. Agric. Ecosyst. Environ. 2003, 97, 295–308. [CrossRef]

7. Vieira, M.; Mahdi, S.; Casas-Gallego, M.; Fenton, J. Three New Paleocene Dinoflagellate Cysts from the North Sea and the
Norwegian Sea. Rev. Palaeobot. Palynol. 2018, 258, 256–264. [CrossRef]

8. Fahad, S.; Bajwa, A.A.; Nazir, U.; Anjum, S.A.; Farooq, A.; Zohaib, A.; Sadia, S.; Nasim, W.; Adkins, S.; Saud, S.; et al. Crop
Production under Drought and Heat Stress: Plant Responses and Management Options. Front. Plant Sci. 2017, 8, 1147. [CrossRef]
[PubMed]

9. Chen, S.; Gong, B. Response and Adaptation of Agriculture to Climate Change: Evidence from China. J. Dev. Econ. 2021,
148, 102557. [CrossRef]

10. Gammans, M.; Mérel, P.; Ortiz-Bobea, A. Negative Impacts of Climate Change on Cereal Yields: Statistical Evidence from France.
Environ. Res. Lett. 2017, 12, 054007. [CrossRef]

11. Jagermeyr, J.; Mueller, C.; Ruane, A.C.; Elliott, J.; Balkovic, J.; Castillo, O.; Faye, B.; Foster, I.; Folberth, C.; Franke, J.A.; et al.
Climate Impacts on Global Agriculture Emerge Earlier in New Generation of Climate and Crop Models. Nat. Food 2021, 2,
873–875. [CrossRef]

12. Zhang, X.; Cai, X. Climate Change Impacts on Global Agricultural Land Availability. Environ. Res. Lett. 2011, 6, 014014. [CrossRef]

https://www.mdpi.com/article/10.3390/su151914582/s1
https://www.mdpi.com/article/10.3390/su151914582/s1
https://doi.org/10.5897/AJAR10.027
https://doi.org/10.1108/10662240910927795
https://doi.org/10.15517/rbt.v67i1.32537
https://doi.org/10.1016/S0167-8809(03)00011-2
https://doi.org/10.1016/j.revpalbo.2018.09.002
https://doi.org/10.3389/FPLS.2017.01147
https://www.ncbi.nlm.nih.gov/pubmed/28706531
https://doi.org/10.1016/j.jdeveco.2020.102557
https://doi.org/10.1088/1748-9326/aa6b0c
https://doi.org/10.1038/s43016-021-00400-y
https://doi.org/10.1088/1748-9326/6/1/014014


Sustainability 2023, 15, 14582 16 of 19

13. Kath, J.; Craparo, A.; Fong, Y.; Byrareddy, V.; Davis, A.P.; King, R.; Nguyen-Huy, T.; van Asten, P.J.A.; Marcussen, T.; Mushtaq, S.;
et al. Vapour Pressure Deficit Determines Critical Thresholds for Global Coffee Production under Climate Change. Nat. Food
2022, 3, 871–880. [CrossRef]

14. Chain-Guadarrama, A.; Martínez-Salinas, A.; Aristizábal, N.; Ricketts, T.H. Ecosystem Services by Birds and Bees to Coffee in a
Changing Climate: A Review of Coffee Berry Borer Control and Pollination. Agric. Ecosyst. Environ. 2019, 280, 53–67. [CrossRef]

15. Krishnan, S.; Matsumoto, T.; Nagai, C.; Falconer, J.; Shriner, S.; Long, J.; Medrano, J.F.; Vega, F.E. Vulnerability of Coffee (Coffea
spp.) Genetic Resources in the United States. Genet. Resour. Crop Evol. 2021, 68, 2691–2710. [CrossRef]

16. Mishra, M.; Slater, A. Recent Advances in the Genetic Transformation of Coffee. Biotechnol. Res. Int. 2012, 2012, 17. [CrossRef]
17. Kouadio, L.; Byrareddy, V.M.; Sawadogo, A.; Newlands, N.K. Probabilistic Yield Forecasting of Robusta Coffee at the Farm Scale

Using Agroclimatic and Remote Sensing Derived Indices. Agric. For. Meteorol. 2021, 306, 108449. [CrossRef]
18. USDA. Coffee: World Markets and Trade; Foreign Agricultural Service; United States Department of Agriculture (USDA): Washing-

ton, DC, USA, 2022; pp. 1–9.
19. Laderach, P.; Ramirez-Villegas, J.; Navarro-Racines, C.; Zelaya, C.; Martinez-Valle, A.; Jarvis, A. Climate Change Adaptation of

Coffee Production in Space and Time. Clim. Change 2017, 141, 47–62. [CrossRef]
20. Koh, I.; Garrett, R.; Janetos, A.; Mueller, N.D. Climate Risks to Brazilian Coffee Production. Environ. Res. Lett. 2020, 15, 104015.

[CrossRef]
21. Gidey, T.; Oliveira, T.S.; Crous-Duran, J.; Palma, J.H.N. Using the Yield-SAFE Model to Assess the Impacts of Climate Change on

Yield of Coffee (Coffea arabica L.) under Agroforestry and Monoculture Systems. Agrofor. Syst. 2020, 94, 57–70. [CrossRef]
22. Jayakumar, M.; Rajavel, M. Coffee Yield Forecasting Using Climate Indices Based Agrometeorological Model in Kerala. Mausam

2017, 68, 309–316. [CrossRef]
23. Villers, L.; Arizpe, N.; Orellana, R.; Conde, C.; Hernandez, J. Impacts of Climatic Change on Coffee Flowering and Fruit

Development in Veracruz, México [Impactos Del Cambio Climático En La Floración y Desarrollo Del Fruto Del Café En Veracruz,
México]. Interciencia 2009, 34, 322–329.

24. Rodríguez, D.; Cure, J.R.; Cotes, J.M.; Gutierrez, A.P.; Cantor, F. A Coffee Agroecosystem Model: I. Growth and Development of
the Coffee Plant. Ecol. Modell. 2011, 222, 3626–3639. [CrossRef]

25. Kath, J.; Mittahalli Byrareddy, V.; Mushtaq, S.; Craparo, A.; Porcel, M. Temperature and Rainfall Impacts on Robusta Coffee Bean
Characteristics. Clim. Risk Manag. 2021, 32, 100281. [CrossRef]

26. Magrach, A.; Ghazoul, J. Climate and Pest-Driven Geographic Shifts in Global Coffee Production: Implications for Forest Cover,
Biodiversity and Carbon Storage. PLoS ONE 2015, 10, e0133071. [CrossRef]

27. Bunn, C.; Läderach, P.; Ovalle Rivera, O.; Kirschke, D. A Bitter Cup: Climate Change Profile of Global Production of Arabica and
Robusta Coffee. Clim. Change 2015, 129, 89–101. [CrossRef]

28. Gay, C.; Estrada, F.; Conde, C.; Eakin, H.; Villers, L. Potential Impacts of Climate Change on Agriculture: A Case of Study of
Coffee Production in Veracruz, Mexico. Clim. Change 2006, 79, 259–288. [CrossRef]

29. Nab, C.; Environment, M.M.-G.G. Life cycle assessment synthesis of the carbon footprint of Arabica coffee: Case study of
Brazil and Vietnam conventional and sustainable coffee production and export to the United Kingdom. Wiley Online Libr. 2020,
7, e00096. [CrossRef]

30. Gomes, L.C.; Bianchi, F.J.J.A.; Cardoso, I.M.; Fernandes, R.B.A.; Filho, E.I.F.; Schulte, R.P.O. Agroforestry Systems Can Mitigate
the Impacts of Climate Change on Coffee Production: A Spatially Explicit Assessment in Brazil. Agric. Ecosyst. Environ. 2020,
294, 106858. [CrossRef]

31. Giovannucci, D.; von Hagen, O.; Wozniak, J. Voluntary Standard Systems; Springer: Berlin/Heidelberg, Germany, 2014; Volume 1,
ISBN 978-3-642-35715-2.

32. Kath, J.; Byrareddy, V.M.; Craparo, A.; Nguyen-Huy, T.; Mushtaq, S.; Cao, L.; Bossolasco, L. Not so Robust: Robusta Coffee
Production Is Highly Sensitive to Temperature. Glob. Change Biol. 2020, 26, 3677–3688. [CrossRef]

33. van der Vossen, H.; Bertrand, B.; Charrier, A. Next Generation Variety Development for Sustainable Production of Arabica Coffee
(Coffea arabica L.): A Review. Euphytica 2015, 204, 243–256. [CrossRef]

34. Kutywayo, D.; Chemura, A.; Kusena, W.; Chidoko, P.; Mahoya, C. The Impact of Climate Change on the Potential Distribution of
Agricultural Pests: The Case of the Coffee White Stem Borer (Monochamus leuconotus P.) in Zimbabwe. PLoS ONE 2013, 8, e73432.
[CrossRef]

35. Bunn, C.; Castro, F.; Lundy, M. The Impact of Climate Change on Coffee Production in Central America; CCAFS: Wageningen,
The Netherlands, 2017.

36. Camargo, M.B.P.D. The impact of climatic variability and climate change on Arabic coffee crop in Brazil [Impacto da variabilidade
e da mudança climática na produção de café Arábica no Brasil]. Bragantia 2010, 69, 239–247. [CrossRef]

37. Andrade, H.J.; Segura, M.A.; Feria, M. Allometric Models for Estimating Belowground Biomass of Individual Coffee Bushes
Growing in Monoculture and Agroforestry Systems. Agrofor. Syst. 2021, 95, 215–226. [CrossRef]

38. Sarmiento-Soler, A.; Vaast, P.; Hoffmann, M.P.; Jassogne, L.; van Asten, P.; Graefe, S.; Rötter, R.P. Effect of Cropping System, Shade
Cover and Altitudinal Gradient on Coffee Yield Components at Mt. Elgon, Uganda. Agric. Ecosyst. Environ. 2020, 295, 106887.
[CrossRef]

39. Chemura, A.; Mudereri, B.T.; Yalew, A.W.; Gornott, C. Climate Change and Specialty Coffee Potential in Ethiopia. Sci. Rep. 2021,
11, 8097. [CrossRef] [PubMed]

https://doi.org/10.1038/s43016-022-00614-8
https://doi.org/10.1016/j.agee.2019.04.011
https://doi.org/10.1007/s10722-021-01217-1
https://doi.org/10.1155/2012/580857
https://doi.org/10.1016/j.agrformet.2021.108449
https://doi.org/10.1007/s10584-016-1788-9
https://doi.org/10.1088/1748-9326/aba471
https://doi.org/10.1007/s10457-019-00369-5
https://doi.org/10.54302/mausam.v68i2.633
https://doi.org/10.1016/j.ecolmodel.2011.08.003
https://doi.org/10.1016/j.crm.2021.100281
https://doi.org/10.1371/journal.pone.0133071
https://doi.org/10.1007/s10584-014-1306-x
https://doi.org/10.1007/s10584-006-9066-x
https://doi.org/10.1002/geo2.96
https://doi.org/10.1016/j.agee.2020.106858
https://doi.org/10.1111/gcb.15097
https://doi.org/10.1007/s10681-015-1398-z
https://doi.org/10.1371/journal.pone.0073432
https://doi.org/10.1590/S0006-87052010000100030
https://doi.org/10.1007/s10457-020-00575-6
https://doi.org/10.1016/j.agee.2020.106887
https://doi.org/10.1038/s41598-021-87647-4
https://www.ncbi.nlm.nih.gov/pubmed/33854166


Sustainability 2023, 15, 14582 17 of 19

40. Bilen, C.; El Chami, D.; Mereu, V.; Trabucco, A.; Marras, S.; Spano, D. A Systematic Review on the Impacts of Climate Change on
Coffee Agrosystems. Plants 2023, 12, 102. [CrossRef] [PubMed]

41. El Chami, D.; Trabucco, A.; Wong, T.; Monem, M.A.; Mereu, V. Costs and Effectiveness of Climate Change Adaptation in
Agriculture: A Systematic Review from the NENA Region. Clim. Policy 2022, 22, 445–463. [CrossRef]

42. El Chami, D.; Daccache, A.; El Moujabber, M. What Are the Impacts of Sugarcane Production on Ecosystem Services and Human
Well-Being? A Review. Ann. Agric. Sci. 2020, 65, 188–199. [CrossRef]

43. El Chami, D.; Daccache, A.; El Moujabber, M. How Can Sustainable Agriculture Increase Climate Resilience? A Systematic
Review. Sustainability 2020, 12, 3119. [CrossRef]

44. CEE. Guidelines for Systematic Review and Evidence Synthesis in Environmental Management; Version 5.0. 483; Pullin, A.S., Ed.;
Collaboration for Environmental Evidence (CEE): London, UK, 2018.

45. Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA
statement. Int. J. Surg. 2010, 8, 336–341. [CrossRef]

46. Tavares, P.S.; Giarolla, A.; Chou, S.C.; Silva, A.J.P.; Lyra, A.A. Climate Change Impact on the Potential Yield of Arabica Coffee in
Southeast Brazil. Reg. Environ. Change 2018, 18, 873–883. [CrossRef]

47. Ferreira, W.P.M.; Ribeiro Júnior, J.I.; de Fátima Souza, C. Climate Change Does Not Impact on Coffea arabica Yield in Brazil. J. Sci.
Food Agric. 2019, 99, 5270–5282. [CrossRef]

48. Craparo, A.C.W.; Van Asten, P.J.A.; Läderach, P.; Jassogne, L.T.P.; Grab, S.W. Coffea arabica Yields Decline in Tanzania Due to
Climate Change: Global Implications. Agric. For. Meteorol. 2015, 207, 1–10. [CrossRef]

49. Ginbo, T. Heterogeneous Impacts of Climate Change on Crop Yields across Altitudes in Ethiopia. Clim. Change 2022, 170, 12.
[CrossRef]

50. Ridley, F.V. The Past and Future Climatic Suitability of Arabica Coffee (Coffea arabica L.) in East Africa. Ph.D. Thesis, Durham
University, Durham, UK, 2011; p. 128.

51. De Carvalho Alves, M.; Sanches, L. Potential Effects of Spatio-Temporal Temperature Variation for Monitoring Coffee Leaf Rust
Progress Under CMIP6 Climate Change Scenarios. Earth Syst. Environ. 2022, 6, 421–436. [CrossRef]

52. De Carvalho Alves, M.; Da Silva, F.M.; Sanches, L.; De Carvalho, L.G.; E Silva Ferraz, G.A. Geospatial Analysis of Ecological
Vulnerability of Coffee Agroecosystems in Brazil. Appl. Geomat. 2013, 5, 87–97. [CrossRef]

53. Alfonsi, W.M.V.; Coltri, P.P.; Júnior, J.Z.; Patrício, F.R.A.; do Valle Gonçalves, R.R.; Shinji, K.; Alfonsi, E.L.; Koga-Vicente, A.
Geographical Distribution of the Incubation Period of Coffee Leaf Rust in Climate Change Scenarios. Pesqui. Agropecu. Bras.
2019, 54. [CrossRef]

54. De Alves, M.C.; De Carvalho, L.G.; Pozza, E.A.; Sanches, L.; De Maia, J.C.S. Ecological Zoning of Soybean Rust, Coffee Rust and
Banana Black Sigatoka Based on Brazilian Climate Changes. Procedia Environ. Sci. 2011, 6, 35–49. [CrossRef]

55. Atallah, S.S.; Gómez, M.I.; Jaramillo, J. A Bioeconomic Model of Ecosystem Services Provision: Coffee Berry Borer and Shade-
Grown Coffee in Colombia. Ecol. Econ. 2018, 144, 129–138. [CrossRef]

56. Ceballos-Sierra, F.; Dall’Erba, S. The Effect of Climate Variability on Colombian Coffee Productivity: A Dynamic Panel Model
Approach. Agric. Syst. 2021, 190, 103126. [CrossRef]

57. Ovalle-Rivera, O.; Van Oijen, M.; Laderach, P.; Roupsard, O.; de Virginio Filho, E.M.; Barrios, M.; Rapidel, B. Assessing the
Accuracy and Robustness of a Process-Based Model for Coffee Agroforestry Systems in Central America. Agrofor. Syst. 2020, 94,
2033–2051. [CrossRef]

58. Vezy, R.; le Maire, G.; Christina, M.; Georgiou, S.; Imbach, P.; Hidalgo, H.G.; Alfaro, E.J.; Blitz-Frayret, C.; Charbonnier, F.; Lehner,
P.; et al. DynACof: A Process-Based Model to Study Growth, Yield and Ecosystem Services of Coffee Agroforestry Systems.
Environ. Model. Softw. 2020, 124, 104609. [CrossRef]

59. Van Oijen, M.; Dauzat, J.; Harmand, J.-M.; Lawson, G.; Vaast, P. Coffee Agroforestry Systems in Central America: II. Development
of a Simple Process-Based Model and Preliminary Results. Agrofor. Syst. 2010, 80, 361–378. [CrossRef]

60. De Oliveira Aparecido, L.E.; Rolim, G. de S. Forecasting of the Annual Yield of Arabic Coffee Using Water Deficiency. Pesqui.
Agropecu. Bras. 2018, 53, 1299–1310. [CrossRef]

61. Rahn, E.; Vaast, P.; Läderach, P.; van Asten, P.; Jassogne, L.; Ghazoul, J. Exploring Adaptation Strategies of Coffee Production to
Climate Change Using a Process-Based Model. Ecol. Modell. 2018, 371, 76–89. [CrossRef]

62. De Oliveira Aparecido, L.E.; de Souza Rolim, G.; Camargo Lamparelli, R.A.; de Souza, P.S.; dos Santos, E.R. Agrometeorological
Models for Forecasting Coffee Yield. Agron. J. 2017, 109, 249–258. [CrossRef]

63. Verhage, F.Y.F.; Anten, N.P.R.; Sentelhas, P.C. Carbon Dioxide Fertilization Offsets Negative Impacts of Climate Change on
Arabica Coffee Yield in Brazil. Clim. Change 2017, 144, 671–685. [CrossRef]

64. Fares, A.; Awal, R.; Fares, S.; Johnson, A.B.; Valenzuela, H. Irrigation Water Requirements for Seed Corn and Coffee under
Potential Climate Change Scenarios. J. Water Clim. Change 2016, 7, 39–51. [CrossRef]

65. Ovalle-Rivera, O.; Läderach, P.; Bunn, C.; Obersteiner, M.; Schroth, G. Projected Shifts in Coffea arabica Suitability among Major
Global Producing Regions Due to Climate Change. PLoS ONE 2015, 10, e0124155. [CrossRef]

66. Purba, P.; Sukartiko, A.C.; Ainuri, M. Modeling the Plantation Area of Geographical Indication Product under Climate Change:
Gayo Arabica Coffee (Coffea arabica). In Proceedings of the IOP Conference Series: Earth and Environmental Science; IOP Publishing:
Bristol, UK, 2019; Volume 365.

https://doi.org/10.3390/plants12010102
https://www.ncbi.nlm.nih.gov/pubmed/36616231
https://doi.org/10.1080/14693062.2021.1997703
https://doi.org/10.1016/j.aoas.2020.10.001
https://doi.org/10.3390/su12083119
https://doi.org/10.1016/j.ijsu.2010.02.007
https://doi.org/10.1007/s10113-017-1236-z
https://doi.org/10.1002/jsfa.8465
https://doi.org/10.1016/j.agrformet.2015.03.005
https://doi.org/10.1007/s10584-022-03306-1
https://doi.org/10.1007/s41748-021-00286-7
https://doi.org/10.1007/s12518-013-0101-0
https://doi.org/10.1590/s1678-3921.pab2019.v54.00273
https://doi.org/10.1016/j.proenv.2011.05.005
https://doi.org/10.1016/j.ecolecon.2017.08.002
https://doi.org/10.1016/j.agsy.2021.103126
https://doi.org/10.1007/s10457-020-00521-6
https://doi.org/10.1016/j.envsoft.2019.104609
https://doi.org/10.1007/s10457-010-9291-1
https://doi.org/10.1590/s0100-204x2018001200002
https://doi.org/10.1016/j.ecolmodel.2018.01.009
https://doi.org/10.2134/agronj2016.03.0166
https://doi.org/10.1007/s10584-017-2068-z
https://doi.org/10.2166/wcc.2015.025
https://doi.org/10.1371/journal.pone.0124155


Sustainability 2023, 15, 14582 18 of 19

67. Ranjitkar, S.; Sujakhu, N.M.; Merz, J.; Kindt, R.; Xu, J.C.; Matin, M.A.; Ali, M.; Zomer, R.J. Suitability Analysis and Projected
Climate Change Impact on Banana and Coffee Production Zones in Nepal. PLoS ONE 2016, 11, e0163916. [CrossRef]

68. Eitzinger, A.; Läderach, P.; Carmona, S.; Navarro, C.; Collet, L. Prediction of the Impact of Climate Change on Coffee and Mango
Growing Areas in Haiti; Centro Internacional de Agricultura Tropical (CIAT): Cali, Colombia, 2013.

69. Davis, A.P.; Gole, T.W.; Baena, S.; Moat, J. The Impact of Climate Change on Indigenous Arabica Coffee (Coffea arabica): Predicting
Future Trends and Identifying Priorities. PLoS ONE 2012, 7, e47981. [CrossRef]

70. Schroth, G.; Laderach, P.; Dempewolf, J.; Philpott, S.; Haggar, J.; Eakin, H.; Castillejos, T.; Moreno, J.G.; Pinto, L.S.; Hernandez, R.;
et al. Towards a Climate Change Adaptation Strategy for Coffee Communities and Ecosystems in the Sierra Madre de Chiapas,
Mexico. Mitig. Adapt. Strateg. Glob. Change 2009, 14, 605–625. [CrossRef]

71. Chemura, A.; Kutywayo, D.; Chidoko, P.; Mahoya, C. Bioclimatic Modelling of Current and Projected Climatic Suitability of
Coffee (Coffea arabica) Production in Zimbabwe. Reg. Environ. Change 2016, 16, 473–485. [CrossRef]

72. Schroth, G.; Laderach, P.; Cuero, D.S.B.; Neilson, J.; Bunn, C. Winner or Loser of Climate Change? A Modeling Study of Current
and Future Climatic Suitability of Arabica Coffee in Indonesia. Reg. Environ. Change 2015, 15, 1473–1482. [CrossRef]

73. Benti, F.; Diga, G.M.; Feyisa, G.L.; Tolesa, A.R. Modeling Coffee (Coffea arabica L.) Climate Suitability under Current and Future
Scenario in Jimma Zone, Ethiopia. Environ. Monit. Assess. 2022, 194, 271. [CrossRef]

74. Zhang, S.; Liu, B.; Liu, X.; Yuan, Q.; Xiao, X.; Zhou, T. Maximum Entropy Modeling for the Prediction of Potential Plantation
Distribution of Arabica Coffee under the CMIP6 Mode in Yunnan, Southwest China. Atmosphere 2022, 13, 1773. [CrossRef]

75. Coto-Fonseca, A.; Rojas, C.; Molina-Murillo, S. Climate Change-Based Modeling of Potential Land Use Arrangements for Coffee
(Coffea arabica) and Forest in Costa Rica. Agric. Eng. Int. CIGR J. 2017, 19, 224–229.

76. Imbach, P.; Fung, E.; Hannah, L.; Navarro-Racines, C.E.; Roubik, D.W.; Ricketts, T.H.; Harvey, C.A.; Donatti, C.I.; Läderach, P.;
Locatelli, B.; et al. Coupling of Pollination Services and Coffee Suitability under Climate Change. Proc. Natl. Acad. Sci. USA 2017,
114, 10438–10442. [CrossRef]

77. Quiroz-Guerrero, I.; Pérez-Vázquez, A.; Landeros-Sánchez, C.; Gallardo-López, F.; Velasco-Velasco, J.; Benítez-Badillo, G.
Resilience of coffee agroecosystems in light of climate chang [resiliencia del agroecosistema café ante el cambio climático]. Trop.
Subtrop. Agroecosyst. 2022, 25, 3. [CrossRef]

78. Bunn, C.; Läderach, P.; Jimenez, J.G.P.; Montagnon, C.; Schilling, T. Multiclass Classification of Agro-Ecological Zones for Arabica
Coffee: An Improved Understanding of the Impacts of Climate Change. PLoS ONE 2015, 10, e0140490. [CrossRef]

79. Ghini, R.; Hamada, E.; Pedro, M.J., Jr.; Gonçalves, R.R. V Incubation Period of Hemileia Vastatrix in Coffee Plants in Brazil
Simulated under Climate Change [Simulação Dos Efeitos Das Mudanças Climáticas Sobre o Período de Incubação de Hemileia
Vastatrix Em Cafeeiro No Brasil]. Summa Phytopathol. 2011, 37, 85–93. [CrossRef]

80. Moraes, W.B.; De Jesus Junior, W.C.; De Azevedo Peixoto, L.; Moraes, W.B.; Coser, S.M.; Cecílio, R.A. Impact of Climate Change
on the Phoma Leaf Spot of Coffee in Brazil. Interciencia 2012, 37, 272–278.

81. Hailu, B.T.; Maeda, E.E.; Pellikka, P.; Pfeifer, M. Identifying Potential Areas of Understorey Coffee in Ethiopia’s Highlands Using
Predictive Modelling. Int. J. Remote Sens. 2015, 36, 2898–2919. [CrossRef]

82. Chalchissa, F.B.; Diga, G.M.; Feyisa, G.L.; Tolossa, A.R. Impacts of Extreme Agroclimatic Indicators on the Performance of Coffee
(Coffea arabica L.) Aboveground Biomass in Jimma Zone, Ethiopia. Heliyon 2022, 8, e10136. [CrossRef] [PubMed]

83. Moat, J.; Williams, J.; Baena, S.; Wilkinson, T.; Gole, T.W.; Challa, Z.K.; Demissew, S.; Davis, A.P. Resilience Potential of the
Ethiopian Coffee Sector under Climate Change. Nat. Plants 2017, 3, 17081. [CrossRef]

84. Moat, J.; Gole, T.W.; Davis, A.P. Least Concern to Endangered: Applying Climate Change Projections Profoundly Influences the
Extinction Risk Assessment for Wild Arabica Coffee. Glob. Change Biol. 2019, 25, 390–403. [CrossRef]

85. Laderach, P.; Lundy, M.; Jarvis, A.; Ramirez, J.; Portilla, E.P.; Schepp, K.; Eitzinger, A. Predicted Impact of Climate Change on
Coffee Supply Chains. In Climate Change Management; Springer: Berlin/Heidelberg, Germany, 2011; pp. 703–723. [CrossRef]

86. Tournebize, R.; Borner, L.; Manel, S.; Meynard, C.N.; Vigouroux, Y.; Crouzillat, D.; Fournier, C.; Kassam, M.; Descombes, P.;
Tranchant-Dubreuil, C.; et al. Ecological and Genomic Vulnerability to Climate Change across Native Populations of Robusta
Coffee (Coffea canephora). Glob. Change Biol. 2022, 28, 4124–4142. [CrossRef]

87. Mulinde, C.; Majaliwa, J.G.M.; Twinomuhangi, R.; Mfitumukiza, D.; Waiswa, D.; Tumwine, F.; Kato, E.; Asiimwe, J.; Nakyagaba,
W.N.; Mukasa, D. Projected Climate in Coffee-Based Farming Systems: Implications for Crop Suitability in Uganda. Reg. Environ.
Change 2022, 22, 83. [CrossRef]

88. Lara Estrada, L.; Rasche, L.; Schneider, U.A. Modeling Land Suitability for Coffea arabica L. in Central America. Environ. Model.
Softw. 2017, 95, 196–209. [CrossRef]

89. Jaramillo, J.; Muchugu, E.; Vega, F.E.; Davis, A.; Borgemeister, C.; Chabi-Olaye, A. Some like It Hot: The Influence and Implications
of Climate Change on Coffee Berry Borer (Hypothenemus hampei) and Coffee Production in East Africa. PLoS ONE 2011, 6, e24528.
[CrossRef] [PubMed]

90. Ghini, R.; Hamada, E.; Pedro, M.J., Jr.; Marengo, J.A.; Gonçalves, R.R.D.V. Risk Analysis of Climate Change on Coffee Nematodes
and Leaf Miner in Brazil. Pesqui. Agropecu. Bras. 2008, 43, 187–194. [CrossRef]

91. Azrag, A.G.A.; Pirk, C.W.W.; Yusuf, A.A.; Pinard, F.; Niassy, S.; Mosomtai, G.; Babin, R. Prediction of Insect Pest Distribution as
Influenced by Elevation: Combining Field Observations and Temperature-Dependent Development Models for the Coffee Stink
Bug, Antestiopsis Thunbergii (Gmelin). PLoS ONE 2018, 13, e0199569. [CrossRef]

https://doi.org/10.1371/journal.pone.0163916
https://doi.org/10.1371/journal.pone.0047981
https://doi.org/10.1007/s11027-009-9186-5
https://doi.org/10.1007/s10113-015-0762-9
https://doi.org/10.1007/s10113-014-0713-x
https://doi.org/10.1007/s10661-022-09895-9
https://doi.org/10.3390/atmos13111773
https://doi.org/10.1073/pnas.1617940114
https://doi.org/10.56369/tsaes.4161
https://doi.org/10.1371/journal.pone.0140490
https://doi.org/10.1590/S0100-54052011000200001
https://doi.org/10.1080/01431161.2015.1051631
https://doi.org/10.1016/j.heliyon.2022.e10136
https://www.ncbi.nlm.nih.gov/pubmed/36016531
https://doi.org/10.1038/nplants.2017.81
https://doi.org/10.1111/gcb.14341
https://doi.org/10.1007/978-3-642-14776-0_42
https://doi.org/10.1111/gcb.16191
https://doi.org/10.1007/s10113-022-01930-2
https://doi.org/10.1016/j.envsoft.2017.06.028
https://doi.org/10.1371/journal.pone.0024528
https://www.ncbi.nlm.nih.gov/pubmed/21935419
https://doi.org/10.1590/S0100-204X2008000200005
https://doi.org/10.1371/journal.pone.0199569


Sustainability 2023, 15, 14582 19 of 19

92. IPCC. Glossary of terms. In Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation; Field, C.B.,
Barros, V., Stocker, T.F., Qin, D., Dokken, D.J., Ebi, K.L., Mastrandrea, M.D., Mach, K.J., Plattner, G.-K., Allen, S.K., et al., Eds.;
A Special Report of Working Groups I and II of the Intergovernmental Panel on Climate Change; Cambridge University Press:
Cambridge, UK; New York, NY, USA, 2012; pp. 555–564.

93. Pachauri, R.K. Climate Change 2014 Synthesis Report; IPCC: Geneva, Szwitzerland, 2014; ISBN 9789291691432.
94. Lee, J.-Y.J.; Marotzke, J.; Bala, G.; Cao, L.; Corti, S.; Dunne, J.P.; Engelbrecht, F.; Fischer, E.; Fyfe, J.C.; Jones, C.; et al. Fu-

ture Global Climate: Scenario-Based Projections and Near-Term Information; Cambridge University Press: Cambridge, UK, 2021;
ISBN 9781009157896.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.


	Introduction 
	Materials and Methods 
	Results 
	Bibliometric Analysis 
	Processes Reviewed 
	Analysis of Models and Tools 
	Models’ Categories 
	Climate Change Scenarios 


	Discussions 
	Conclusions 
	References

