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Abstract: In response to the problem of low forecasting accuracy in wind and solar power outputs,
this study proposes a joint forecasting method for wind and solar power outputs by using their
spatiotemporal correlation. First, autocorrelation analysis and causal testing are used to screen the
forecasting factors. Then, a convolutional neural network–long short-term memory (CNN-LSTM) is
constructed and trained to extract features effectively. Finally, the independent, ensemble, and joint
forecasting effects are compared, using a certain clean energy base as the research object. Results
show that the forecasting accuracy of the ensemble wind and solar power outputs is better than that
of independent forecasting. The joint forecasting method can improve the forecasting accuracy of
wind power by 20% but slightly affects the forecasting accuracy of solar power.

Keywords: wind and solar power output forecasting; temporal and spatial correlation; CNN-LSTM;
ensemble forecasting; joint forecasting

1. Introduction

Wind and solar energy are set to become the mainstay of a new type of power system,
and their proportion in the energy structure increases as the energy structure transforms
toward green and low-carbon sources [1]. However, influenced by various stochastic
factors, such as weather and seasonal changes, the power outputs of wind and solar energy
display significant random fluctuations. Directly connecting them to the grid can lead to
profound impacts on the power system, resulting in issues such as voltage fluctuations,
abnormal power equipment operation, and grid frequency instability [2]. Enhancing the
forecasting accuracy of wind and solar power outputs plays a crucial role in ensuring the
safety, stability, and economical operation of the new power system.

Forecasting methods for wind and solar power outputs can be primarily categorized
into deterministic and uncertainty approaches. Deterministic methods yield predicted
values based on various forecasting perspectives and spatial scales. By contrast, uncer-
tainty forecasting employs probability density or interval probabilities to delineate the
upper and lower bounds of power outputs alongside probabilities for different forecast-
ing values [3–5]. Based on the construction process perspective of the forecasting model,
commonly employed forecasting models encompass physical and data-driven models.
Physical models rely on the principles of physics. They employ modeled atmospheric
circulation and meteorological factors to predict outputs. Conversely, data-driven models
leverage extensive historical data analysis and processing to establish mapping relation-
ships between forecasted variables and influencing factors, enabling accurate forecasting
of wind and solar power outputs [6]. In recent years, forecasting models based on deep
learning have become a research hotspot [7–9]. For instance, Cui et al. [10] integrated
extreme wind power fluctuation events as inputs for long short-term memory (LSTM)
networks. Similarly, Zulfiqar et al. [11] introduced self-attention mechanisms to optimize
feature selection in solar power output forecasting. Both studies optimize the forecasting
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model from the model-building perspective. Demsew et al. [12] introduced error correction
factors as innovative fuzzy input variables. They proposed a novel fuzzy particle swarm
optimization model to elevate forecasting accuracy. Likewise, Liu et al. [13] found that
the precision of solar power output forecasting can be enhanced by approximately 5%
with the aid of high-quality contextual embeddings and gated recurrent neural networks.
Wang et al. [14] noted that augmenting available time series data leads to proportional
improvements in forecasting accuracy.

Given the inability of a singular deterministic forecasting model to capture the uncer-
tainty inherent in forecasting, scholars employed methods such as probabilistic forecasting
and interval forecasting to quantify the uncertainty in wind and solar power forecasting.
For instance, Yang et al. [15] and Zhang et al. [16] utilized the copula quantile regression
model and nonparametric probabilistic forecasting method, respectively, to describe the
uncertainty in wind power outputs. Moreover, researchers introduced novel models and
techniques for uncertainty forecasting [17,18] to enhance the reliability and accuracy of
forecasting by characterizing and quantifying the uncertainty associated with wind and
solar power generation. Yu et al. [19] introduced the Parzen window approach to estimate
the error distribution in forecasting and determine the minimum confidence interval for
optimal interval forecasting of wind farms. He et al. [20] combined conditional quantiles
with the Epanechnikov kernel function to achieve probability density forecasting for wind
and solar power outputs. These studies offer fresh perspectives and methodologies to
mitigate the uncertainty in wind and solar power generation. Thus, they contribute to a
comprehensive understanding of the field.

Existing research mainly focuses on the individual forecasting of renewable energy
sources. However, given the correlations between different sources, practical scenarios
involving multi-energy complementary scheduling often necessitate joint forecasting of
various renewable energy sources [21]. Some scholars employed correlation coefficients
and graphical analysis methods [22] to investigate the spatiotemporal correlations of
wind and solar resources, especially the correlation between wind and solar energy. On
one hand, these two renewable energy sources have low costs and rapidly increasing
installed capacities. On the other hand, they exhibit a natural complementarity, making it
crucial to consider the correlation between wind and solar energy when considering joint
forecasting. Furthermore, they proposed complementary evaluation metrics based on the
volatility of wind and solar power outputs [23,24]. These studies underscore the existence of
spatiotemporal correlations between wind and solar resources. Consequently, considering
the spatiotemporal correlations among different energy sources becomes essential for
conducting joint power output forecasting.

Currently, some scholars have conducted joint forecasting research. For instance,
Murli et al. [25] proposed a joint probability model and an optimal random forest algorithm
based on meteorological data to address the uncertainty and randomness of solar and
wind energy, thereby improving the performance of fault detection, classification, and
regional recognition. Raksha et al. [26] established a mathematical model based on physical
principles and statistical methods for jointly forecasting the uncertainty of photovoltaic
generation and outdoor temperature. Zhang et al. [27] considered the spatiotemporal
correlation of wind and solar resources within a region and constructed a joint prediction
model that reflects the spatiotemporal correlation of regional renewable resources using
attention neural network algorithms.

Building upon the previous research discussed in the preceding paragraph, this study
aims to address the forecasting of wind and solar power outputs, with particular attention
to their spatiotemporal correlations. Leveraging a dimensionality expansion technique built
upon conventional time series predictor variables, we propose a distinctive approach to joint
forecasting. Through meticulous validation with concrete examples, we seek to elucidate
the uniqueness, theoretical soundness, and practical effectiveness of this method in the
domain of wind and solar power output prediction. This approach not only extends existing
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research but also emphasizes a comprehensive consideration of spatiotemporal correlations,
thereby significantly enhancing the accuracy of wind and solar power output forecasting.

2. Model and Methods

In this paper, we primarily focused on the study of solar PV. A joint forecasting
approach is proposed to forecast wind and solar power outputs for the following day. To
simplify our modeling approach, we make several key assumptions:

1. We solely consider the resource supply side and do not incorporate aspects related
to the power grid, including grid stability, demand-side management, and grid
integration issues.

2. We do not take into account equipment failures, aging, or maintenance-related is-
sues in our forecasting model. Our analysis is based on the assumption of ideal
system conditions.

3. Our forecasting model relies on meteorological data such as wind speed, solar irradi-
ance, and temperature to calculate wind and solar power outputs. Extreme weather
conditions or unusual events are not considered in our analysis.

4. We calculate power outputs based on ideal conditions and do not consider con-
straints related to minimum wind speeds required for turbine operation or other
operational limitations.

These assumptions serve as the foundation for our forecasting model and provide
essential context for interpreting our results. In consideration of these assumptions, the
technical process is depicted in Figure 1. First, forecasting factors for wind and solar
power outputs are selected through correlation analysis. This screening process entails
autocorrelation analysis and causal testing of the output sequences, culminating in the
identification of a forecasting factor set with pronounced influence on the forecasting target.
Subsequently, a convolutional neural network–long short-term memory (CNN-LSTM)
network is constructed to harness the extraction capabilities of spatiotemporal relationships
to the fullest extent. Finally, the forecasted results are analyzed to validate the efficacy and
applicability of the method.
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Figure 1. Joint forecasting flowchart.

2.1. Forecasting Factor Selection

Optimal forecasting factors are selected through autocorrelation analysis and joint
causal testing. The Autocorrelation Function (ACF) is employed to assess temporal lags
in the time series [28]. The partial ACF(PACF) is introduced to measure the correlation
between the current and future lags and eliminate the influence of intermediary variables.
Thus, the appropriate lag value (L) can be determined.
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Furthermore, the Granger causality test is employed to explore the interdependence
and causal relationship between wind power and solar power outputs [29]. After the
hypothesis formulation, the lag order for the Granger causality test statistic is determined
based on ACF computation results. The calculation process is outlined as follows:

Fn,p =
(n− p− 1)

p + 1
× ∑

n−p
i=1 ε2

i

∑n
i=1 ε2

i
(1)

where n represents the length of the time series, p signifies the lag order for the Granger
causality test, εi denotes the residual of the i-th sample point, and Fn,p denotes the test
statistic for the causality test, following an F-distribution with degrees of freedom (p + 1,
n − p − 1). The corresponding p-value is derived using the computed Granger causality
test statistic, coupled with parameters such as sample size and degrees of freedom. The
determination is made based on the set p-value and significance level.

After autocorrelation analysis and joint causal testing, the forecasting factors for each
scenario are ascertained.

2.2. Construction of Forecasting Models

The establishment of independent forecasting models serves as the foundation for
ensemble or joint forecasting. The groundwork is laid for the development of the joint
forecasting model by constructing reliable, independent forecasting models.

2.2.1. Independent Forecasting

For the wind power output at time t, denoted as yt,w, the preceding data of the output
for the last L time steps i.e.,

{
yt−1,w, yt−2,w, yt−3,w · · · yt−(L−1),w, yt−L,w

}
, are employed as

forecasting factors. Then, these factors are used to train a CNN-LSTM that fits the mapping
function f and forecast the wind power output yt,w at time t. The wind power output can
be expressed as

yt,w = f
(

yt−h−1,w, yt−h−2,w, yt−h−3,w · · ·
yt−h−(n−2),w, yt−h−(n−1),w, yt−h−n,w

)
(2)

Specific adjustments are implemented when predicting solar power generation to
address the issue of zero power output during nighttime. For any valid output time
t denoted as yt,s for solar power, the effective solar power data within the preceding
L time steps, i.e.,

{
yt−h−1,s,yt−h−2,s,yt−h−3,s · · · yt−h−(n−1),s, yt−h−n,s

}
, are employed as

forecasting factors. The formula can be expressed as

yt,s = f
(

yt−h−1,s, yt−h−2,s, yt−h−3,s · · ·
yt−h−(n−2),s, yt−h−(n−1),s, yt−h−n,s

)
(3)

where n represents the number of moments within the preceding L time steps with effective
solar power output, denoting how many hours during a day have a power output greater
than zero, and h signifies the number of instances with zero power output. It follows that
L = n + h, as illustrated in Figure 2.

After the solar power output at time t is computed using Equation (3), it is appended
to the end of the existing historical solar power data sequence. Thus, a new input sequence,
which is then subjected to a sliding window forecasting approach for day-ahead forecasting,
is formed.

A single forecasting value is obtained during each forecasting iteration. This forecasted
value is subsequently appended to the end of the original power output data sequence.
Then, the sliding window is shifted forward by one time step to update the data within the
window. Subsequently, the forecasting for the next time step is made using the updated
window. This process continues iteratively until the desired day-ahead forecasting length
is achieved.
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2.2.2. Ensemble Forecasting

When the ensemble forecasting model is utilized, the forecasting factors transition
from individual outputs in the base model to the total output. For a given time t, the total
output follows the following relationship:

yt,total = yt,w + yt,s (4)

The mathematical expression for the ensemble forecasting model at that particular
time is as follows:

yt,total = f (yt−1,total , yt−2,total · · · yt−23,total , yt−24,total) (5)

2.2.3. Joint Forecasting

In joint forecasting, the combination of wind and solar power outputs is employed as
input forecasting factors, transforming the forecasting factors from a single dimension to
two dimensions. For the wind power output at time t, denoted as yt,w, the dimension is
augmented based on the length of the independent wind power forecasting factors, and the
solar output of the same period is considered. At this time, the mathematical expression of
the prediction model is modified as

yt,w = f
[

(yt−1,w, yt−2,w, yt−3,w · · · yt−23,w, yt−24,w),
(yt−1,s,yt−2,s,yt−3,s · · · yt−23,s, yt−24,s)

]
(6)

An extension is performed based on the length of independent solar power forecasting
factors for the solar power output at time t, denoted as yt,s, and given the effective solar
power output. Then, the joint forecasting model is modified to

yt,s = f
[

(yt−h−1,w, yt−h−2,w, · · · yt−h−n+1,w, yt−h−n,w),
(yt−h−1,s,yt−h−2,s, · · · yt−h−n+1,s, yt−h−n,s)

]
(7)

2.3. Constructing and Training the Forecasting Network

In this study, a CNN-LSTM is constructed and trained. This choice was based on
our understanding of existing research and technology, and it was made after careful
consideration. Previous studies have shown significant advantages of CNN-LSTM models
in processing spatiotemporal data. This type of model efficiently captures spatiotemporal
features in the data, demonstrating good generalization abilities and the capacity to handle
complex spatiotemporal relationships. The construction of the model involves three key
steps: initially, spatial features within the sequence are extracted using a convolutional
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neural network (CNN). Subsequently, an LSTM layer is employed to learn the temporal
dependencies within the sequence. Finally, a fully connected layer is used to map the
model’s output to the target forecasting variable.

2.3.1. CNN

In time series forecasting for wind and solar power outputs, CNN has garnered
significant attention because of its exceptional feature extraction capabilities. CNNs are
adept at uncovering latent correlations within historical data and transforming them into
informative feature vectors. Therefore, for such problems, one-dimensional CNNs (1D-
CNNs) are widely adopted for extracting output features and supporting forecasting
tasks. Leveraging the power of 1D-CNNs enables the automatic capture of temporal
characteristics within wind and solar power output sequences, thereby enhancing the
accuracy and robustness of the forecasting model [30].

2.3.2. LSTM Recurrent Neural Network

The intricacies and temporal nature of wind and solar power output sequences make
LSTM an ideal forecasting model [31]. LSTM learns from the historical data of a se-
quence to discover patterns and trends within it by using these insights to predict future
output values.

Given the challenges that CNN faces in capturing long-term dependencies and LSTM’s
ability to extract effective features, a combination of CNN and LSTM can be beneficial.
CNN can be employed as a preprocessing step to transform the raw sequence into a
feature sequence. This feature sequence is then passed to LSTM to acquire a profound
representation of sequence features. The schematic structure is illustrated in Figure 3.
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The input features go through a series of convolution and pooling layers, forming a
1D-CNN layer designed to extract features from wind and solar power output. Following
the pooling layer, an LSTM layer is introduced to capture the spatiotemporal correlations of
the output sequence. Finally, between the fully connected layer and the classification layer,
a dropout layer is added to randomly deactivate some neurons, enhancing the model’s
robustness and generalization performance. Specific parameters are selected following a
broad strategy, with the selection range shown in Table 1.



Sustainability 2023, 15, 14628 7 of 16

Table 1. Hyperparameter selection range.

Hyperparameters Range/Value/Function Hyperparameters Range/Value/Function

Number of Convolutional Layers [1, 5] Number of LSTM Layers [1, 2]
Convolutional Kernel Size [1, 8] Number of Neurons in LSTM Layers {32, 64, 128, 256, 512}

Number of Convolutional Kernels {32, 64, 128, 256, 512} Number of Fully Connected Layers [1, 2]

Padding Method {valid, same} Number of Neurons in Fully
Connected Layers {32, 64, 128, 256, 512}

Dropout Rates [0, 0.9] Learning Rates {1 × 102, 1 × 103, 1 × 104}

To expedite the optimization process, we set the search ranges for the number of
convolutional filters, LSTM layers, and the number of neurons in the fully connected layers
to common values found in typical network architectures. Additionally, we used a step size
of 0.05 for the dropout rate and a step size of 1 for other hyperparameters. For the padding
method, ‘valid’ signifies no zero-padding during convolution, while ‘same’ indicates zero-
padding is applied. The learning rates were explored within the ranges of 1 × 102, 1 × 103,
and 1 × 104.

After broad strategy selection, the results of hyperparameters are shown in Table 2.

Table 2. Hyperparameter results.

Hyperparameters Value/Function

Convolutional Layers

Layers Number of
Convolutional Layers

Convolutional
Kernel Size

Padding
Method

The first layer 512 6 same
The second layer 64 1 same
The third layer 32 6 same

The fourth layer 128 5 valid

Number of Neurons in LSTM Layers 128
Number of Neurons in Fully Connected Layers 128

Dropout Rates 0.45
Optimizer Adam

Learning Rates 0.0001

2.4. Forecasting Accuracy Evaluation Metrics

Given the presence of zero outputs in solar power output sequences, the R square (R2),
mean absolute error (MAE), root mean square error (RMSE), and relative absolute error
(RAE) are adopted as evaluation metrics. R2 indicates the fitting degree of the model to
observed data, MAE and RMSE measure the absolute magnitude of forecasting errors, and
RAE quantifies relative errors.

The accuracies of different forecasting approaches can be understood and compared by
assessing these metrics comprehensively. The specific calculation formulas are as follows:

R2 = 1− ∑n
i=1 (pi − ai)

2

∑n
i=1 (ai − a)2 , (8)

MAE =
∑n

i=1|pi − ai|
n

, (9)

RMSE =

√
∑n

i=1 (pi − ai)2

n
, (10)

RAE =
∑n

i=1|pi − ai|
∑n

i=1|a− ai|
. (11)
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In this formula, ai represents the actual output at time i, and pi represents the predicted
output at time i.

3. Research Case
3.1. Dataset Description

For this study, wind speed and solar irradiance data were collected from clean energy
production base sites in the low Yangtze River basin from January 2005 to November
2015. The time intervals for recording both wind speed and solar irradiance were set at
1 h. The base comprises wind turbines with a total capacity of 6767.5 MW and solar units
with an ensemble capacity of 8785 MW. Wind and solar power outputs for this region
were computed.

3.2. Correlation Analysis
3.2.1. ACF/PACF Results Analysis

In order to select appropriate lag values for our time series forecasting models, we
conducted autocorrelation analysis using the Autocorrelation Function (ACF) and Partial
Autocorrelation Function (PACF). These analyses help determine the relationship between
the current and past power outputs of the clean energy base, specifically focusing on wind
and solar power.

The ACF analysis reveals a strong correlation between the clean energy base’s wind
and solar power output data and the past power outputs. As shown in Figure 4, the
PACF verification of the wind power output indicates truncation at lags 2, 23, and 24, with
subsequent autocorrelation coefficients falling within insignificant confidence intervals.
This truncation indicated a strong predictive relationship at this particular lag, implying that
past power outputs at lag 24 had a substantial influence on the current output. Therefore,
a lag of 24 was selected for the wind power forecasting model. Similar findings were
observed for the solar power output sequence, leading to the choice of a forecasting model
with L = 24.
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3.2.2. Granger Causality Test Analysis

The Granger causality test requires stationary sequences. Hence, performing an
augmented Dickey–Fuller (ADF) test to assess the stationarity of the sequence is essential
before utilizing the wind and solar power output sequence data from the clean energy base
for forecasting. The specific results of the stationarity test are presented in Table 3:
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Table 3. Smoothness test of wind and solar output series.

Variable T p
Critical Value

1% 5% 10%

Wind power output 18.036 0.001 −3.43 −2.862 −2.567
Solar power output 21.615 0.001 −3.43 −2.862 −2.567

The p-values for wind and solar power output sequences are less than 0.05, indicating
that both sequences pass the ADF test for stationarity. The Granger causality test employs
a lag of 24. The results are presented in Table 4:

Table 4. Grainger causality test of wind and solar output series.

Partnership Samples F p

Solar power output Wind power output 288.101 0.00261
Wind power output Solar power output 115.041 0.00074

The Granger causality test establishes that the solar power output sequence has a
bidirectional causal relationship with the wind power output sequence. The confirmation
of bidirectional causality allows the integration of these relationships into the time series
forecasting model to enhance forecasting accuracy.

3.3. Experimental Design

This study considers the spatiotemporal correlations between wind and solar power
and utilizes 11 years of wind and solar power output data from the clean energy base.
During the training phase, 80% of the data are used for model parameter learning, whereas
the remaining 20% are employed for model validation. Based on the analysis results of the
ACF and PACF, the lag step of input features is set to 24, and the forecasting horizon is set
to 1 h.

After the successful calibration, the model is applied to forecast wind and solar power
output for the next hour. Then, the predicted values are integrated back into the known data
for the subsequent round of forecasting. This iterative process is repeated for 24 rounds to
obtain day-ahead power output forecasting. The model’s performance is evaluated using
R2, MAE, RMSE, and RAE as accuracy assessment metrics.

3.3.1. Independent Forecasting Approach

In the independent forecasting approach, a single day’s wind and solar power outputs
are taken as the forecasting targets. Historical data are normalized and fed into the network.
However, the instances of zero power output exist within the solar data. These zero
values can adversely affect the training of the forecasting model. Therefore, calculating the
number of instances with effective solar power output within an hour throughout the day
is necessary to address the issue.

The count of daily effective solar power output instances is determined for each month
using statistical methods, as depicted in Figure 5:

3.3.2. Ensemble Forecasting Approach

The ensemble forecasting approach involves aggregating the outputs of various energy
sources to form a new total output sequence, which is then fed into the forecasting model.
In particular, the wind and solar power outputs at a certain time are summed to create a
stable total output sequence. Forecasts are obtained for the total output within the day
using CNN-LSTM [32]. This method maximizes the complementary nature of different
energy sources throughout the day, thereby enhancing forecasting accuracy and stability.
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3.3.3. Joint Forecasting Approach

When predicting wind and solar power outputs, considering their interdependence can
improve forecasting accuracy [33]. In particular, the joint forecasting approach incorporates
the past values of both types of output as inputs during the forecasting of one type of
output. This approach comprehensively reflects the changing patterns of wind and solar
power outputs. Compared with independent forecasting, joint forecasting benefits from the
correlation between the two energy sources, considers a broad range of factors, effectively
reduces forecasting uncertainty and efficiently supports the operation and management of
a power supply system primarily powered by wind and solar energy.

4. Result Analysis and Discussion

Twelve representative days are randomly selected for validation to evaluate the fore-
casting capabilities of the models. The results of different forecasting approaches are
compared to determine which method yields accurate forecasts. This aids in choosing the
optimal forecasting approach for future use.

4.1. Comparison Analysis between Independent and Joint Forecasting

For single-energy source forecasting, independent and joint forecasting approaches
can be adopted. The comparative results of their forecasting performances are shown in
Figures 6 and 7 and with values shown in Table 5:

Table 5. Comparison of forecasting wind and solar output effect.

Forecasting Method
Evaluation Index of Prediction Accuracy

R2 (%) RAE (%) RMSE (MW) MAE (MW)

Independent forecasting of wind power 71.15 39.34 525.7283 373.3667
Joint forecasting of wind power 86.97 29.51 395.2982 275.5099

Independent forecasting of solar power 92.73 17.94 426.5358 232.4478
Joint forecasting of solar power 91.75 18.83 426.0763 243.9843
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Figures 6 and 7 present the visual comparative results between independent and joint
forecasting of wind and solar power outputs. The top left corner of the figures displays the
comparison between predicted and actual values, along with their errors. The top right
corner depicts the histograms of statistical error measurements, including RMSE (MW),
MAE (MW), RAE (%), and R2 (%). The scatter plots showing the error distribution of all
models and the linear regression line are displayed at the bottom of the figures.

The calculations show that the joint wind power forecasting approach exhibits small
error magnitudes, with all evaluation metrics showing an improvement of more than 20%.
The R2 value for joint wind power forecasting increases by 22.9%, while MAE decreases by
26.2%, RMSE decreases by 24.8%, and RAE decreases by 24.3%. The histograms illustrate
that the error distribution of joint wind power forecasting is concentrated, with a great
number of error points close to zero. This scenario resembles a more normal distribution.
The scatter plots reveal that the joint wind power forecasting approach yields closely
distributed results, with the regression line closely aligned with the original data curve.
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Compared with independent forecasting, joint wind power forecasting yields superior
forecasting outcomes.

Regarding solar power output prediction, both approaches exhibit similar forecasting
accuracies and error magnitudes in terms of evaluation metrics. The R2 metric drops by
1.1%, MAE increases by 4.96%, RMSE rises by 4.9%, and RAE decreases by 4.9%. The predic-
tion errors are primarily concentrated around both sides of zero, and the proximity of the
regression line to the original data curve remains consistent. By contrast, the performance
of joint solar power output forecasting closely parallels that of independent forecasting.

To further validate the performance of the metric under study, we conducted a Paired-
Sample t-Test to explore the difference between joint prediction errors and independent
prediction errors. In the hypothesis test, the null hypothesis (H0) was set as the joint pre-
diction errors being greater than or equal to independent prediction errors (µd ≥ 0, where
µd represents the difference between joint prediction errors and independent prediction
errors), while the alternative hypothesis (Ha) indicated that the errors of method A were
less than those of method B (µd < 0). The results of the test are presented in Table 6.

Table 6. Paired-Sample t-Test between joint forecasting and independent forecasting.

Error Type T-Statistic p-Value Testing the Hypothesis H0

Independent forecasting error of wind power output
3.5184 0.0005 FailJoint forecasting error of wind power output

Independent forecasting error of solar power output
4.7104 0.0538 PassJoint forecasting error of solar power output

The results indicate that for wind power output, the t-statistic is 3.5184 with a corre-
sponding p-value of 0.0005. It did not pass the significance level α test (usually α = 0.05).
For solar power output, the T-statistic is 4.7104 with a corresponding p-value of 0.05385,
passing the test. This test outcome is consistent with the conclusions drawn from previous
computed metrics, providing consistent evidence for our research.

The above results indicate that the joint forecasting approach generally outperforms
the independent forecasting approach in predicting wind power outputs. This finding is
attributed to the rapid fluctuations in wind power output, influenced by meteorological
factors and other variables. Furthermore, this scenario leads to increased volatility. Conse-
quently, solely relying on a single resource as the prediction input may yield suboptimal
results. By contrast, the joint forecasting approach comprehensively captures the changing
patterns of both wind and solar power outputs, thereby enhancing prediction accuracy.

On the contrary, solar output is relatively stable and changes slowly. Thus, applying
the joint forecasting approach to solar power may have limited benefits or even result in a
performance worse than that of independent forecasting. In such scenarios, the independent
forecasting method may be suitable.

It’s important to note that different application scenarios and requirements signif-
icantly impact the choice of forecasting methods. Therefore, selecting the appropriate
forecasting method should involve a comprehensive consideration of various factors to
achieve the best prediction outcomes.

4.2. Comparison Analysis between Independent and Ensemble Forecasting

The aggregated values of independent forecasting must be compared with those of
the ensemble forecasting approach to assess the effectiveness of the forecasting methods
comprehensively. This analysis aims to examine the differences in accuracy, stability, and
other aspects between the two methods. The validation results are shown in Figure 8, with
values shown in Table 7. The result of hypothesis test shown in Table 8:
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Table 7. Comparison of the total output forecasting effect.

Forecasting Method
Forecasting Accuracy Evaluation Index

R2 (%) RAE (%) RMSE (MW) MAE (MW)

Independently forecasting the total output 85.46 36.84 809.6459 649.6335
Ensemble forecasting the total output 89.83 31.13 677.0138 548.9111

Table 8. Paired-Sample t-Test between ensemble forecasting and independent forecasting.

Error Type T-Statistic p-Value Testing the Hypothesis H0

Independent forecasting error of total output −2.5389 0.0116 FailJoint forecasting error of total output

Figure 8 demonstrates that adopting the approach of combined forecasting for total
output yields significant enhancements in accuracy evaluation metrics. The R2 value in
independent total output forecasting increases from 85.46% to 89.83%, marking a 4.9%
improvement. The MAE value in independent total output forecasting decreases from
649.6335 to 548.9111, representing a 15.5% reduction. The RMSE value in independent
total output forecasting decreases from 809.6459 to 677.0138, resulting in a 16.5% reduction.
The RAE value in independent total output forecasting decreases from 36.84% to 31.13%,
showing a 15.5% decrease. Overall, the combined forecasting approach for total output
enhances accuracy and precision, particularly in terms of MAE and RMSE, with improve-
ments of approximately 15%. The histograms indicate a uniform distribution of errors
in combined forecasting, and the linear fit between the actual and the predicted values
is favorable. Furthermore, the value of the p-value indicates that the hypothesis that the
ensemble forecasting error is greater than or equal to the independent forecasting error did
not pass. The result shows that the precision of ensemble forecasting is higher than that of
independent forecasting.

In summary, adopting the combined forecasting method allows for a comprehensive
utilization of complementarity, error reduction, and prediction accuracy improvement. Our
confidence in the effectiveness of this method is bolstered by rigorous validation using
random sampling of dates. The consistency of our validation results reaffirms the practical
applicability of the combined forecasting approach. While we have discussed the study’s
limitations elsewhere, our validation approach minimizes bias and provides robust support
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for our conclusions. Ongoing validation efforts and the inclusion of diverse datasets will
continue to enhance the reliability and generalizability of our forecasting method.

5. Conclusions

This study addressed the wind and solar power output sequences through analy-
ses based on autocorrelation and causal relationships. Independent, ensemble and joint
forecasting were conducted to provide a comparative validation analysis and statistical out-
comes across four evaluation metrics. The overall conclusions of this study are as follows:

1. Wind and solar power outputs exhibit significant self-correlations and interdepen-
dencies. The adoption of ACF and PACF for wind and solar power output se-
quences verifies the appropriateness of a forecasting model with a lag of 24 for
time-series prediction.

2. The accuracy of wind power output time-series prediction is enhanced by incorpo-
rating historical solar power output data because of their distinct periodicity and
regularity. However, considering historical wind power output data for solar power
output time-series prediction can deteriorate forecasting performance because they
have high volatility and lack pronounced periodic patterns. Therefore, for power
supply systems with a significant presence of wind and solar energy generation, a
combined forecasting approach can be employed for wind power output predictions,
while the choice of forecasting methods for solar output should be considered based
on specific circumstances.

3. Aggregating wind and solar power output sequences for combined forecasting im-
proves accuracy. Given the correlation between wind and solar power output se-
quences, the total output sequence exhibits great stability and regularity, potentially
leading to reduced prediction errors. Moreover, the combined forecasting approach
enhances the robustness and stability of predictions by avoiding over-dependence on
singular energy data sources. For clean energy bases, adopting combined forecasting
for total output utilizing both wind and solar power sequences is reliable and effective.

However, it is important to note that the study has several clear limitations: Firstly,
we exclusively considered the complementarity between wind energy and solar energy
without including factors related to other renewable energy sources. Future research could
expand to the integration of other forms of energy to comprehensively explore issues
related to renewable energy integration. Secondly, we did not conduct causality tests for
other lag periods, which may limit our comprehensive understanding of the relationship
between wind and solar power outputs. Further analysis could encompass broader time
series analyses to delve deeper into the causal relationships among these factors. Lastly,
our study is built upon a set of assumptions, including idealized models and technical
conditions. While these assumptions provided a framework for our analysis, they also
imply that our results may be subject to certain limitations in real-world applications.
Despite these limitations, our research offers an initial approach to renewable energy
integration and provides valuable insights into the complementarity between wind and
solar energy. Future research efforts can focus on addressing these limitations and delving
further into the integration of renewable energy to enhance sustainability and reliability
within the power grid.
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Nomenclature

ACF Autocorrelation function
PACF Partial autocorrelation function
L Lag value
CNN Convolutional neural network
1D-CNNs One-dimensional CNNs
LSTM Long short-term memory
CNN-LSTM Convolutional neural network–long short-term memory
R2 R square
MAE Mean absolute error
RMSE Root mean square error
RAE Relative absolute error
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