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Abstract: This paper mainly studies the dynamic characteristics of production and sales of distributed
photovoltaic power. This is beneficial for the construction and development of a green power system,
and it promotes the sustainable development of the social economy. First, the production and sales
laws of the photovoltaic power are analyzed, and the trade process between photovoltaic power
producers (PVPs) and photovoltaic power demanders (PVDs) is modeled as a game. Different from
the existing relevant literature, two kinds of payoff bimatrices are provided, which correspond to
the PVD market and PVP market, respectively. Then, the dynamic characteristics of the model are
revealed by using the semitensor product method. The results present a more reliable theoretical
basis for the sustainable development of the green electricity market. Finally, through an illustrative
example, it can be seen that the strategies of all participants are constantly changing to obtain more
profits rather than stable at a traditional Nash equilibrium point. It is worth pointing out that the
method and results are applicable to other distributed low-carbon energies, contributing to the
development of sustainable energy systems.

Keywords: sustainable development; distributed photovoltaic power; game theory; semitensor product
of matrices (STP); Nash equilibrium

1. Introduction

In recent decades, the continuous growth of fossil fuel consumption has led to high
carbon emissions and exacerbated global warming. Carbon reduction has become a focus
of global attention. It is now more urgent than ever to seek sustainable development
measures. In order to achieve the dual carbon goal, countries usually choose to change
their high-carbon power generation structure, promote green and low-carbon energy
transformation in an orderly way, and accelerate the construction of a new type of power
system dominated by new energies [1,2]. In fact, green power with zero (or approaching
zero) carbon emissions has become the only way to complete the low-carbon transformation
of energy structures and promote sustainable social development [3,4].

At present, microgrids have become the main force for the rapid development of
renewable energy [5–13]. The energy blockchain injects new vitality into distributed
energy and smart microgrids [14–18]. Distributed low-carbon energy, mainly including
photovoltaic, wind, nuclear, geothermal energy, and so on, as a supplement to traditional
power solutions, can optimize the capacity configuration of electricity and alleviate some
issues, such as capacity expansion and renovation. These advantages drive scholars to
explore the trading methods of distributed photovoltaic power in the market [19–22]. This
not only improves the returns of distributed green power investors but also encourages
flexible social capital investment in the development of distributed photovoltaic power,
thereby assisting in the green and low-carbon transformation of energy.

Through third-party agents, small- and medium-sized photovoltaic users, not directly
dispatched by the power grid, can obtain a reasonable allocation of power resources, and
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multienergy collaborative trade can be carried out normally [23–26]. However, the trading
prices of photovoltaic electricity fluctuate frequently. This is because of (1) the strong
volatility and high uncertainty of photovoltaic energy and (2) the transaction price being
closely related to the supply and demand relationship of photovoltaic power.

Considering the interest correlation and information privacy among multiagents,
many scholars prefer to use game theory to model distributed systems, since game theory
proves to be a good choice for decentralized (or distributed) multiagent decision-making
problems [27].

For the case of multiple microgrids, cooperative game theory was adopted to model
the energy transaction. For example, ref. [28] considered the behavior of energy transac-
tions between multiple operators in microgrids, proposed a distributed coordinated control
scheme, and developed a joint optimization strategy for multiple microgrids. The operating
costs of the system was effectively reduced by this strategy. A consensus algorithm was
proposed to obtain an optimal demand management scheme for multiagent smart micro-
grids; see [29]. The algorithm depended on the information and data transfer among the
neighbors in the smart microgrid. Aimed at the problem of the decentralized scheduling
of microgrids, reference [30] presented a two-stage framework in which the distribution
feeder reconfiguration was implemented to satisfy technical and security constraints, and
microgrids day-ahead scheduling was performed by a game-theoretic approach to avoid
market power. A distributed power-sharing framework is considered in [31]. And the
method to optimize its performance was formulated as a repeated game between house-
holds in a microgrid. Because the ownership complexity feature of distributed energy
resources (DERs) greatly impacts peer-to-peer (P2P) energy trading, Luo et al. developed a
game-theory-based decentralized trading scheme to examine the effects of DER ownership
on the benefit of each participant in the P2P trading market [32]. In [33], a new method was
proposed to form microgrid coalitions. Compared with the relevant existing results, the
proposed method took into account both power losses and service charges in the bidding
strategy of microgrids and calculation of their utility.

A cooperative game is the study of how people allocate the benefits of cooperation
when reaching a goal, which is known as the problem of income distribution. A non-
cooperative game is a study of how people make decisions to maximize their own profits
in situations where interests interact, namely the problem of strategy selection. Due to
the fact that the theoretical maturity of cooperative games is much lower than that of
non-cooperative games, the latter has a wider application. Stackelberg’s game is a common
model for analyzing energy transaction problems. For example, in order to analyze the
economic optimization method of multiple stakeholders in a distributed energy system,
ref. [34] proposed a multistakeholder benefit optimization method and established a local
market energy transaction model. The model used the master–slave game method to
solve the optimization strategy. A day-ahead economic dispatch strategy which can solve
mixed-integer programming problems based on game theory was proposed [35]. This
strategy ensured utility and made the users gain maximum benefits. For microgrids with
multiparties, a Stackelberg game model was established in [36] to solve the energy trading
management problem. In this model, authors took the energy management trading system
as the leader and all the distributed generators in the microgrid as the followers. The results
indicate that this method can reduce the dependence of microgrids on the upper level of
the power grid while obtaining more profits. Amin et al. proposed a framework in [37] that
combines the non-cooperative and cooperative game to facilitate P2P electricity trading
while maintaining the stability of the contract. In the method proposed above, a pivotal
player was determined with the Shapely–Shubik power index to distribute the shared
revenue in a fair manner.

The Nash bargaining method, proposed by Nash [38], was used in [39] to describe the
economic interaction between community energy managers and photovoltaic consumers.
Mohseni et al. developed an asymmetric Nash bargaining game model with a new index,
named fuzzy bargaining power, to fairly allocate trading benefits to microgrids [40]. The
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fuzzy index incentivized microgrids to proactively trade energy throughout the entire
day and not just when energy selling or buying was in their interest. A novel demand-
side management method was developed in [41] whose results confirm the compatibility
between this method and game theory to find the Nash equilibrium point. Ref. [42]
proposed an optimal multiagent-based market algorithm for smart multimicrogrid systems.
In this algorithm, a game-theoretic double-auction mechanism was proposed for the day-
ahead market, while a hierarchical optimization algorithm was developed for the hour-
ahead market and real-time market to minimize the energy mismatch and the dependency
on the utility by performing an optimal intermicrogrid market. Reference [43] introduced
a demand-side integration framework. This framework was based on a prepaid orderly
energy consumption strategy. The interaction between aggregators and end-use customers
was captured as a Nash bargaining game.

In addition to the typical game models mentioned above, the networked evolutionary
game model has recently been used to investigate energy trading problems. Ref. [44]
modeled the transaction between green power operators and green power producers as
a networked evolutionary game. Based on this model, the dynamic characteristics of the
green power transaction were revealed by using the STP method.

However, the existing research methods all have problems: (1) In cooperative games,
the information between internal members can be exchanged, and the agreements reached
must be enforced. But the reflected real economic problems have incomplete information,
and the method cannot provide a clear standard to analyze the competition in real society.
(2) The Stackelberg game model can better describe the leader–follower relationship in
actual decision making, as well as take into account the time series and causal relationships
between participants. But there is information asymmetry and the irrational behavior of
decision makers. (3) Although both parties in the Nash bargaining game model have their
own strategies at their disposal to achieve the maximum interests within a certain range,
they are unwilling to adjust their own strategies according to that of the other party. Thus,
the result is not the best one that both parties want, and it may be a slightly less favorable
one. (4) In the networked evolutionary game model, the strategy can be updated according
to certain rules, and the updated strategy’s rules for all players are the same. Players can
choose and adjust the next update based on whether the previous update strategy was
successful or not. However, the updated strategy’s rules may be influenced by the topology
of the network where the players are located. The above information is summarized in
Table 1.

Therefore , to obtain the dynamic characteristics of photovoltaic power production and
sales, this paper takes into account the competition phenomenon in the market-oriented
trading process. The fact that the transaction price is always influenced by the supply
and demand relationship of green electricity is comprehensively considered. And then an
attempt is made to model and analyze the trading process of photovoltaic power producers
(PVPs) and photovoltaic power demanders (PVDs) by the game theory and semitensor
product (STP) method. The contributions of this paper are as follows:

1. In the dynamic game model for trading between PVPs and PVDs, the payoff bimatrices
provided for the PVD market and PVP market reflect the impact of the supply and
demand relationship of green electricity on transaction pricing.

2. A game can be transformed into its algebraic form by using the STP. This algebraic
form makes it more convenient for us to study the game. Therefore, the STP is an
effective method for analyzing the dynamic characteristics of game models.

3. During the trading process, the strategies of all participants are constantly changing to
obtain more profits rather than stable at a traditional Nash equilibrium point.



Sustainability 2023, 15, 14645 4 of 19

Table 1. Summary of research on game theory to model distributed systems.

Method Related
Achievements The Characteristics of the Method

Cooperative game [28–33]

• Information between internal members can be ex-
changed, and the agreements reached must be enforced.

• The reflected real economic problems have incomplete
information, and it cannot provide a clear standard to
analyze the competition in a real society

Non-cooperative
game

Stackelberg game [34–37]

• It can better describe the leader–follower relationship
in actual decision making and take into account the
time series and causal relationships between partici-
pants.

• There is information asymmetry and the irrational
behavior of decision makers.

Nash bargaining game [38–43]

• Both parties have their own strategies at their disposal
to achieve the maximum interests within a certain range.

• Both parties are unwilling to adjust their own strate-
gies according to that of the other party. Thus, the
result is not the best one that both parties want, and it
may be a slightly less favorable one.

Networked
evolutionary game [44]

• The strategy can be updated according to certain rules,
and the updated strategy’s rules for all players are the
same. Players can choose and adjust the next update
based on whether the previously updated strategy
was successful or not.

• The updated strategy’s rules may be influenced by the
topology of the network where the players are located.

The rest of this paper is organized as follows. In Section 2, some preliminaries are
introduced and the problem analysis of photovoltaic energy trading networks as well as
some assumptions are given for the convenience of modeling. Then, the production and
sales laws of photovoltaic power generation are analyzed, and the transaction process
between PVPs and PVDs is modeled as a game in Section 3. This section also presents the
main results. These results include the strategy-updating rule, payoff bimatrix, and two
algorithms for calculating all attractors of the system to reveal the dynamic characteristics
of the game model. An illustrative example is designed in Section 4. It shows that the
strategies of all participants are constantly changing to achieve more profits, rather than
stabilizing at the traditional Nash equilibrium point. Finally, a brief conclusion is provided
in Section 5.

2. Materials and Methods
2.1. Preliminaries

For ease of expression, some notations are first introduced.

• Rn: the set of all n-dimensional real vectors;
• Mm×n (Lm×n): the set of m× n-dimensional real (logical) matrices;
• Coli(M) (Rowi(M)): the ith column (row) of matrix M;
• In: the n× n dimensional identity matrix;
• δi

n := Coli(In), the ith column of In;
• ∆n := Col(In) = {δi

n | i = 1, 2, · · · , n}, the set of all columns of In;
• δn[i1, i2, · · · , is] := [δi1

n δi2
n · · · δis

n ], a logical matrix.

As analyzed in the introduction, the photovoltaic energy transaction of PVPs and
PVDs is modeled as a dynamic game. Here are the four elements of the game [45]:

(1) N = {1, 2, · · · , n} denotes n players;
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(2) Si = {1, 2, · · · , ki}, i = 1, 2, · · · , n, expresses the strategy set of player i, and S = ∏n
i=1 Si

is the set of strategy profiles;
(3) ci : S→ Rn, i = 1, 2, · · · , n is the payoff function of player i;
(4) In a multiround game, the players follow the ultimate goal of maximizing their own

profits and use this goal as a guiding principle for adjusting their strategies.

A game can be transformed into its algebraic form by using STP technology [46–48].
This form makes it more convenient to study the game. So, it is necessary to recall the
STP here.

Definition 1 ([48]). Let A ∈Mm×n, B ∈Mp×q, and denote the least common multiplier lcm(n, p)
of n and p by l. Then, the STP of A and B is

An B := (A⊗ I l
n
)(B⊗ I l

p
) ∈Mml

n ×
ql
p

,

where ⊗ is the Kronecker product of matrices.

Some basic properties of the STP used in this paper are listed as follows. Readers may
refer to [49] for more details.

• For any matrix M, n-dimensional column vector X, and n-dimensional row vector Y,
the following two equalities hold

XnM = (In ⊗M)n X

and
MnY = Yn (In ⊗M).

• For any two column vectors X ∈ Rm and Y ∈ Rn, the following equality holds:

W[m,n] n XnY = Yn X,

where

W[m,n] := δmn[1, m + 1, 2m + 1, · · · , (n− 1)m + 1,

2, m + 2, 2m + 2, · · · , (n− 1)m + 2,

· · · ,

(m− 1), m + (m− 1), 2m + (m− 1), · · · , (n− 1)m + (m− 1),

m, m + m, 2m + m, · · · , nm] ∈Mmn×mn

is a swap matrix.
• For any δi

2n ∈ ∆2n , the following equality holds:

δi
2n n δi

2n = Φnδi
2n ,

where Φn = ∏k
i=1 I2i−1 ⊗ [(I2 ⊗W[2,2k−i ])Mr] ∈ L22n×2n , and Mr = δ4[1, 4] is a power-

reducing matrix.

It is noted that the STP has properties similar to the conventional matrix product.
Especially, when n = p, the STP happens to be the conventional matrix product. Therefore,
STP is a generalization of the conventional matrix product. Throughout this paper, the
matrix products are assumed to be the STP, and the symbol n is usually omitted.

2.2. Problem Analysis

The users participating in the photovoltaic power transaction include individual users,
enterprise users, and energy companies.
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• Individual users can become both suppliers and demanders of photovoltaic power in
the transactions. As the suppliers, individual users produce sufficient electricity by
installing photovoltaic power generation systems, which can not only meet household
requirements but also sell their remaining electricity to energy companies and earn
profits. On the demand side, individual users need to purchase green electricity when
their production is insufficient.

• Enterprise users often appear as demanders. With the increasing awareness of cor-
porate social responsibility and regulatory restrictions on energy consumption, more
and more enterprises are purchasing green electricity to reduce their dependence on
traditional energy and improve their sustainable development level.

• Energy companies obtain green power through construction and operation of renew-
able energy generation projects and then sell the green power to individual users
and/or enterprise users to obtain profits.

From the above analysis, it can be found that PVPs usually appear in the form of energy
companies or individuals, while PVDs are mostly individuals or electricity-consuming
enterprises. In addition, there are usually multiple PVPs and PVDs in a photovoltaic energy-
trading network. For the convenience of modeling, some assumptions are given here.

Assumption 1. All players are rational and choose their strategies to obtain as much profit as possible
every time.

Assumption 2. A PVP can only sell its photovoltaic electricity to a PVD but cannot trade with other
PVPs. And a PVD can only buy photovoltaic electricity from a PVP.

Assumption 3. PVPs (PVDs) cannot cooperate with each other and must bid independently.

3. Results
3.1. Transaction Process

Due to the impact of market supply and demand on photovoltaic trading prices, there
are two cases that need to be discussed: (1) When there is sufficient photovoltaic power,
PVPs compete to sell off. The price of photovoltaic power is showing a downward trend.
PVDs have more opportunities to choose PVPs. This is called a PVDs’ market. (2) When
the supply of photovoltaic power is far less than demand, PVDs compete with each other
to obtain as much green electricity as possible and engage in panic buying. The price is on
the rise. PVPs are in a favorable market position and have the initiative to sell their green
electricity. This is called a PVPs’ market.

The trading process of PVPs and PVDs is roughly as follows:

(1) All PVPs and PVDs engage in bidding transactions on the same third-party platform.
(2) According to the real-time market conditions, all participants bid once a day.
(3) For a given PVP, if there is at least a PVD whose quotation is not lower than that of

the PVP, then a transaction will be conducted. Otherwise, the deal fails and they wait
for the next bidding. When conducting transactions, an introduction is given in the
following section about how to determine the transaction price.

(1) In a PVDs’ market, the lowest quotation from the above PVPs will be used as the
transaction price.

(2) In a PVPs’ market, the transaction price is the highest quotation of the above PVDs.

3.2. Strategy-Updating Rule

It is natural that the strategy of player i in the next round should be influenced by its
neighbors’ strategies in this round. Here, player i will learn from the most profitable one



Sustainability 2023, 15, 14645 7 of 19

among all neighbors to update their next strategy. Therefore, Unconditional Imitation With
Fixed Priority [50] is adopted as the strategy-updating rule. That is, if

j∗ = arg max
j∈U(i)

cj(x(t)),

then
xi(t + 1) = xj∗(t),

where x(t) = (x1(t), x2(t), · · · , xn(t)) is the strategy profile of all players at time t; xi(t) is
the strategy of player i at time t; and U(i) is the set of neighbors of player i.

When there is more than one neighbor with the highest profit, say

arg max
j∈U(i)

cj(x(t)) = {j∗1 , . . . , j∗k}, k > 1,

the following strategies are chosen:

1. If player i is a PVD, their neighbor players j∗1 , . . . , j∗k are PVPs. The PVD prefers to
make the next deal with one of the PVPs at the lowest possible price. So,

xi(t + 1) = min{xj∗1
(t), . . . , xj∗k

(t)}.

2. If player i is a PVP, all of their neighbors j∗1 , . . . , j∗k are PVDs. The PVP tends to make
the next transaction with one of the PVDs at the highest price. Then,

xi(t + 1) = max{xj∗1
(t), . . . , xj∗k

(t)}.

For ease of understanding, the strategy-updating rule above is rewritten in the form
of a flowchart; see Figure 1.

Find out the neighbor with 

the highest profit from all 

neighbors of player i

Begin

Y

Y

N

N
There is only one 

neighbor with the 

highest profit ?

Player i is PVD ?

End

*( 1) ( )+ =i j
x t x t * *

1

( 1) max{ ( ), , ( )}+ = K

k
i j j
x t x t x t

* *
1

( 1) min{ ( ), , ( )}+ = K

k
i j j
x t x t x t

*

( )

arg max ( ( ))
Î

= j
j U i

j c x t

* *

1
( )

arg max ( ( )) { , , }
Î

= Kj k
j U i

c x t j j

( )

arg max ( ( ))
Î

j
j U i

c x t

Figure 1. Flowchart for the strategy-updating rule of the photovoltaic energy transaction model.
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3.3. Payoff Bimatrix

From the actual current situation, the cost of photovoltaic power is much higher
than that of traditional electricity. In order to promote the development of low-carbon or
zero-carbon power systems and build a new type of power system with new energy as the
main body, the government should provide subsidies to low-carbon or zero-carbon power
production enterprises and individuals. Therefore, the transaction price Pdeal must not be
less than the difference between the production price Pproduce and the government subsidy
Psubsidy to make PVPs have profits, namely

Pproduce − Psubsidy ≤ Pdeal . (1)

On the other hand, the use of nongreen energy causes a large amount of carbon
emissions. Under the “dual carbon” goal, the state penalizes enterprises with high carbon
emissions. Therefore, these enterprises are under increasing pressure. Compared with
traditional electricity prices, the transaction price Pdeal should not be more than the sum of
the traditional electricity price Ptraditional and the compensation costs Pcompensation to ensure
that photovoltaic electricity is more attractive. That is to say, the following inequality holds:

Pdeal ≤ Ptraditional + Pcompensation. (2)

From (1) and (2), the inequality

Pproduce − Psubsidy ≤ Pdeal ≤ Ptraditional + Pcompensation

holds.
Let A = Pproduce − Psubsidy and B = Ptraditional + Pcompensation. Divide the difference

between A and B equally into n + 1 parts: A, A + B−A
n+1 , A + 2(B−A)

n+1 , · · · , A + n(B−A)
n+1 , and B.

It is worth noting that no player wants to choose the extreme strategy A or B to achieve
a successful transaction as soon as possible. Therefore, for any player, their strategy set is
{A + i(B−A)

n+1 , i = 1, 2, · · · , n}. Without loss of generality, it can be assumed that the strategy
sets of all players are the same. In fact, even if there are two players whose strategy sets are
different, the same method can be used for subsequent processing. Now, according to the
trading process introduced in Section 3.1, the payoff bimatrices of the PVDs’ market and
PVPs’ market are given in Table 2 and Table 3, respectively.

Table 2. Payoff bimatrix of the PVDs’ market.

PVP� PVD 1 2 · · · n − 1 n

1 (1, n) (1, n) · · · (1, n) (1, n)
2 (0, 0) (2, n− 1) · · · (2, n− 1) (2, n− 1)
· · · · · · · · · · · · · · · · · ·

n− 1 (0, 0) (0, 0) · · · (n− 1, 2) (n− 1, 2)
n (0, 0) (0, 0) · · · (0, 0) (n, 1)

Table 3. Payoff bimatrix of the PVPs’ market.

PVP�PVD 1 2 · · · n − 1 n

1 (1, n) (2, n− 1) · · · (n− 1, 2) (n, 1)
2 (0, 0) (2, n− 1) · · · (n− 1, 2) (n, 1)
· · · · · · · · · · · · · · · · · ·

n− 1 (0, 0) (0, 0) · · · (n− 1, 2) (n, 1)
n (0, 0) (0, 0) · · · (0, 0) (n, 1)
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From Tables 2 and 3, it is easy to see that these two payoff bimatrices are both asym-
metric and upper triangular. This characteristic is determined by the trading process.

3.4. Dynamic Characteristic Analysis

Now, δk
n is identified with k, k = 1, 2, · · · , n; then, each strategy profile (k1, k2, · · · , km)

can be replaced by (δk1
n , δk2

n , · · · , δkm
n ). From [49], (δk1

n , δk2
n , · · · , δkm

n ) is equivalent to δr
nm ,

where r = (k1 − 1)nm−1 + (k2 − 1)nm−2 + · · ·+ (km−1 − 1)n + km.
The vector form of strategy variables is utilized to define x(t) = nm

i=1xi(t) ∈ ∆nm .
Then, based on the STP technology provided in [48], the above photovoltaic energy transac-
tion model can be equivalently transformed into its algebraic form

x(t + 1) = Mx(t), (3)

where M ∈ Lnm×nm is the structure matrix of system (3).
Obviously, (3) has a linear form. So, it is very convenient to investigate the photovoltaic

energy transaction by analyzing (3). Besides, as everyone knows, the attractors of (3),
including fixed points and limit cycles, are important, where a fixed point corresponds
to one Nash equilibrium of the game model. Through these attractors, a comprehensive
overview of the photovoltaic energy transaction can be obtained.

Theorem 1. The system (3), which is equivalent to the photovoltaic energy transaction model, has
an attractor C with length k, if and only if:

1. For any state δi
nm ∈ C, Coli(Rowi(Mk)) = 1 holds;

2. for any integer l (l < k), there is a state δi
nm ∈ C, such that Coli(Rowi(Ml)) = 0.

Proof of Theorem 1. (Necessity) By known conditions, the system (3) has an attractor C
with length k. If k = 1, C is a fixed point, and Necessity naturally holds. Otherwise, C is a
limit cycle with length k. Then, for any state δi

nm ∈ C, (4) holds

δi
nm = Mkδi

nm , δi
nm 6= Mlδi

nm , (4)

where l < k. It is noted that M is a logical matrix. So, (4) leads to Coli(Rowi(Mk)) = 1 and
Coli(Rowi(Ml)) = 0.

(Sufficiency) The proof process of Necessity can be derived in reverse, which completes
the proof of Sufficiency.

As we know, attractors are very important because they can reveal the dynamic charac-
teristics of system (3). Theorem 1 gives a necessary and sufficient criterion for attractors. In the
following, based on this criterion, Algorithms 1 and 2 are provided to calculate all attractors
of system (3).

Algorithm 1: Compute the set Ωk of states contained in all limit cycles of length k.
1: Ω0 = Φ.
2: for k = 1 to nm do
3: initialize: Ωk = Φ.
4: for i = 1 to nm do
5: if Coli(Rowi(Mk))=1 holds, then
6: Ωk = Ωk ∪ {δi

nm}.
7: end if
8: end for
9: return Ωk = Ωk \Ωk−1, and the length of attractor Ωk = k.

10: end for
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Algorithm 2: Compute the attractor C of (3) with length k.
1: for k = 1 to nm do
2: denote the potential of Ωk as r.
3: for j = 1 to r do
4: return Ckj = {Ωk(j), MΩk(j), · · · , Mk−1Ωk(j)},
5: Ωk = Ωk \ Ckj.
6: end for
7: end for

Finally, the process of solving the dynamic characteristics of the photovoltaic energy
transaction can be demonstrated through a flowchart; see Figure 2.

Establish the evolutionary game 

model for the photovoltaic 

energy transaction.

Begin

End

Calculate all attractors of system 

(3) by using Algorithm 1 and

Algorithm 2.

Obtain the algebraic equivalent 

form of the model by using STP 

technology                              .( 1) ( )+ =x t Mx t

Figure 2. Flowchart for solving the dynamic characteristics of the photovoltaic energy transaction.

4. Discussion

In the following, an example is given to show the effectiveness of the method devel-
oped in this paper. To simplify the problem, it is supposed that there are three PVPs (PVP1,
PVP2, PVP3) and two PVDs (PVD1, PVD2) in the network, numbered x1, x2, x3, x4, x5.
Their structure topology is depicted in Figure 3.

Firstly, a trading model in the PVDs’ market is established. Setting n = 2, Table 2
becomes Table 4.
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PVD1(x4)

PVD2(x5)

PVP1(x1) PVP3(x3)

PVP2(x2)

Figure 3. A Topological diagram for the photovoltaic power trade with three PVPs and two PVDs.

Table 4. Payoff bimatrix of the PVDs’ market for the case of n = 2.

PVP�PVD 1 2

1 (1, 2) (1, 2)
2 (0, 0) (2, 1)

According to Table 4, all the payoffs and next strategies of all players can be calculated.
For instance, set [x1(t), x2(t), x3(t), x4(t), x5(t)] = [2, 1, 2, 1, 2]. For PVP1 (x1), there are two
neighbors: PVD1 (x4) and PVD2 (x5). Then, the following equalities hold:

c1,4(x1(t), x4(t)) = 0, c1,5(x1(t), x5(t)) = 2

⇒ c1(t) = max(c1,4, c1,5) = 2, x1(t + 1) = x5(t) = 2;

c2,4(x2(t), x4(t)) = 1, c2,5(x2(t), x5(t)) = 1

⇒ c2(t) = max(c2,4, c2,5) = 1, x2(t + 1) = max(x4(t), x5(t)) = x5(t) = 2;

c3,4(x3(t), x4(t)) = 0, c3,5(x3(t), x5(t)) = 2

⇒ c3(t) = max(c3,4, c3,5) = 2, x3(t + 1) = x5(t) = 2;

c4,1(x4(t), x1(t)) = 0, c4,2(x4(t), x2(t)) = 2, c4,3(x4(t), x3(t)) = 0

⇒ c4(t) = max(c4,1, c4,2, c4,3) = 2, x4(t + 1) = x2(t) = 1;

c5,1(x5(t), x1(t)) = 1, c5,2(x5(t), x2(t)) = 2, c5,3(x5(t), x3(t)) = 1

⇒ c5(t) = max(c5,1, c5,2, c5,3) = 2, x5(t + 1) = x2(t) = 1.

The same argument is used for other profiles [x1(t), x2(t), x3(t), x4(t), x5(t)], and the
next action is computed for every player, as shown in Table 5.

Table 5. Payoffs and dynamics of photovoltaic power trade with three PVPs and two PVDs.

Profile 11111 11112 11121 11122 11211 11212 11221 11222

c1(t) 1 1 1 1 1 1 1 1
c2(t) 1 1 1 1 1 1 1 1
c3(t) 1 1 1 1 0 2 2 2
c4(t) 2 2 2 2 2 2 2 2
c5(t) 2 2 2 2 2 2 2 2
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Table 5. Cont.

Profile 11111 11112 11121 11122 11211 11212 11221 11222

x1(t + 1) 1 2 2 2 1 2 2 2
x2(t + 1) 1 2 2 2 1 2 2 2
x3(t + 1) 1 2 2 2 1 2 2 2
x4(t + 1) 1 1 1 1 1 1 1 1
x5(t + 1) 1 1 1 1 1 1 1 1

Profile 12111 12112 12121 12122 12211 12212 12221 12222

c1(t) 1 1 1 1 1 1 1 1
c2(t) 0 2 2 2 0 2 2 2
c3(t) 1 1 1 1 0 2 2 2
c4(t) 2 2 2 2 2 2 2 2
c5(t) 2 2 2 2 2 2 2 2

x1(t + 1) 1 2 2 2 1 2 2 2
x2(t + 1) 1 2 2 2 1 2 2 2
x3(t + 1) 1 2 2 2 1 2 2 2
x4(t + 1) 1 1 1 1 1 1 1 1
x5(t + 1) 1 1 1 1 1 1 1 1

Profile 21111 21112 21121 21122 21211 21212 21221 21222

c1(t) 0 2 2 2 0 2 2 2
c2(t) 1 1 1 1 1 1 1 1
c3(t) 1 1 1 1 0 2 2 2
c4(t) 2 2 2 2 2 2 2 2
c5(t) 2 2 2 2 2 2 2 2

x1(t + 1) 1 2 2 2 1 2 2 2
x2(t + 1) 1 2 2 2 1 2 2 2
x3(t + 1) 1 2 2 2 1 2 2 2
x4(t + 1) 1 1 1 1 1 1 1 1
x5(t + 1) 1 1 1 1 1 1 1 1

Profile 22111 22112 22121 22122 22211 22212 22221 22222

c1(t) 0 2 2 2 0 2 2 2
c2(t) 0 2 2 2 0 2 2 2
c3(t) 1 1 1 1 0 2 2 2
c4(t) 2 2 2 2 0 0 1 1
c5(t) 2 2 2 2 0 1 0 1

x1(t + 1) 1 2 2 2 1 2 2 2
x2(t + 1) 1 2 2 2 1 2 2 2
x3(t + 1) 1 1 2 2 1 2 2 2
x4(t + 1) 1 1 1 1 2 2 2 2
x5(t + 1) 1 1 1 1 2 2 2 2

Identify action k with δ2−k
2 , k = 1, 2. Then, using the method provided by [46], the

algebraic form of the evolutionary strategy can be figured out for each player:

xi(t + 1) = Mix(t), i = 1, 2, 3, 4, 5, (5)

where xi(t) ∈ ∆2, x(t) = n5
i=1xi(t), and

M1 = δ2[1, 2, 2, 2, 1, 2, 2, 2, 1, 2, 2, 2, 1, 2, 2, 2, 1, 2, 2, 2, 1, 2, 2, 2, 1, 2, 2, 2, 1, 2, 2, 2],

M2 = δ2[1, 2, 2, 2, 1, 2, 2, 2, 1, 2, 2, 2, 1, 2, 2, 2, 1, 2, 2, 2, 1, 2, 2, 2, 1, 2, 2, 2, 1, 2, 2, 2],

M3 = δ2[1, 2, 2, 2, 1, 2, 2, 2, 1, 2, 2, 2, 1, 2, 2, 2, 1, 2, 2, 2, 1, 2, 2, 2, 1, 2, 2, 2, 1, 2, 2, 2],

M4 = δ2[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2],

M5 = δ2[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2].
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Utilizing the properties of the STP, equality (5) is transformed as follows:

x(t + 1) = x1(t + 1)x2(t + 1)x3(t + 1)x4(t + 1)x5(t + 1)

= M1x(t)M2x(t)M3x(t)M4x(t)M5x(t)

= M1W[2,32]M2x(t)x(t)M3x(t)M4x(t)M5x(t)

= M1W[2,32]M2Φ5x(t)M3x(t)M4x(t)M5x(t)

= M1W[2,32]M2Φ5W[2,32]M3x(t)x(t)M4x(t)M5x(t)

= M1W[2,32]M2Φ5W[2,32]M3Φ5x(t)M4x(t)M5x(t)

= M1W[2,32]M2Φ5W[2,32]M3Φ5W[2,32]M4x(t)x(t)M5x(t)

= M1W[2,32]M2Φ5W[2,32]M3Φ5W[2,32]M4Φ5x(t)M5x(t)

= M1W[2,32]M2Φ5W[2,32]M3Φ5W[2,32]M4Φ5W[2,32]M5x(t)x(t)

= M1W[2,32]M2Φ5W[2,32]M3Φ5W[2,32]M4Φ5W[2,32]M5Φ5x(t)

= Mx(t).

Therefore, the algebraic form of the evolutionary game is

x(t + 1) = Mx(t), (6)

where

M =M1W[2,32]M2Φ5W[2,32]M3Φ5W[2,32]M4Φ5W[2,32]M5Φ5

=δ32[1, 29, 29, 29, 1, 29, 29, 29, 1, 29, 29, 29, 1, 29, 29, 29,

1, 29, 29, 29, 1, 29, 29, 29, 1, 29, 29, 29, 4, 32, 32, 32].

It is easy to see that there are two nonzero elements on the diagonal of matrix M. So,
there are two fixed points, δ1

32 and δ32
32 , namely the Nash equilibria. Furthermore, through

simple calculations, a limit cycle C : δ4
32 → δ29

32 → δ4
32 can be obtained. And its attraction

domains are

D(δ1
32) = {δ1

32, δ5
32, δ9

32, δ13
32 , δ17

32 , δ21
32 , δ25

32}
∼ {(1, 1, 1, 1, 1), (1, 1, 2, 1, 1), (1, 2, 1, 1, 1), (1, 2, 2, 1, 1),

(2, 1, 1, 1, 1), (2, 1, 2, 1, 1), (2, 2, 1, 1, 1)}
D(δ32

32) = {δ30
32 , δ31

32 , δ32
32}

∼ {(2, 2, 2, 1, 2), (2, 2, 2, 2, 1), (2, 2, 2, 2, 2)}
D(C) = {δ2

32, δ3
32, δ4

32, δ6
32, δ7

32, δ8
32, δ10

32 , δ11
32 , δ12

32 , δ14
32 , δ15

32 , δ16
32 , δ18

32 , δ19
32 , δ20

32 ,

δ22
32 , δ23

32 , δ24
32 , δ26

32 , δ27
32 , δ28

32 , δ29
32}

∼ {(1, 1, 1, 1, 2), (1, 1, 1, 2, 1), (1, 1, 1, 2, 2), (1, 1, 2, 1, 2), (1, 1, 2, 2, 1),

(1, 1, 2, 2, 2), (1, 2, 1, 1, 2), (1, 2, 1, 2, 1), (1, 2, 1, 2, 2), (1, 2, 2, 1, 2),

(1, 2, 2, 2, 1), (1, 2, 2, 2, 2), (2, 1, 1, 1, 2), (2, 1, 1, 2, 1), (2, 1, 1, 2, 2),

(2, 1, 2, 1, 2), (2, 1, 2, 2, 1), (2, 1, 2, 2, 2), (2, 2, 1, 1, 2), (2, 2, 1, 2, 1),

(2, 2, 1, 2, 2), (2, 2, 2, 1, 1)}

In order to better demonstrate the state motion process of the system (6), the initial
states are chosen from sets D(δ1

32), D(δ32
32), and D(C), respectively.

• When the initial state is chosen from D(δ1
32), for example, the initial state is taken as

x(0) = δ13
32 , which is equivalent to [1, 2, 2, 1, 1], according to Table 5, and it is updated

to [1, 1, 1, 1, 1], which is equivalent to x(1) = δ1
32. Similarly, the follow-up actions

can be obtained x(2) = x(3) = x(4) = · · · = δ1
32. The system (6) will be stable at the
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Nash equilibrium δ1
32 (meaning strategy profile (1, 1, 1, 1, 1)). Figure 4 gives the state

trajectories for all players.
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Figure 4. State trajectory of (6) when the initial state x(0) = δ13
32 .

• When the initial state is chosen from D(δ32
32), for instance, x(0) = δ30

32 , a similar analysis
leads to x(1) = x(2) = x(3) = x(4) = · · · = δ32

32 . The system (6) will be stable at the
Nash equilibrium δ32

32 (meaning strategy profile (2, 2, 2, 2, 2)). The state trajectories of
all players are shown in Figure 5.

• When the initial state belongs to D(C), say x(0) = δ22
32 , it is derived that x(1) = δ29

32 ,
x(2) = δ4

32, x(3) = δ29
32 , x(4) = δ4

32, · · · . The system (6) will oscillate between δ4
32

(meaning strategy profile (1, 1, 1, 2, 2)) and δ29
32 (meaning strategy profile (2, 2, 2, 1, 1)).

Figure 6 shows the corresponding state trajectories.

The state transition diagram of system (6) is given in Figure 7. From this figure, it can
be found that only when the initial state is taken from D(δ1

32) or D(δ32
32) will system (6) be

stable at Nash equilibrium δ1
32 or δ32

32 , respectively. If the initial state is taken from D(C),
the system (6) will oscillate between δ4

32 and δ29
32 .

According to the STP technique, δ4
32 is equivalent to the strategy profile (δ1

2 , δ1
2 , δ1

2 , δ2
2 , δ2

2),

and then to (1, 1, 1, 2, 2) and (A + B−A
3 , A + B−A

3 , A + B−A
3 , A + 2(B−A)

3 , A + 2(B−A)
3 ),

where A = Pproduce− Psubsidy and B = Ptraditional + Pcompensation. Similarly, δ29
32 is equivalent to

(δ2
2 , δ2

2 , δ2
2 , δ1

2 , δ1
2) and (2, 2, 2, 1, 1). So, this means the strategy profile (A + 2(B−A)

3 , A + 2(B−A)
3 ,

A + 2(B−A)
3 , A + B−A

3 , A + B−A
3 ). And the Nash equilibria δ1

32 and δ32
32 express strategy pro-

files (A + B−A
3 , A + B−A

3 , A + B−A
3 , A + B−A

3 , A + B−A
3 ) and (A + 2(B−A)

3 , A + 2(B−A)
3 ,

A + 2(B−A)
3 , A + 2(B−A)

3 , A + 2(B−A)
3 ), respectively. In addition, an interesting phe-

nomenon can be found that all strategies chosen by PVPs (PVDs) are the same in the
strategy profiles mentioned above. Therefore, their strategies will eventually reach consen-
sus without prior agreement.
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Figure 5. State trajectory of (6) when the initial state x(0) = δ30
32 .
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Figure 6. State trajectory of (6) when the initial state x(0) = δ22
32 .
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Figure 7. The state transition diagram of system (6).

In summary, the trade results can be divided into the following three situations:

• If players choose an initial strategy profile from {(1, 1, 1, 1, 1), (1, 1, 2, 1, 1), (1, 2, 1, 1, 1),
(1, 2, 2, 1, 1), (2, 1, 1, 1, 1), (2, 1, 2, 1, 1), (2, 2, 1, 1, 1)}, the strategy profile will be stable
at (1, 1, 1, 1, 1) (meaning strategy profile (A + B−A

3 , A + B−A
3 , A + B−A

3 , A + B−A
3 ,

A + B−A
3 )) to achieve the maximum revenue.

• If the initial strategy profile is chosen from {(2, 2, 2, 1, 2), (2, 2, 2, 2, 1), (2, 2, 2, 2, 2)},
it will reach and be stable at (2, 2, 2, 2, 2) (meaning strategy profile (A + 2(B−A)

3 ,

A + 2(B−A)
3 , A+ 2(B−A)

3 , A+ 2(B−A)
3 , A+ 2(B−A)

3 )) to make as much profit as possible.
• For other strategy profiles, they are not stable at any state but oscillate between two

states: (1, 1, 1, 2, 2) (meaning strategy profile (A+ B−A
3 , A+ B−A

3 , A+ B−A
3 , A + 2(B−A)

3 ,

A + 2(B−A)
3 )) and (2, 2, 2, 1, 1) (meaning strategy profile (A + 2(B−A)

3 , A + 2(B−A)
3 ,

A + 2(B−A)
3 , A + B−A

3 , A + B−A
3 )). To a certain extent, it can also be considered stable

on a limit cycle.

Here, a PVDs’ market was used as an example to introduce how to construct a game
model for transactions between PVPs and PVDs, and the dynamic characteristics of the
model were analyzed. Similar methods can be applied to a PVPs’ market with only a
modification to the payoff bimatrix according to Table 3. To avoid repetition, it is not
described in this paper.

5. Conclusions

This paper focused on the competition phenomenon in the market-oriented trading
process of distributed photovoltaic energy. The supply and demand relationship of photo-
voltaic power, which affects transaction pricing, was comprehensively considered. And
the trading processes of PVPs and PVDs were modeled and analyzed using game theory
and the STP method. These results provide a reliable theoretical basis for the sustainable
development of the photovoltaic power market. The conclusions obtained are as follows:

1. Different from the existing relevant literature, two kinds of payoff bimatrices were
provided in the dynamic game model for trading between PVPs and PVDs. One
corresponds to a PVDs’ market and the other to a PVPs’ market. They reflect the
impact of photovoltaic power supply and demand on transaction pricing.

2. The game model established above was equivalently transformed into its algebraic
form using the STP method. This algebraic form makes it more convenient to study
the game. Therefore, the STP is an effective method for analyzing the dynamic charac-
teristics of game models.

3. During the trading process, the strategies of all participants are mostly changing to
obtain more profits rather than stable at a traditional Nash equilibrium point.

4. The method and results are applicable to other distributed low-carbon energies, con-
tributing to the development of sustainable energy systems.

It is worth noting that the method used in this paper is universal and can be applied
to the research of all distributed low-carbon energy-trading problems, for example, wind,
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nuclear, geothermal energy, bioenergy, etc. Of course, they can also be applied to distributed
systems composed of different types of renewables-based generators.

This paper models the low-carbon energy-trading problem as a discrete system using
the STP method. However, in reality, transaction participants can make any bid, and the
bid may even appear as continuous. Therefore, how to establish a continuous model for the
carbon energy-trading problem and how to use the STP method to address the continuous
model are our future research topics.
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Nomenclature

Sets
Rn Set of all n-dimensional real vectors
Mm×n Set of m× n dimensional real matrices
Lm×n Set of m× n dimensional logical matrices
∆n Set of all columns of In
S = ∏n

i=1 Si Set of profiles
N = {1, 2, · · · , n} Set of n players
U(i) Set of neighbors of player i
Si Strategy set of player i
Parameters
Pdeal Transaction price
Pproduce Production price
Psubsidy Government subsidy
Ptraditional Traditional electricity price
Pcompensation Compensation costs
Variables and Functions
ci Payoff function of player i
xi(t) Strategy of player i at time t
x(t) Strategy of all players at time t
Notations
In n× n dimensional identity matrix
Coli(M) ith column of matrix M
Rowi(M) ith row of matrix M
δi

n ith column of In
δn[i1, i2, · · · , in] Logical matrix
(δk1

n , δk2
n , · · · , δkm

n ) Strategy profile
lcm(n, p) Least common multiplier of n and p
⊗ Kronecker product of matrices
n STP of matrices
W[m,n] Swap matrix
Φn Power-reducing matrix
C Limit cycle
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Acronyms
PVP Photovoltaic power producer
PVD Photovoltaic power demander
STP Semitensor product
DER Distributed energy resource
P2P Peer-to-peer
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