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Abstract: The urbanization process over the past decades has resulted in increasing attention being
paid to atmospheric pollution by researchers, especially changes in PM2.5 concentration. This study
attempted to explore the spatiotemporal changes in PM2.5 concentration in China from 2000 to 2021, as
well as their interaction patterns and intensities with temperature, precipitation, vegetation coverage,
and land use types. This was carried out by analyzing monthly average PM2.5 concentration data
and various meteorological and geographical factors. Suggestions have also been made to reduce
PM2.5 concentration and improve air quality. The results show that in the past 22 years, the overall
concentration of PM2.5 in China has shown a downward trend, with an average annual rate of
1.42 µg/m3 from 2013 to 2021, accompanied by a clear spatial pattern and significant seasonal
changes. The high pollution areas are mainly concentrated in the Tarim Basin, Sichuan Basin, North
China Plain, and the Middle and Lower Yangtze Valley Plain, where the PM2.5 concentration in
autumn and winter is significantly higher than that in spring and summer. In addition, based on the
national spatial scale, PM2.5 concentration is negatively correlated with precipitation and vegetation
coverage, while it is significantly positively correlated with arable land and impervious surfaces.
Strengthening the control of farmland pollution, accelerating urban greening construction, further
expanding the scale of forests and grasslands, and enriching vegetation types will help reduce PM2.5

concentration and improve air quality.

Keywords: PM2.5; correlation analysis; spatiotemporal characteristics; China

1. Introduction

The rapid urbanization and industrialization of China’s urban agglomerations have
produced a series of environmental pollution problems, especially frequent air pollution
problems in recent years [1]. These have not only affected the sustainable development of
the economy and society but also the traffic system and residents’ lives [2]. PM2.5 (particu-
late matter with a diameter of 2.5 µm or less in the air) is one of the main air pollutants,
whose sources can be divided into natural sources and human factors. In recent years,
scholars at home and abroad have carried out a vast amount of research on PM2.5, mainly
including PM2.5 pollution characteristics, impact on the environmental economy and hu-
man health, emission reduction technologies, and air quality testing [3–6].Existing research
has shown that long-term exposure to high concentrations of particulate matter, such as
PM2.5 and PM10, may lead to adverse health outcomes and that there are definite positive
correlations between the concentration distribution of PM2.5 and the fatality rates of certain
diseases [7]. PM2.5 reduces visibility due to light extinction effect, which seriously affects
the safety and efficiency of people’s travel, causing great inconvenience to transportation
and travel sectors, and affecting socioeconomic development and the quality of activities.
At the same time, the implementation of environmental protection measures also requires a
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large amount of funds, which imposes a certain burden on enterprises and the government.
Therefore, it is necessary to take preventive measures against PM2.5. The aim of this paper
is to deepen the understanding of air pollution mechanisms by investigating the spatial
and temporal distribution characteristics of PM2.5 [8]. Quantifying the influencing factors
regarding PM2.5 concentration is conducive to identifying the key influencing factors of
the spatial distribution of PM2.5 concentration [9], which will provide a scientific basis for
formulating targeted pollution prevention and control policies. In addition, by studying
the correlation analysis between PM2.5 and influencing factors, it provides a prerequisite
for the establishment of prediction models.

1.1. Research on the Temporal and Spatial Variation Characteristics of PM2.5

PM2.5 pollution usually exhibits regional, cumulative, and compound characteristics
on different temporal and spatial scales. Accurately grasping the temporal variation and
spatial heterogeneity of PM2.5 plays an important role in the prevention and control of air
pollution [3]. Based on different data sources (e.g., experimental data, site data, and remote
sensing inversion data, etc.), scholars have used various approaches such as geostatistical
analysis, GIS spatial interpolation, exploratory spatiotemporal data analysis, and linear
trend methods to explore the temporal variation characteristics and spatial evolution
patterns of PM2.5 concentrations [3]. Based on the hourly observation data of PM2.5 and
PM10 concentrations at 50 ambient air quality monitoring stations in Jiaozuo City from
2018 to 2020, combined with meteorological data, Li [10] et al. analyzed the temporal
and spatial distribution characteristics of PM2.5 and PM10 concentrations in Jiaozuo. The
results showed that PM2.5 and PM10 in Jiaozuo demonstrated bimodal variation diurnally,
a significant U-shaped variation pattern monthly, and seasonal characteristics of being high
in winter, low in summer, and medium in spring and autumn. In addition, the annual
mean values of PM2.5 and PM10 concentrations were spatially different, with a high in
the southwest and a low in the northeast [10]. Xu [11] et al. used methods such as the
pixel dichotomy model, Theil–Sen Median trend analysis, Mann–Kendall test, Pearson
correlation analysis, and multiple correlation analysis to explore the spatial concentration
and temporal–spatial variation characteristics of PM2.5 in China’s three major economic
regions. Yang [12] et al. used the Multi-angle Atmospheric Correction (MAIAC) Aerosol
Optical Depth (AOD) product, combined with meteorological and land use data, and
constructed a two-stage statistical regression model consisting of Linear Mixed Effects
(LME) and Geographically Weighted Regression (GWR) to establish a PM2.5 concentration
dataset with a 1 km spatial resolution from 2013 to 2020. The temporal and spatial variation
trend in the PM2.5 concentration in the Beijing–Tianjin–Hebei region was analyzed. The
results depicted obvious temporal (high in winter and low in summer) and spatial (high in
the southern plains and low in the northern mountainous areas) characteristics. In parallel,
the area with a high PM2.5 concentration was predicted to be significantly reduced in 2020,
with an average annual concentration drop of 54.04% compared with 2013. This provides
a scientific basis for the prevention and control of air pollution in Beijing–Tianjin–Hebei
and the surrounding areas. Whitty [13] et al. analyzed the data from air quality monitoring
networks in Hawai’i to assess the spatial and temporal variations in the sulfur dioxide
(SO2) and PM2.5 levels around Kı̄lauea volcano from 2007 to 2018. The study found that
the 2018 lower East Rift Zone (LERZ) eruption of Kı̄lauea volcano led to a major increase in
gas emission rates, resulting in reduced air quality in downwind communities. Liu [14]
et al. analyzed long-term observational data of air pollutants and meteorological factors in
Germany from 2008 to 2018. The trend of atmospheric pollutants was stable during this
period. They also explored prediction methods and analyzed pollutant variations for air
quality control in Germany. Therefore, it is particularly important to analyze changes in the
long-term series, and to clearly and correctly grasp the complex characteristics of PM2.5
concentration trend development and regional changes in different spatial dimensions.
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1.2. Research on the Influencing Factors of PM2.5

The mechanism of the influencing factors of PM2.5 concentration has the characteristics
of complexity and interaction [3]. Different studies aimed to determine and quantify
the main factors affecting PM2.5. The selection of indicators is mainly divided into two
parts, including natural factors such as weather and topography, as well as social factors
such as population, transportation, industry, and energy. To quantitatively identify the
impact of various factors on PM2.5 concentration, scholars have used different models
to conduct in-depth research, involving the Geographically Weighted Regression (GWR)
model, the Generalized Additive Model (GAM), a Gradient Boosting Machine (GBM), land
use regression, and the chemical transport model. Zhen [15] et al. established a multivariate
time series model of PM2.5 concentrations based on daily air quality data and meteorological
observation data in Harbin from 2013 to 2018. They used highly correlated air pollutants
(i.e., SO2, NO2, PM10, CO, and O3) and meteorological factors (i.e., average temperature,
maximum wind speed, cumulative precipitation, sunshine hours, and average air pressure).
An optimized Vector Autoregressive (VAR) model called VAR(2) was designed to analyze
the impact of the above factors on PM2.5 through generalized impulse response and variance
decomposition. The results have shown that the maximum wind speed and precipitation
can inhibit PM2.5 in the short term, while the average temperature and sunshine hours
can promote PM2.5 in the long term. This provides an important reference for future study
on the relationship between meteorological elements and PM2.5. Wu [9] took Sichuan
Province as the research area to evaluate and select diverse estimating variables, involving
Himawari-8 aerosol optical depth (AOD), ERA5 meteorological reanalysis data, the Digital
Elevation Model (DEM), Land Use/Land Cover Change (LUCC), luminous remote sensing
data, and the Normalized Difference Vegetation Index (NDVI). An improved Linear Mixed
Model combined with a Geographic Intelligent Random Forest (iLME + Geoi-RF) model
was proposed to estimate the PM2.5 concentration in Sichuan Province. The monthly
average PM2.5 concentration data with 5 km × 5 km grids in Sichuan Province were taken
as the spatiotemporal evaluation unit, where the proposed learning model was used to
analyze the impact of different influencing factors on the change in PM2.5 concentration.
It was concluded that air pressure, temperature, elevation, and a low vegetation index
were the key factors affecting the concentration of PM2.5 in Sichuan Province, but the key
influencing factors of PM2.5 were not the same in different months. It can be seen that
many influencing factors play different roles in terms of PM2.5 dynamics, according to
the location and period in which the events occurred. Alternative sources/data can be
investigated to explore additional influencing factors of PM2.5.

Throughout the previous studies, some progress has been made in the research on
the analysis of the spatiotemporal characteristics of PM2.5 and the correlation analysis of
influencing factors, but there are still some limitations and deficiencies:

(1) From the temporal dimension, the periods selected by most current studies are mostly
seasonal or short-lived years, which will lead to large differences in the results ob-
tained in different periods and a lack of long-term series analysis research.

(2) From the perspective of spatial dimension, most of the current research has focused on
small regions and medium-sized cities, while few studies have taken national regions
or larger spaces as the research areas. In addition, China’s urbanization leads to rapid
changes in land use patterns. Such an inevitable trend makes it necessary to focus on
the temporal and spatial impact of land use on PM2.5.

(3) From the perspective of data sources, most studies have used a single meteorological
element for analysis without considering the impact of multiple factors on PM2.5.

Therefore, in order to meet the current national needs for air pollution prevention and
control, through spatial analysis, correlation analysis and trend analysis, we analyze the
temporal and spatial characteristics of PM2.5 in China over the past 22 years. In addition,
we explore the spatial and temporal correlation between precipitation, average temperature,
vegetation cover, and land use and PM2.5. Based on the experimental results, we propose
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targeted pollution prevention and control policies to establish a robust scientific foundation
for national air pollution control measures.

2. Data Source and Pre-Processing
2.1. Data

The data used in this study included PM2.5 concentration data, precipitation data,
average temperature data, vegetation coverage data, and land use data. The first four were
all from the National Tibetan Plateau Data Center (http://data.tpdc.ac.cn/ (accessed on
20 April 2023)), and the detailed information and sources of all data are as follows:

2.1.1. PM2.5 Data

The PM2.5 data comes from China’s high-resolution and high-quality PM2.5 dataset
from 2000 to 2021, produced by Wei et al. [16,17] (https://doi.org/10.5281/zenodo.3539349
(accessed on 20 April 2023)). The dataset used artificial intelligence technologies to fill in the
spatial missing values of satellite MODIS MAIAC AOD products combined with ground-
based observations, atmospheric reanalysis, and emission inventories. This produced
22 years of national seamless ground PM2.5 data. The coefficient of determination R2 of
the ten-fold cross-validation of the data was 0.92, and the Root Mean Square Error (RMSE)
was 10.76 µg/m3. The spatial resolution of the dataset was 1 km, whilst the time resolution
could be set as daily, monthly, and yearly. The concentration unit was µg/m3.

2.1.2. Precipitation and Average Temperature Data

The precipitation data came from the 1 km resolution monthly precipitation dataset in
China from 1901 to 2021, produced by Peng [18–21] (https://doi.org/10.5281/zenodo.31
85722 (accessed on 20 April 2023)), whereas the average temperature data came from the
1901–2021 China 1 km resolution monthly average temperature dataset (https://doi.org/
10.11888/Meteoro.tpdc.270961 (accessed on 20 April 2023)), also produced by Peng. Both
datasets are based on the global 0.5◦ climate dataset released by the CRU (Climatic Research
Unit) [22] and the global high-resolution climate dataset released by WorldClim [23], which
were generated by downscaling in China through the Delta spatial downscaling scheme.
A total of 496 independent meteorological observation points of the data were used for
verification, which proved that the verification results were credible [24]. The spatial
resolution of the data was 0.0083333◦ (approximately 1 km). The precipitation is in units of
mm and temperature in ◦C.

2.1.3. Vegetation Coverage Data

The vegetation coverage data came from the 250 m vegetation coverage dataset in China
from 2000 to 2022, by Gao et al. [25]. (https://doi.org/10.11888/Terre.tpdc.300330 (accessed
on 20 April 2023)). The dataset adopted a dichotomous model based on the Normalized
Difference Vegetation Index (NDVI). Pure vegetation and bare soil pixel values were
determined according to the land use type to realize the calculation of vegetation coverage.
The NDVI data came from the product of the 250 m dataset (2000–2022). According to our
analysis and test, the dataset conformed to the temporal and spatial variation trends. The
spatial resolution was 250 m, and the dataset adopted the monthly maximum synthesis.

2.1.4. Land Use Data

The land use data came from the 30 m land use type dataset in China from 1990 to
2021 (https://zenodo.org/record/5816591 (accessed on 15 May 2023)), based on Landsat
image samples produced by Jie Yang et al. [26]. The training samples were collected in the
dataset using 335,709 Landsat images from Google Earth Engine (GEE). A time metric was
constructed and provided to a random forest classifier to obtain the classification results.
Finally, a post-processing method was presented combined with spatiotemporal filtering
and logical reasoning to improve the spatiotemporal consistency of land use classification.
All efforts above resulted in an accuracy of 79.3%. Therefore, this accurately reflects China’s

http://data.tpdc.ac.cn/
https://doi.org/10.5281/zenodo.3539349
https://doi.org/10.5281/zenodo.3185722
https://doi.org/10.5281/zenodo.3185722
https://doi.org/10.11888/Meteoro.tpdc.270961
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rapid urbanization and the development process of a series of ecological projects, revealing
the impact of human activities on land use types under climate change conditions.

2.2. Pre-Processing

To facilitate data analysis and calculation, all raw data were pre-processed. First, all the
data whose original format was ‘nc’ were uniformly converted into ‘tif’. ‘GCS_WGS_1984’
was used as the coordinate system, which was then processed by ArcGIS software (10.8).
The data were all resampled to a spatial resolution of 0.01◦ (1 km). The nearest neighbor
method was chosen as the resampling method, due to its simplicity and fast processing
speed, with no changes made to the original raster values. Applicable discrete data were
used in this study, as they not only offered an elevated spatial resolution, facilitating
multifaceted analyses, but also enabled comprehensive investigations of correlations from
multiple perspectives by virtue of their potential for integration with other data sources,
such as satellite remote sensing data and geographic information system (GIS) data. Next,
we used the national boundary vector mask to extract the sampled data. Here, it needs to
be explained that the national vector was based on the standard map (approval number:
GS (2020)4619) downloaded from the standard map service website of the National Bureau
of Surveying, Mapping, and Geographic Information.

3. Methods
3.1. Trend Analysis Method

This study used a combination of the Theil–Sen median trend analysis method and
the Mann–Kendall test method to analyze the changing trend in the PM2.5 time series
data. The Theil–Sen median trend analysis method, also known as Sen slope estimation (or
further shortened as the Sen method), is a robust non-parametric statistical trend calculation
method. With high computational efficiency, the Sen method is insensitive to measurement
errors and outlier data and is suitable for trend analysis of long-term series data [27]. In
this paper, the Sen method was used to analyze the trend changes in the 22-year annual
average PM2.5 concentration and the monthly average PM2.5 concentration of the same
month in the 22 years. For a time series T = (T1, T2, T3, . . ., Tn), n is the data length, and its
calculation formula is as follows:

β = Mdian
(Tj − Ti

j− i

)
, i, j ∈ [1, n], ∀j > i (1)

where i and j are time series; Ti, Tj represent the PM2.5 concentration at the time i and j,
respectively; and Median() represents the median value. If β > 0, this indicates that the PM2.5
concentration is on the rise; whereas β < 0 indicates that the PM2.5 concentration declines.

The Mann–Kendall test, referred to as the MK test [28], is a non-parametric time
series trend test method, which does not require the measured values to obey the normal
distribution. It is not affected by missing values and outliers and is very suitable for
trend significance testing of long-term time series data. In this paper, based on the Sen
analysis, the MK test method was used to test the significance of the changing trend in
PM2.5 concentration. As above, for the time series T = (T1, T2, T3, . . ., Tn), the formula is
as follows:

S = ∑n−1
.
i=1
×∑n

j=i+1 sgn
(
Tj − Ti

)
(2)

where S is the test statistic; sgn() is a symbolic function, and its calculation formula is:

sgn
(
Tj − Ti

)
=


1 Tj − Ti > 0

0 Tj − Ti = 0

−1 Tj − Ti < 0

(3)
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The standardized test statistic Z was used to carry out the trend test, and its calculation
is as follows:

Z =


S−1√
Var(S)

(S > 0)

0 (S = 0)
S+1√
Var(S)

(S < 0)

(4)

The formula for calculating Var is:

Var(S) =
n(n− 1)(2n + 5)

18
(5)

The normalized Z is standardized and normally distributed [29]. Regarding the level
of significance, the trend is not significant when |Z| ≤ Z1−α/2; in fact, it is the opposite.
Z1−α/2 is the corresponding value of the standard normal function distribution table at the
confidence level α, which was set to 0.05, and the degree of freedom was 20.

3.2. Correlation Analysis Method

Correlation analysis refers to the quantitative analysis of the correlation between two
variables. The strength and direction of the relationship between variables are clarified
by calculating the correlation coefficient, whose significance is measured by a significance
test. A program written in Python was used to complete relevant statistics and a corre-
lation analysis. Taking China and 34 provincial-level administrative regions as the basic
analysis unit, we qualitatively analyzed the effects of air temperature, precipitation, FVC,
and land use types on PM2.5 concentrations, according to the size and direction of the
correlation coefficient.

The calculation formula for Pearson correlation is as follows:

rx,y =
n∑ xy−∑ x∑ y√

[n∑ x2 − (∑ x)2][n∑ y2 − (∑ y)2]
(6)

where rx,y represents the correlation coefficient between x and y, and n is the sample size.
For the calculation of the correlation between PM2.5 concentration and air temperature,
precipitation, and FVC, x is the PM2.5 concentration value, and y is one of the compared
parameters. For the calculation of the correlation between PM2.5 concentration and land
use type, x is the average PM2.5 concentration value of each province, and y is the area ratio
of each land use type in each province. The range of rx,y is [−1, 1]; where there are three
results: (a) (0, 1] indicates a positive correlation; (b) [−1, 0) indicates a negative correlation;
(c) 0 means it is irrelevant. The closer the absolute value of the correlation coefficient is to
1/−1, the stronger the positive/negative correlation between two variables [30].

3.3. Definition of Seasons

To comprehensively examine the relevant factors affecting the concentration of PM2.5
and understand the strength of the interaction between various environmental variables
and PM2.5, this study investigated the concentration of PM2.5 in relation to air temperature,
precipitation, FVC, and land use type data from 2000 to 2021. Each variable was normally
distributed. Correlation analysis was conducted to explore the influence of various factors
in the continuous time series from 2000 to 2021 on the concentration of PM2.5. Using the
meteorological division method [31], the seasons were defined as spring being from March
to May, summer being from June to August, autumn being from September to November,
and winter being from December to February of the following year.
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4. Results
4.1. Spatial–Temporal Variation Analysis of PM2.5 in China
4.1.1. Temporal Variation in PM2.5

The annual average concentration of PM2.5 was estimated in this study, based on
PM2.5 data from 2000 to 2021. The interannual variation curve and spatial distribution
of the PM2.5 concentration have been drawn, as shown in Figures 1 and 2. It can be seen
that the annual average PM2.5 concentration showed a fluctuating increasing trend from
40.63 µg/m3 in 2000 to a peak of 48.03 µg/m3 in 2013, especially in the Tarim Basin, the
North China Plain, and the middle and lower reaches of the Yangtze River Plain. The PM2.5
significantly reduced at an average annual rate of 1.42 µg/m3 per year from 2013 to 2021,
reaching 27.29 µg/m3 by 2021, which approached China’s national air quality standard
limit (2012) (less than 35 µg/m3), and reached this limit in 2019. It is worth noting that
from 2019 to 2021, the concentration of PM2.5 in China (except the Tarim Basin) was at a
relatively low level.
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Specifically, from 2000 to 2003, the annual average concentration of PM2.5 in China
showed a fluctuating upward trend, among which, the most obvious increase was 3.4 µg/m3

from 2005 to 2006, and the changing trend in the remaining years was relatively flat. From
2014 to 2021, the annual average concentration of PM2.5 in China showed a significant
downward trend, which was most obvious and stable from 2014 to 2019, when it decreased
by 2.59 µg/m3. The time node of the significant decrease in the annual average concen-
tration of PM2.5 is consistent with that promulgated by the State Council of China in the
“Five-Year Air Pollution Prevention and Control Action Plan” [32]. This effectively proves
the effectiveness of the pollution prevention and control action plan. In addition, from 2019
to 2021, in order to curb the spread of the 2019 novel coronavirus (COVID-19) [33], China
took the initiative to blockade areas with severe outbreaks, and various local governments
also carried out strong control measures to reduce people’s travel and gatherings. The
closure or control of shopping malls, factories, and other places also reduced the production
of PM2.5 at source, leading to a decrease in the atmospheric PM2.5 concentrations.
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To discuss, in detail, the time distribution of PM2.5 within a year, this study calculated
the change curve and spatial distribution of PM2.5 concentration over 12 months from
2000 to 2021, as shown in Figures 3 and 4. It can be seen that the areas with high PM2.5
concentrations are still mainly concentrated in the North China Plain, the middle and lower
reaches of the Yangtze River Plain, the Sichuan Basin, and the Tarim Basin. The PM2.5
concentrations in each region show obvious seasonality. Specifically, the concentration of
PM2.5 in the North China Plain, the middle and lower reaches of the Yangtze River, and the
Sichuan Basin decreased from 49.07 µg/m3 in February to the lowest value of 29.74 µg/m3

in August. In contrast, the concentration of PM2.5 showed an upward trend from August to
January and peaked at 55.53 µg/m3 in January. That is, the concentration of PM2.5 was the
highest in winter and the lowest in summer. In areas with low PM2.5 concentrations, there
was relatively little fluctuation in the PM2.5 concentration from February to September and
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it showed an increasing trend from September to January. Thanks to the coastal location
and favorable climate conditions for atmospheric diffusion, the concentration of PM2.5 in
the Pearl River Delta and the Greater Bay Area has always been maintained at a relatively
low level.
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Throughout the Tarim Basin, the inter-annual PM2.5 concentration changes did not
show obvious patterns, but from the monthly perspective, the PM2.5 concentration changes
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in the Tarim Basin showed a strong seasonal pattern. From March to May, PM2.5 concen-
tration increased sharply, which was the most polluted area in China. PM2.5 and particle
pollutants only come from local dust and dust in nearby areas. March to May is also the
period with the most frequent sandstorm activity in Northwest China [34].

4.1.2. Spatial Variation in PM2.5

The spatial distribution and average value of PM2.5 from 2000 to 2021 are shown in
Figure 2. It can be seen from the figure that the spatial distribution of PM2.5 in China pre-
sented an obvious spatial aggregation phenomenon, and there were significant differences
in the concentration of PM2.5 in different regions. The overall trend was higher in the north
than the south, whilst higher in the east compared with the west. The areas with high
PM2.5 concentrations were mainly concentrated in the densely populated and industrially
populated Sichuan Basin, the North China Plain, the middle and lower reaches of the
Yangtze River Plain, and the harsh environment of the Tarim Basin, where precipitation
is scarce and the storms are severe. Thanks to lower industrial emissions and climate
conditions conducive to atmospheric diffusion, the concentration of PM2.5 in the southern
and coastal areas was relatively low. Among them, from 2000 to 2013, the areas with a high
PM2.5 concentration were centered among the Sichuan Basin, the North China Plain, and
the middle and lower reaches of the Yangtze River Plain, showing a gradual expansion in
space. From 2013 to 2021, when the State Council of China promulgated and implemented
the “Five-Year Air Pollution Prevention and Control Action Plan”, the areas with high
PM2.5 concentrations, with the exception of the Tarim Basin, had shrunk significantly. The
reason why the range of areas with a PM2.5 high concentration in the Tarim Basin had not
shrunk during this period is that its special desert landform had greatly promoted the
accumulation of PM2.5 and other particulate matter [35]. The concentration of PM2.5 in the
Sichuan Basin, the North China Plain, and the middle and lower reaches of the Yangtze
River had dropped significantly, and the air quality in the Pearl River Delta and the Greater
Bay Area continued to improve.

From the monthly perspective, PM2.5 concentrations accumulated rapidly from Novem-
ber to January in the North China Plain, the middle and lower reaches of the Yangtze River
Plain, the Northeast Plain, and the Sichuan Basin region, and the high pollution range ex-
panded rapidly. When the weather gradually warmed up, PM2.5 concentrations decreased
rapidly in the above areas. The rationale behind this seasonal surge can be attributed in
part to coal heating and biomass burning in winter. On the other hand, meteorological con-
ditions in winter are not conducive to the diffusion of atmospheric pollutants. Temperature
inversion (TI) in the lower troposphere is meteorologically defined as an atmospheric layer
with the air temperature increases with altitude [36]. This meteorological condition can
have a significant impact on PM2.5 concentration. During TI events, the vertical mixing
of air pollutants becomes limited, resulting in the accumulation of fine particulate matter,
such as PM2.5, in the near-surface layer. As a consequence, PM2.5 concentrations tend
to rise under the influence of temperature inversions. The unique latitude of the Pearl
River Delta and the Greater Bay Area is lower and the climate conditions are favorable
for atmospheric dispersion, whereas the heating demand is correspondingly lower, so the
PM2.5 concentration remained low, even in the winter [37].

4.1.3. PM2.5 Change Trend Analysis

This study used the Theil–Sen median trend analysis method to analyze the changing
trend in PM2.5 from 2000 to 2021, with further analysis of the monthly change trend in
PM2.5 from 2000 to 2021. The MK trend test was conducted at the same time. Figure 5a
shows the changing trend in PM2.5 in China from 2000 to 2021. It can be seen from the
figure that the changing trend in PM2.5 in China had obvious spatial differences. PM2.5
showed a downward trend in most parts of China, and only showed an increasing trend
in Xinjiang and some parts of Tibet. According to the statistics, the area in which the
PM2.5 concentration showed a downward trend covers 97.9% of the total area in China.
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Figure 5b shows the significance test of the changing trend in PM2.5 from 2000 to 2021. At
the 0.05 confidence level, the area that passed the significance test covers 51.8% of the total
area in China. This means that from 2000 to 2021, China’s PM2.5 concentration changed
significantly in 51.8% of the land area, but not in the remaining areas. Combining the
above results, the comprehensive change trend in PM2.5 in China from 2000 to 2021 was
obtained, as shown in Figure 5c, and only a small part of the Taklimakan Desert showed an
increasing trend.
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The monthly change trend in PM2.5 from 2000 to 2021 is shown in Figure 6. The
North China Plain and some areas in the middle and lower reaches of the Yangtze River
demonstrated an increasing trend from January to February, and a significant decreasing
trend after March. This may mean that the demand for heating in winter continued to grow.
However, the Tarim Basin area showed an increasing trend in February, March, and May,
which can indicate that the intensity of sandstorm activity in the Tarim Basin area gradually
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increased. In addition, northeastern China showed a significant upward trend in March
and April, which could be attributed to the temperature inversion phenomenon that occurs
in spring. Lower ground temperatures and higher temperatures in the atmosphere cause
cold air to sink, which does not easily diffuse and dilute PM2.5, leading to higher PM2.5
concentrations. Other regions and periods in China have shown a downward or nearly
unchanged trend.
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4.2. Correlation Analysis between Various Factors and PM2.5
4.2.1. Correlation Analysis of PM2.5 Concentration and Precipitation

To explore the temporal correlation between PM2.5 and precipitation, we first made
a trend analysis of 22 years of national precipitation, as shown in Figure 7. As can be
seen in Figures 1 and 7, precipitation and PM2.5 generally show a negative correlation.
Specifically, from 2000 to 2015, except for 2004, 2007, 2009 and 2014, the trend of the two
is opposite, i.e., PM2.5 decreases when precipitation rises. From 2016 to 2021, the average
annual precipitation shows a fluctuating upward trend, and PM2.5 shows a decrease in the
same time period. On this basis, we analyzed the correlation relationship between PM2.5
and precipitation specifically in time and space.

In this study, the Pearson correlation analysis was performed on the precipitation
and PM2.5 concentration data of the same month in the collected 22 years, as shown in
Table 1. In the summer, with the most precipitation in the whole year (accounting for more
than 50% of the total annual precipitation), there was a close negative correlation between
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precipitation and PM2.5 concentration, where the correlation degree was >0.4. In the spring
and autumn, there was a general negative correlation, whereas in the winter, with the least
precipitation, there was almost no significant correlation. It can be preliminarily concluded
that the greater the precipitation, the lower the PM2.5 concentration. Gases and aerosol
particles in the atmosphere are removed by atmospheric water (i.e., cloud droplets, fog
droplets, rain, snow, etc.) and finally settle to the ground; this is collectively referred to
as atmospheric moisture removal [38]. It is inferred that, with a lot of precipitation in
summer, the greater the precipitation particles, the greater the collision efficiency with
aerosol particles. Rainwater has carried out natural atmospheric moisture removal of PM2.5.
Combined with Figure 2, it can be found that this effect is particularly pronounced in areas
with abundant precipitation such as the middle and lower reaches of the Yangtze River
and the Sichuan Basin. However, the correlation coefficient in spring and autumn also
shows that less precipitation has also a small effect on PM2.5. This can be caused by the
intensity of precipitation because there is more heavy rainfall in summer and more plum
rain in spring and autumn; alternatively, the duration of precipitation could be another
reason. Precipitation events of longer duration usually have stronger washing and dilution
effects. This means that they can more effectively wash PM2.5 from the atmosphere to the
ground, diluting it to lower concentrations. Therefore, it is also not difficult to find that
high intensity and prolonged widespread precipitation is most effective in suppressing the
growth of PM2.5 concentrations.
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Table 1. Correlation between PM2.5 and rain.

Month Correlation Month Correlation

January 0.121 ** July −0.418 **
February 0.065 ** August −0.510 **
March −0.208 ** September −0.333 **
April −0.194 ** October −0.311 **
May −0.248 ** November 0.088 **
June −0.431 ** December 0.099 **

Note: **: Significant correlation at 0.01 level.

The spatial correlation analysis of the 22-year annual average precipitation and PM2.5
concentration data has been carried out, as shown in Figure 8, where Figure 8a is the
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correlation analysis, and Figure 8b is the significance test. A significant negative correla-
tion between precipitation and PM2.5 concentration can be seen in parts of the northeast
coast, the junction of Inner Mongolia and the three northeastern provinces, the south-
eastern coastal area of Jiangsu Province, the Sichuan–Chongqing–Guizhou region, the
junction area of Qinghai, Gansu, and Sichuan provinces, and the southwest of Tibet and
Xinjiang. The significance test passed 0.05, and the absolute value of the correlation was
greater than 0.4. In parallel, their correlation in southwestern Tibet, eastern Inner Mon-
golia, and the middle region of Qinghai–Gansu–Sichuan reached below −0.8, forming a
close negative correlation. From the perspective of the regional distribution, the annual
precipitation in China generally decreases from southeast to northwest. Among the regions
with a strong negative correlation, the annual precipitation in Jiangsu Province and the
Sichuan–Chongqing–Guizhou region is approximately 1200 mm. In the northeast region
and Qinghai–Sichuan–Gansu region, the annual precipitation is approximately 600 mm,
while it is below 100 mm or even less in Tibet and Xinjiang. As the annual precipitation
decreases in these areas, the negative correlation with PM2.5 concentration is stronger [39].
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4.2.2. Correlation Analysis of PM2.5 Concentration and Temperature

As in the previous subsection, we first analyzed the trend of the 22-year national
average temperature, as shown in Figure 9. Comparing the annual average trends of
temperature and PM2.5 concentration, it is easy to see that the trend relationship between
the two is more complex and is not a simple positive or negative correlation. The trend of
the temperature itself also shows fluctuations in the magnitude of change, with no specific
rise or fall, so analyzing the correlation between temperature and PM2.5 concentration
needs to be considered from a number of perspectives.

In this study, the monthly average temperature and average PM2.5 concentration data
in China from 2000 to 2021 were collected, and Pearson correlation analysis was performed
on the average temperature and average PM2.5 concentration. The correlation results
against the months are shown in Table 2. It can be seen that there is a weak correlation
between temperature and PM2.5 concentration in general, with a very weak correlation in
winter when the temperature is relatively low.
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Table 2. Correlation between PM2.5 and temperature.

Month Correlation Month Correlation

January 0.317 ** July 0.327 **
February 0.348 ** August 0.351 **
March 0.428 ** September 0.362 **
April 0.339 ** October 0.334 **
May 0.326 ** November 0.174 **
June 0.351 ** December 0.233 **

Note: **: Significant correlation at 0.01 level.

Theoretically, the meteorological conditions in summer are usually accompanied by
high temperatures and relatively low atmospheric stability, which promote the air to rise
to form convection. The further increased capacity of the diffusion air is conducive to
diluting pollutants and keeping them away from the ground, which thereby reduces PM2.5
concentration. However, the results of the experiment in this paper not only show a certain
positive correlation, but also pass the significance test at the 0.01 level. The probable
reason for this is that the high temperatures and intense sunlight during the summer
months promote chemical reactions in the atmosphere, and these conditions contribute
to the oxidation of gaseous precursors (e.g., NOx, volatile organic compounds (VOCs),
ammonia, and sulfur oxides) that are converted to secondary PM2.5. This means that the
relationship between air temperature and PM2.5 concentration is affected by a variety of
factors; these include, but are not limited to, geography, meteorology, emission sources,
and human activities [40]. Therefore, the accurate analysis of the relationship between air
temperature and PM2.5 requires comprehensive consideration of additional factors, and
detailed regional research and data analysis.

In the spatial dimension, the correlation analysis and significance test results of the
22-year annual average temperature and PM2.5 concentration are shown in Figure 10.

Figure 10a is the correlation analysis, and Figure 10b is the significance test. In
southeast China, North China, Northwest China, and eastern Inner Mongolia, the annual
average temperature and PM2.5 concentration have shown a significant negative correlation
with an absolute correlation value being greater than 0.4, and the significance test over 0.05.
The degree of correlation shows a high-to-low trend from the eastern coast to the inland
region. The higher the temperature, the closer the correlation. Especially in the southern
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region of Guangdong and Fujian, the negative correlation coefficient can reach −0.9. At
the same time, however, the correlation in the southwest region also shows a large number
of mixed areas; that is, both positive and negative correlations are high in geographically
adjacent locations, with no regional regularity. The reason may be that the southwestern
region is affected by the topography, so the regional differences are large. For example, the
average annual temperature in the eastern part can reach approximately 20 degrees, but
the lowest annual average temperature in the western part can be below 0 degrees Celsius.
The climate is relatively extreme, so it shows spatial correlation. Rising air temperature
will promote air convection and diffusion [40], making PM2.5 easier to dilute and disperse,
and the concentration of PM2.5 will decrease accordingly. However, when the temperature
rises to a certain level, it may lead to the formation and accumulation of some secondary
pollutants, and the concentration of PM2.5 may also rise accordingly.
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4.2.3. Correlation Analysis between PM2.5 Concentration and FVC

In this study, the monthly vegetation coverage (Fractional Vegetation Cover, or FVC)
and average PM2.5 concentration data from 2000 to 2021 were counted, and Pearson
correlation analysis was performed on the FVC and average PM2.5 concentration. The
results are shown in Figure 11. The time dimension correlation results are shown in Table 3.
Combined with Figure 11a,b, it can be seen that the FVC and the PM2.5 concentration are
generally negatively correlated with moderate intensity, but depict a strong seasonality;
that is, it shows a very weak negative correlation or even a positive correlation in autumn
and winter, and this gradually becomes negative from spring to summer.

This seasonal variation is related to the seasonal growth of vegetation [41]. In autumn
and winter, vegetation leaves wither or decrease in number, resulting in a decrease in the
vegetation coverage. Therefore, in autumn and winter, the vegetation coverage and PM2.5
concentration may show a very weak negative or positive correlation. On the contrary,
from spring to summer, vegetation growth activities increase with denser leaves, so the
scavenging of PM2.5 is strengthened. This shows that the absorption of particulate pollution
such as PM2.5 by vegetation is closely related to the leaves of vegetation [42].
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Table 3. Correlation between PM2.5 and FVC.

Month Correlation Month Correlation

January 0.020 ** July −0.359 **
February 0.005 ** August −0.353 **
March −0.112 ** September −0.319 **
April −0.254 ** October −0.247 **
May −0.292 ** November −0.183 **
June −0.358 ** December −0.035 **

Note: **: Significant correlation at 0.01 level.

The correlation analysis and significance test are shown in Figure 12a,b, respectively. It
can be seen that a significant negative correlation has been depicted between the vegetation
coverage and PM2.5 in most regions of the country, except for the Taklamakan Desert, parts
of southeastern Tibet, parts of North China and East China, and parts of northeast Inner
Mongolia; that is, the higher the vegetation coverage, the lower the PM2.5 concentration.
According to the latest distribution map of China’s vegetation coverage, the correlation
generally fails to pass the significance test in the Taklimakan Desert (no vegetation cover-
age), broad-leaved forest areas, and some cultivated vegetation areas. This is because the
influence of vegetation coverage on PM2.5 is complex. On the one hand, the vegetation
coverage can reduce the concentration of PM2.5 due to the fact that vegetation, especially
leaf surface, can adsorb PM2.5 particles through electrostatic force and chemical actions [43];
on the other hand, it may also increase the concentration of PM2.5 under certain circum-
stances, e.g., through the sedimentation effect, the concentration of PM2.5 particles may
raise since slow wind speed and increased air humidity make it easier for PM2.5 particles
to settle. However, different types of vegetation have different effects. Vegetation itself also
emits substances such as biological particles and organic compounds. These substances
may interact with PM2.5 particles and may increase PM2.5 concentrations. In general, from
the perspective of spatial distribution, although the vegetation coverage and PM2.5 show a
close negative correlation, there is no significant correlation in areas with low vegetation
coverage or complex vegetation types [11].
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4.2.4. Correlation Analysis between PM2.5 Concentration and Land Use Type

Land has been the basis of human activities for a long time, and various land use types
have already been formed. The intensity of human activities varies considerably across
land use types, resulting in spatially heterogeneous land use structures. As a result, the
strength and mode of interaction between different land use types and PM2.5 vary [44].
Therefore, this study counted the proportion of the annual average PM2.5 concentration of
each province and the area of each land use type in the continuous time series from 2000
to 2021. Forest areas and shrubs were merged into forests, and wetlands, ice, and snow,
and water surfaces into water bodies. Pearson correlation analysis was used to study the
impact of different land use types on PM2.5 concentration.

In this study, the annual average concentration of PM2.5 in each province and the
ratio of each land use type in each province were counted, and the correlation analysis
between the PM2.5 concentration and the area of land use types was carried out using
Pearson correlation analysis. The results are shown in Table 4, where it can be seen that
there is a significant correlation between PM2.5 concentration and certain land use types,
which means that different soil use types can promote or inhibit the accumulation of PM2.5.
Overall, the PM2.5 concentration in China from 2000 to 2021 was significantly correlated
with cultivated land and forests, and had a certain correlation with grassland, impervious
surfaces, and water bodies; however, grassland, water bodies, and some impervious
surfaces did not pass the significance test.

Specifically, cultivated land and impervious surfaces were significantly positively
correlated with PM2.5; cultivated land and PM2.5 were strongly positively correlated from
2002 to 2015 and from 2017 to 2019, with the correlation coefficient being above 0.6, indi-
cating that cultivated land and impervious surfaces play a positive role in promoting the
accumulation of PM2.5. The positive impact of cultivated land on PM2.5 is that when the
cultivated land lacks crop coverage, the bare soil of the cultivated land is affected by wind
and other environmental factors, carrying dust particles suspended in the air to increase the
concentration of PM2.5 [45]; on the other hand, the stalks of harvested crops are not properly
treated or utilized. The traditional practice is usually to incinerate on-site as potash fertilizer,
which produces a lot of smoke, PM2.5 particles, and other particulate matter. In addition,
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the use of agricultural fertilizers has resulted in large amounts of ammonia emissions,
and in humid environments NH3 reacts with NOx and SO2 to form secondary inorganic
particulate matter, which directly contributes to high localized PM2.5 concentrations. The
experimental data showed varying degrees of positive correlation between impermeable
surfaces and PM2.5 concentrations, and this positive correlation was relatively strong from
2003 to 2004 and from 2013 to 2017. This indicates that impervious surfaces are also an
important source of PM2.5, and that the modification and utilization of land surfaces by
human activities directly increases the accumulation of PM2.5. Transportation activities on
impervious surfaces, such as vehicle emissions, are often more likely to accumulate PM2.5
particulate matter on urban roads, especially during traffic congestion or low wind speeds.
This can lead to elevated PM2.5 concentrations around impervious surfaces. [46].

Table 4. Correlation between PM2.5 and land use type.

Years
Land Use Types Cropland Forest Grassland Water Bodies Impervious Surfaces

2000 0.566 ** −0.659 ** 0.051 0.029 0.336 *
2001 0.562 ** −0.623 ** −0.002 0.058 0.337 *
2002 0.625 ** −0.638 ** −0.034 0.163 0.391 *
2003 0.675 ** −0.547 ** −0.150 0.179 0.459 **
2004 0.670 ** −0.480 ** −0.240 0.277 0.416 *
2005 0.675 ** −0.466 ** −0.203 0.207 0.362 *
2006 0.657 ** −0.511 ** −0.159 0.182 0.386 *
2007 0.676 ** −0.462 * −0.225 0.197 0.399 *
2008 0.707 ** −0.496 ** −0.221 0.224 0.379 *
2009 0.721 ** −0.516 ** −0.198 0.192 0.391 *
2010 0.706 ** −0.523 ** −0.195 0.173 0.388 *
2011 0.707 ** −0.489 * −0.197 0.149 0.382 *
2012 0.670 ** −0.512 ** −0.164 0.122 0.377 *
2013 0.728 ** −0.473 ** −0.237 0.165 0.441 *
2014 0.681 ** −0.466 ** −0.218 0.119 0.419 *
2015 0.631 ** −0.603 ** −0.092 0.174 0.467 **
2016 0.571 ** −0.580 ** −0.084 0.117 0.401 *
2017 0.662 ** −0.510 ** −0.175 0.132 0.430 *
2018 0.608 ** −0.549 ** −0.101 0.115 0.393 *
2019 0.714 ** −0.465 ** −0.272 0.122 0.383 *
2020 0.594 ** −0.530 ** −0.152 0.041 0.278
2021 0.598 ** −0.487 ** −0.156 0.085 0.182

Note: **: Significant correlation at 0.01 level; *: Significant correlation at 0.05 level.

Forests and grasslands are negatively correlated with PM2.5 concentrations. Forests
and PM2.5 concentrations generally have a moderate negative correlation, indicating that
the existence of forests can significantly reduce PM2.5 concentrations, which is embodied in
the following two aspects: (a) trees and grasslands in forests can absorb carbon dioxide
and other gases in the atmosphere, and adsorb and fix PM2.5 and other particulate matter
through the blade surface, thereby reducing PM2.5 and other pollutants; (b) the soil under
forest cover is usually rich in organic matter and microorganisms, which has a good
retention capacity, and can absorb and fix PM2.5 particles [47]. In addition, the coverage of
forests and grasslands greatly reduces the possibility of dust particles suspended in the
air to increase the concentration of PM2.5, further reducing the concentration of particulate
matter. However, the trees in the forest can form a barrier in the airflow, reduce the
transmission of PM2.5 and other particulate matter by wind force, delay the diffusion speed
of PM2.5 and other particulate matter, and make it easier to settle to the ground [48].

In order to further verify the applicability of this correlation in various regions of
China, we further calculated the correlation between land use types and PM2.5 in the
Beijing–Tianjin–Hebei region as an example, as shown in Table 5. It can be seen that
the correlation between arable land, forest, and PM2.5 in the Beijing-Tianjin-Hebei region
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remains highly consistent with Table 4. While grassland, water bodies, and impervious
surfaces are generally consistent with Table 4 in terms of correlation, they are generally
higher than Table 4 in terms of intensity.

Table 5. Correlation between PM2.5 and land use type in the Beijing–Tianjin–Hebei region.

Years
Land Use Types Cropland Forest Grassland Water Bodies Impervious Surfaces

2000 0.782 −0.724 −0.714 0.991 0.953
2001 0.730 −0.674 −0.764 0.986 0.912
2002 0.827 −0.787 −0.651 0.990 0.912
2003 0.727 −0.517 0.452 0.983 0.960
2004 0.766 −0.753 −0.696 0.994 0.917
2005 0.774 −0.769 −0.682 0.996 0.905
2006 0.759 −0.755 −0.701 0.994 0.913
2007 0.721 −0.724 −0.738 0.988 0.932
2008 0.730 −0.738 −0.726 0.990 0.924
2009 0.774 −0.787 −0.673 0.993 0.904
2010 0.703 −0.724 −0.74 0.987 0.942
2011 0.724 −0.753 −0.709 0.993 0.930
2012 0.785 −0.813 −0.638 0.992 0.895
2013 0.840 −0.881 −0.524 0.995 0.844
2014 0.716 −0.773 −0.675 0.994 0.935
2015 0.683 −0.751 −0.701 0.991 0.951
2016 0.714 −0.785 −0.670 0.992 0.938
2017 0.811 −0.875 −0.542 0.994 0.871
2018 0.833 −0.902 −0.496 0.984 0.844
2019 0.895 −0.954 −0.369 0.948 0.769
2020 0.910 −0.965 −0.330 0.939 0.761
2021 0.950 −0.985 −0.231 0.904 0.693

Therefore, the way of interaction between land use types and PM2.5 described above
is highly applicable in various regions of China. However, there are differences in the
intensity of the interaction due to differences in land use types such as water bodies and
grasslands in different regions or the influence of other elements.

5. Discussion

Ambient fine particulate matter air pollution (PM2.5), is affected by various factors
comprehensively. Based on the full analysis of the changing trend in PM2.5 concentration
over the past 22 years and of various factors affecting the concentration of PM2.5, this study
puts forward several recommendations to reduce PM2.5 pollution and improve air quality.

The oscillating increase in the annual average PM2.5 concentration from 2000 to 2013
reflects China’s high-intensity industrial activities during this period. The above shows that
while the economy and society are developing, environmental quality can be improved by
raising awareness of environmental protection and introducing governance policies.

Precipitation and PM2.5 concentration generally show a negative correlation, which is
more significant in the rainy season. Therefore, precipitation can reduce the concentration
of PM2.5 to a certain extent, but it may require a large amount of precipitation, e.g., through
artificial means of rainfall to reduce the concentration of PM2.5. Short-term, low-intensity
precipitation may not achieve the expected effect [49]. In desert areas such as the Tarim
Basin, increasing precipitation can suppress the increase in PM2.5 concentration from the
source. Rainwater collection systems can be built in cities and other areas, where rainwater
collection devices can be set up in wide areas, e.g., buildings, roads, and squares, so rain-
water can be used to irrigate urban green spaces or reserves. This can indirectly inhibit the
increase in PM2.5 concentration and increase urban precipitation. In addition, strengthening
the management of rivers and lakes can effectively reduce PM2.5 concentrations, since it
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improves the water storage capacity and evaporation of surface water, which can further
increase precipitation intensity and frequency [49].

As the main way to scavenge and adsorb PM2.5, vegetation plays an important role in
improving air quality. The increase in urban vegetation coverage and the construction of
ecological corridors should be encouraged, especially in traffic-intensive areas, industrial
areas, and pollution sources. The increasing vegetation coverage can effectively inhibit
the spread of PM2.5 to surrounding areas. On the other hand, according to the seasonal
changes in the correlation between PM2.5 concentration and vegetation coverage, evergreen
plants and plant types with dense foliage may have a better effect on filtering PM2.5 and
other pollutants.

Cultivated land is the most important land use type that affects PM2.5. Pollution
control should be strengthened by the strict prohibition of straw burning, the promotion
of green ecological agriculture, and the rational manipulation of fertilizers and pesticides.
The transformation of China’s agriculture from traditional operations to smart ones should
be accelerated. Green belts can be built in cultivated areas to increase the degree of
fragmentation of cultivated land [50]. With the acceleration of urbanization, the increase in
impervious surfaces also contributes significantly to the increase in PM2.5 concentration.
The increasing population density, especially concentrated in cities with a relatively low
vegetation coverage, as well as the increase in industrial production intensity, will make
PM2.5 gradually accumulate, and it will not disperse easily. This is one of the reasons for
the high concentration of PM2.5 in the North China Plain, the Middle and Lower Yangtze
Valley Plain, and other regions. Therefore, it is necessary to reasonably control the size
of the city, implement land consolidation, rationally arrange industrial land, and strictly
control industrial emissions.

6. Summary

Based on multisource meteorological elements, land use, and continuous time series
data of PM2.5 concentration, this study aimed to explore the spatiotemporal changes in
PM2.5 over the past 22 years, as well as the mode and intensity of interaction with various
environmental variables. The results show that, with the exception of the Tarim Basin,
the concentration of PM2.5 in China has generally shown a downward trend over the past
22 years, especially from 2013 to 2021. It has shown a significant downward trend in 51.8%
of the country’s regions, which exclude North China, where the concentration of PM2.5 is
relatively high. This downward trend became particularly obvious and stable after 2013,
with an average annual decrease of 1.42 µg/m3 and even more than 4 µg/m3 in some years.
From the perspective of the annual data, the PM2.5 concentration shows obvious seasonal
characteristics; that is, the PM2.5 concentration is higher in autumn and winter than in
spring and summer. Specifically, the study found that the average concentration of PM2.5
was highest in winter, followed by spring, autumn and summer. The average PM2.5 mean
concentration in autumn and winter is more than 7.53 µg/m3 higher than that in spring
and summer.

In addition, factors such as vegetation cover and precipitation inhibited the accumu-
lation of PM2.5. The correlation between these factors and PM2.5 is greater than 0.3 in
spring and summer, which indicates such an inhibitory effect was particularly obvious in
these two seasons. Vegetations, especially forests, provide a special contribution to the
absorption of PM2.5, where the correlation between forests and PM2.5 reached a maximum
of more than 0.65. Cultivated land and impermeable surfaces, however, have a significant
role in promoting the accumulation of PM2.5. Generally speaking, environmental factors
such as land use types have a significant impact on PM2.5. To improve the quality of the
environment, in addition to controlling pollution sources such as PM2.5 from the source,
we should also increase green areas and rationally develop and utilize the land.

This study only quantitatively evaluated the correlation between each element and
PM2.5 concentration separately, while the spatial scale was relatively large. Subsequent
research should consider the influence of multiple factors on PM2.5 concentration and
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take comprehensive measures, so as to further alleviate PM2.5 pollution and improve
environmental quality.
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