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Abstract: Urbanization-led changes in land use land cover (LULC), resulting in an increased imper-
vious surface, significantly deteriorate urban meteorological conditions compromising long-term
sustainability. In this context, we leverage machine learning, spatial modelling, and cloud computing
to explore and predict the changing patterns in urban growth and associated thermal characteristics
in Bahawalpur, Pakistan. Using multi-source earth observations (1990–2020), the urban thermal field
variance index (UTFVI) is estimated to evaluate the urban heat island effect quantitatively. From 1990
to 2020, the urban area increased by ~90% at the expense of vegetation and barren land, which will
further grow by 2050 (50%), as determined by the artificial neural network-based prediction. The
land surface temperature in the summer and winter seasons has experienced an increase of 0.88 ◦C
and ~5 ◦C, respectively. While there exists spatial heterogeneity in the UTFVI 1990–2020, the city is
expected to experience a ~140% increase in areas with severe UTFVI in response to predicted LULC
change by 2050. The study provides essential information on LULC change and UTFVI and puts
forth useful insights to advance our understanding of the urban climate, which can progressively
help in designing more livable and sustainable cities in the face of environmental changes.

Keywords: LULC change; urban thermal field variance index; machine learning; geographic information
systems; Google Earth Engine; Pakistan

1. Introduction

In the last few decades, changing climatic conditions have predominantly affected the
living conditions of human beings. Recent studies suggest that those living in metropolitan
cities are more prone to the adversities brought by climate change and associated extreme
events, such as heatwaves and intensifying natural hazards [1,2]. The changes in land use
land cover (LULC) have a direct linkage with changes in climatic conditions of an area,
particularly in cities [3]. As a result of growing populations and industrialization emergence,
urbanization is one of the human-induced phenomena responsible for major changes in
LULC. Recently, more than 40% of the world’s productive land has been converted into
human settlements to accommodate the population influx [4]. As a result, research on
LULC changes and their association with several environmental issues has gained much
importance recently [5,6].

Recently, urban sprawl has resulted in several challenges for cities around the world [7].
According to the European Environmental Agency (EEA), urban sprawl is the low-density
conversion of other land-use types, especially nearby vegetative and barren land into
urban/built-up [8]. This expansion is a primary consequence of the rapid increase in the
population of that particular area due to growth and influx. As a result, cities witness an
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increase in resource demand [1]. Similarly, being a significant factor behind land cover
change [9], urbanization induces changes in ecology, biodiversity, landscape, and natural
habitats as well [10]. The rapid alteration of LULC, especially in developing countries,
causes the degradation of essential resources such as water, soil, and vegetation, compro-
mising long-term sustainability [5]. Similarly, LULC-induced reduction in green spaces in
cities is linked to the urban heat island effect [8]. Therefore, monitoring LULC changes is
integral to proper planning, management, and achieving sustainable development goals
through informed decision-making [5,9,11].

In this regard, while the historical patterns and trends in LULC change, using earth
observations are well-recognized to provide intel for planning, the prediction of potential
LULC patterns based on past trends could further provide valuable information for future
vigilance. This future prediction could have various implications for dealing with several
challenges linked to climate, environmental processes, land use problems, food security,
and urban planning and management [1,12]. Recently, various models have been intro-
duced to predict LULC patterns, such as empirical models, evolutionary models, SLEUTH,
cellular automaton (CA)-Markov chain model (MCM), agent-based models, artificial neural
network/multiple perceptron neural network-based models (ANN/MLPNN), and future
land use simulation model (FLUS) [1,4,8,10–12]. Most of the mentioned models, such as
SLEUTH, empirical models, ANN/MLPNN, and CA-based MCM, require high training
data inputs, huge computation power and time, and usually provide no graphical user
interface (GUI) for visual interaction between user and model. Furthermore, most of the
models, such as MLPNN, require the user to convert all data into a software-specific format
which is inconvenient. In contrast, the FLUS model has a user-friendly GUI, requires
spatial drivers (elevation, slope, distance to roads, towns, rivers etc.), and integrates top-
down system dynamics (SD) and bottom-up CA models for improved and accurate LULC
simulations [12]. This model is more efficient than the existing ones because it takes into
account both anthropogenic and natural environmental effects [12]. Additionally, due
to its interactive coupling mechanism between SD and CA models, it is much easier to
operate—making it robust (see Section 2.4. for details).

An urbanization-led decrease in vegetation and an increase in impervious surface
results in immense heat, and cities might experience the urban heat island (UHI) effect. UHI
is a phenomenon when the observed surface temperature of core urban cities is higher than
the surrounding sub-urban/rural areas [13,14], and has strong associations with public
health-related issues [15]. Though there is no prominent boundary differentiating urban
from nearby rural areas, a temperature difference is observed and well-documented around
the world [8]. The design of cities, impervious surfaces such as roads, tall buildings, and
non-vegetative regions (e.g., sandy or barren) within cities are primarily responsible for the
UHI effect. The primary contributors to urban warming are a rise in short-wave radiation
captivation, heat storage, human-induced heat generation, and reduced evaporation rate [8].
Earth observation data (EOD) are proven to be useful to understand the urbanization
process and associated environmental effects. The use of EOD to evaluate UHI and its effects
on spatial distribution, urban vulnerabilities, and health-related risks are widely published
globally [16–18]. To evaluate the influence of UHI, the urban thermal field variance index
(UTFVI) is usually employed [19]. Hence, exploring spatial-temporal heterogeneities in
UTFVI could provide progressive opportunities to advance our understanding of UHI
effects in cities.

In the last five decades, Pakistan has faced rapid urbanization in its metropolitan
cities [20]. Punjab, the largest province concerning population and agricultural productivity,
has undergone some noticeable changes in its urban areas. Many researchers [21–26] have
studied the LULC patterns of an individual or multiple cities of Punjab, but most of this
research fails to address either future urban sprawl scenarios or its integration with climatic
conditions. Furthermore, while such assessments are rare to find in Pakistan, those that are
available mostly focus on the top metropolitan cities (i.e., Lahore, Karachi, and Faisalabad)
despite their smaller city area and already highly urbanized nature [20,21,27]. Even though
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some localized studies are available in other cities, they solely address the LULC changes
and are exclusive of future prediction, as well as investigating associations between LULC
and climatic conditions. This situation represents a significant information gap for other
rapidly urbanizing regions. Such a lack of research focus hinders informed planning and
policy production in these rapidly urbanizing areas. Hence, to fill this knowledge gap,
the present study integrates geo-information modelling techniques (i.e., cloud-computing-
based Google Earth Engine, geographic information systems, remote sensing, and CA-
based MCM, etc.), to evaluate historical and future trends and patterns in urban growth in
Bahawalpur, one of the largest (third largest according to city area), populated (ranked 6th),
and fastest-growing cities in Punjab [28]. Additionally, we evaluate the spatial-temporal
UHI effect using the urban thermal field variance index (UTFVI) during 1990–2020. While
urban sprawl monitoring and prediction, along with its association with urban climatic
conditions, are essential to long-term efficient urban planning [29,30], evaluations as such
can progressively assist urban planners, mitigation and adaptation professionals, and
decision-makers in designing appropriate action plans for optimized land and resource
allocation to make livable cities [31].

2. Materials and Methods
2.1. Study Area

Bahawalpur is the largest district of Punjab with respect to its geographical area.
It consists of five subdivisions (called tehsils), including Bahawalpur, Ahmadpur East,
Yazman, Khairpur Tamewali, and Hasilpur. Bahawalpur city has undergone massive
urbanization in the last four decades [28]. According to the 2017 census, population-wise,
Bahawalpur stands at 11th and 6th place in Pakistan and Punjab, respectively [32]. In
the last half-century, the city’s population increased from 135, 263 persons in 1972 to 762,
111 persons in 2017, with an annual growth rate of 3.3%, far above the national average of
2.4%. The location of the study area is 29.3544◦ N and 71.6911◦ E, as shown in Figure 1.
Due to its geographical location and physiological settings, the climate in Bahawalpur in
the summer season is scorching and dry, while in the winter, the weather is dry and chilly.
The maximum temperature climbs to 48 ◦C, while the minimum temperature drops to
7 ◦C [28,33,34].

Figure 1. Study area map. Please refer to the online version of the article to see the color image.
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2.2. Research Methods

For this study, the overall workflow is divided into three tasks. The first task empha-
sizes the classification of LULC and the retrieval of LST using a cloud computing-based
platform—Google Earth Engine (GEE). This information is later used for change detection
in LULC and UHI evaluation. The second task is based on the prediction of LULC using
FLUS via integrating several physio-environmental datasets to explore the future urban
growth in the study area. The last task is to employ geographic information system (GIS)
techniques along with other statistical methods to perform spatial-temporal quantifications
(Figure 2). All these tasks are detailed in the following sections.

Figure 2. Schematic diagram of the workflow adopted in this study. Please refer to the online version
of the article to see the color image.

2.3. Data Acquisition, Preprocessing, Classification and Change Detection
2.3.1. Data and Preprocessing

To begin with, data from Landsat achieves are used to study the spatial-temporal
trends in LULC during the past 30 years (1990–2020). The data are freely available and
integrated with the GEE data catalogue with a processing level of tier-1 for Landsat-5 The-
matic Mapper (TM), Landsat-7 Enhanced Thematic Mapper Plus (ETM+), and Landsat-8
Operational Land Imager (OLI) [35]. For this study, we use Landsat-5 TM data for 1990
and 2010, Landsat-7 ETM+ for 2000, and Landsat-8 OLI for 2020. For 2010, Landsat-7
ETM+ data is also available, but we avoided using it due to the scan line error [36]. The
Landsat-7 ETM + sensor has been collecting and delivering data since June 2003, despite
strips induced by the Scan Line Corrector (SLC) malfunction. Although many approaches
are available to overcome the effect of strips, Landsat-5 TM is preferred for 2010 to avoid
distortion in results. Preprocessing steps are applied to each image individually. The pre-
processing starts with masking clouds, heavy aerosols, and cloud shadows from each image.
The resulting images are then clipped to the study area shapefile. The details on Landsat
image acquisition and its sources are given in Table 1. After preprocessing, classification is
performed individually for each year using the Random Forest (RF) algorithm in GEE for
faster computation—additional details can be seen in [4,8].



Sustainability 2023, 15, 1416 5 of 27

Table 1. Datasets used in this study along with their sources.

Name Description Resolution Bands Date Air Temp. (◦C) Source

Landsat-5 TM Tier-1
Collection 1, Tier-1 SR
data used for LULC

and LST
30 m

B1, B2, B3, B4, B5,
B6, B7

05-1990 37.25
https://developers.google.com/earth-engine/

datasets/catalog/landsat-5
(accessed on 1 March 2021)

11-1990 27.85

05-2010 36.94

11-2010 29.5

Landsat-7 ETM+ Tier-1
Collection 2, Tier-1 SR
data used for LULC

and LST
30 m B1, B2, B3, B4, B5,

B6, B7

05-2000 37.54 https://developers.google.com/earth-engine/
datasets/catalog/LANDSAT_LE07_C02_T1_L2

(accessed on 1 March 2021)11-2000 29.94

Landsat-8 OLI Tier-1
Collection 2, Tier-1 SR
data used for LULC

and LST
30 m

B2, B3, B4, B5,
B6, B7

05-2020 36.2 https://developers.google.com/earth-engine/
datasets/catalog/LANDSAT_LC08_C02_T1_L2

(accessed on 1 March 2021)11-2020 27.8

SRTM Digital Elevation
Elevation Data used as

a variable for
LULC prediction

30 m Elevation 02-2000
https://developers.google.com/earth-engine/
datasets/catalog/USGS_SRTMGL1_003?hl=en

(accessed on 1 March 2021)

Roads, Canals,
Settlements

Distances to roads,
canals and settlements

were evaluated for
LULC prediction

07-2020 https://data.humdata.org
(accessed on 1 March 2021)

https://developers.google.com/earth-engine/datasets/catalog/landsat-5
https://developers.google.com/earth-engine/datasets/catalog/landsat-5
https://developers.google.com/earth-engine/datasets/catalog/LANDSAT_LE07_C02_T1_L2
https://developers.google.com/earth-engine/datasets/catalog/LANDSAT_LE07_C02_T1_L2
https://developers.google.com/earth-engine/datasets/catalog/LANDSAT_LC08_C02_T1_L2
https://developers.google.com/earth-engine/datasets/catalog/LANDSAT_LC08_C02_T1_L2
https://developers.google.com/earth-engine/datasets/catalog/USGS_SRTMGL1_003?hl=en
https://developers.google.com/earth-engine/datasets/catalog/USGS_SRTMGL1_003?hl=en
https://data.humdata.org
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2.3.2. LULC Classification and Change Detection

For Landsat-5 and 7, bands 1-5 and 7 are used, whereas for Landsat-8, bands 1-6 are
used. Comprehensive background information on the spectral range and specifications of
each band is provided by [37]. Random forest (RF), a type of machine learning (ML) algo-
rithm, is used to perform a supervised classification in GEE. Previously, for LULC mapping,
the RF algorithm has outperformed some of the most dominant classification approaches
like parametric techniques (maximum likelihood) and non-parametric techniques (decision
trees, neural network) [38,39]. Furthermore, in previous literature, RF outperformed other
classifiers with an accuracy greater than 80% [40,41]. Therefore, this study utilized the RF
algorithm for LULC classification. After parametric tuning, the best-suited number of trees
value for RF is set to 115. In RF-based classification, four land use classes are chosen for our
study area. The details of the classes are given in Table 2. Land cover classes are identified
and differentiated using GEE visual image interpretation techniques (tone, texture, and
pattern), spectral signatures/responses, and mosaicked Google high-resolution background
satellite images [42]. Around 50 polygons samples are taken for each class out of which
70% are utilized for training the RF classifier, while the rest of the 30% are used to assess
the accuracy of the created land cover maps.

Table 2. Description of land use types used in this study.

LULC Class Description

Urban Impervious surface, central business district, high and low-density
residential area with low vegetation fraction

Vegetation Agricultural areas, forest, rangeland, sparse vegetation, intercity
green spaces, fallow land

Water Surface water bodies like natural or artificial wetlands, rivers, canals,
lakes, and reservoir

Barren Vegetation fraction less than 10%, sandy, desert, rocky area

The LULC results are reliable only when they meet certain quality checks via different
accuracy assessment metrics. Kappa coefficient (K) and overall accuracy (OA) are the
two metrics widely used to evaluate the performance of LULC classifications [4,22]. Thus,
we derive the error matrix for each LULC classification, which is further used to assess
K and OA. The Kappa coefficient (K)—also known as Cohen’s kappa coefficients—is a
statistical method that is used to check the reliability of categorical items as it indicates the
extent of agreement between frequencies of two different variables at different intervals [43].
It is evaluated using the following [44]:

K =
po − pe

1 − pe
(1)

where po = observed agreement, and pe = expected agreement.
Similarly, the OA is calculated by summing the correctly classified pixels and dividing

them by the total pixels given as [4]:

OA =
tp + tn

tp + tn + fp + fn
(2)

where tp = true positive, tn = true negative, fp = false positive, and fn = false negative.
After obtaining reliable accuracies, change detection is performed to evaluate the

changes in different land-use types over the years. Change detection using a per-pixel
approach is a postprocessing technique that analyzes changes in each pixel value over
different time intervals [37]. This technique is preferred over conventional (preprocessing-
based) ones as it reduces sensor, atmospheric, and environmental effects—provides more
information on spatial conversions of different land-use types [5]. To perform the change
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detection, the Semi-Automatic Classifier Plugin inside Quantum GIS (QIS) (freely available
at https://qgis.org/, accessed on 1 April 2021) is used.

2.4. Simulating Future LULC Using the FLUS Model

In the second task, the Future Land Use Simulation model (FLUS) is used to predict
change in land use types using the top-down SD and bottom-up CA methods. Following
the model guidelines (available at: http://www.geosimulation.cn/flus.html, accessed on
1 April 2021), four variables including elevation, slope, distance to roads, and distance
to settlements are used to simulate future land use patterns. The elevation and slope are
derived from the digital elevation model (DEM) obtained from the shuttle radar topog-
raphy mission (SRTM) provided by the National Aeronautics and Space Administration
(NASA) [45].

The FLUS model is originally developed by Liu et al. [12]. It uses a spatial simulation
method based on a CA model and trains an ANN model to create a land-use probability-of-
occurrence (PO) surface. The links between historical land use and various driving factors
are defined using an ANN. Changes in land-use distribution are guided by the PO surfaces
obtained from the ANN. The CA module’s total likelihood of land-use type is adjusted
according to the total quantity of that land-use area in the scenario using a self-adaptive
inertia coefficient [46]. The simulation process is separated into multiple periods, and the
bottom-up CA model and the top-down urban demand forecasting model are strongly
coupled during the time series under consideration [47]. The multiple CA allocation model
is established to simulate the future spatial pattern under the given land-use demands
determined by the SD model.

First, the CA simulation is carried out in two steps: (1) an ANN is utilized for train-
ing and assessing the chance of each land-use type occurring on a specific grid cell; and
(2) sophisticated self-adaptive inertia and competition mechanism are devised to address
competition and interactions among the various land-use types. Second, the SD model
is used for the computation of future land use scenario demands under multiple fac-
tors including but not limited to socio-economic and natural environmental factors at
national/regional scales. Self-adaptive inertia and competition mechanism are developed
within the CA model to process the complex competitions and interactions among the
different land-use types [12,48]. The aggregate probability of all land use types at each grid
cell is estimated in these two steps, and the dominant land use type is assigned to the cell
during the CA iteration. Depending on their combined probability and the roulette pick, a
specific land grid remains the present land-use type or evolves into another type during
the allocation process.

2.5. LST Retrieval through Landsat Thermal Bands

The third part used Landsat-derived land surface temperature (LST) to analyze UHI
in Bahawalpur city. For this purpose, LST was taken from summer (May) and winter
(November) months satellite images individually for each year. The mean of each image
in each seasonal month was taken to provide a more representative condition of the
study area [1]. Seasonal land surface temperatures (LST) are calculated for each year
using the Landsat TM and ETM+ (B6) and Landsat OLI/TIRS (B10) thermal bands. For
each year, Landsat images in May (summer) and November (winter) are taken and their
per-pixel mean values are utilized to produce two individual images of summer and
winter, respectively. Landsat 8 (OLI/TIRS) imagery has two thermal bands (10 and 11),
but only band 10 is used for the LST estimation because of its more accurate results [49].
Equations (3)–(5) are used to convert digital numbers (DN) into LST as previously used
by [50]. Firstly, the DN values of each pixel are converted into radiance values (Lλ) using
the following:

Lλ =

(
Lmaxλ − Lminλ

QCALmax − LQCALmin

)
+ Lminλ (3)

https://qgis.org/
http://www.geosimulation.cn/flus.html
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where Lmaxλ is the highest radiance value, Lminλ is the lowest radiance value, QCALmax
is the highest quantized adjusted pixel value (consistent to Lmaxλ in DN (value = 255)),
QCALmin is the lowest quantized adjusted pixel value (consistent to Lminλ DN (value = 01)).

All the values information used in Equations (3)–(5) are taken from the metadata files
that come along the Landsat images. The radiance values are then converted into a surface
brightness temperature given as:

TB =

 K2

ln
(

K1
Lλ

+ 1
)
− 273.15 (4)

in which K1 and K2 are the constants, and their values are available on the United States
Geological Survey (USGS) website (https://www.usgs.gov/, accessed on 1 April 2021).

After estimating the at-surface brightness temperature TB, we compute the pixel-
based land surface emissivity (ε). To calculate the value of emissivity, we use the pre-
defined calibrated values for different Landsat missions along with the particular region’s
normalized difference vegetation index (NDV) as used in recent research [51,52]. The LST
is computed using Equation (5) in which TB is applied with an emissivity correction (ε):

TS =
TB[

1 +
[
λTB

p

]
ln ε
] (5)

where TS is the per-pixel LST value, λ is the wavelength of emitted radiance (value = 11.5 µM),
and p is equal to 1.438 × 10−2mk.

The above procedure is followed to evaluate LST for each season image as mentioned
in Table 1. The derived LST is then used to evaluate the spatial-temporal patterns and
trends, if any, in the study area over the last three decades (1990–2020). In addition, LST is
further used to assess UHI and UTFVI, which is used to map heat stress-affected areas in
the study area.

2.6. Simulating LST for 2050

Land cover indices or spectral indices are popular for predicting LST as they provide
valuable information about the spectral reflectance of the features of interest for the bands
used. In literature, the use of the normalized difference vegetation index (NDVI), modified
normalized difference water index (mNDWI), enhanced vegetation index (EVI), bare soil
index (BI), and urban index (UI) is supported for LST predicting as these contribute to
mapping the strength of surface temperature [1,21]. The details of spectral indices used
in this study are given in Table 3. First, these indices are evaluated for the 2010 and 2020
summers using the same satellite images used to derive LULC maps. Then, correlation
analysis is performed to evaluate the relationship between different factors contributing to
LST (Figure 3). The correlation showed that a significant bivariate correlation exists between
various spectral indices and LST. Given that, multiple regression analysis is performed
using the 2020 summer LST as the dependent variable and spectral indices (NDVI, EVI, BI,
and UI) for the 2020 summer as independent variables. The purpose of regression analysis
is to evaluate the regression equation, which can then be used to predict spectral indices
for 2050.

https://www.usgs.gov/


Sustainability 2023, 15, 1416 9 of 27

Table 3. Details of spectral indices used in this study for LST prediction.

Index Name Formula Justification

NDVI Normalized Difference
Vegetation Index

(NIR − Red)
(NIR + Red)

[53]

mNDWI Modified Normalized
Difference Water Index

(Green − NIR)
(Green + NIR)

[54]

EVI Enhanced Vegetation Index (NIR − Red)
NIR + 6 × Red − 7.5 × Blue + 1

[55]

BI Bare Soil Index (SWIR1 + Red) − (NIR + Blue)
(SWIR1 + Red) + (NIR + Blue)

[56]

UI Urban Index (SWIR2 − NIR)
(SWIR2 + NIR)

[57]

Where NIR = near infrared band, Red = red band, Green = green band, Blue = blue band, SWIR1 = shortwave
infrared-1 band, SWIR2 = shortwave infrared-2 band.

Figure 3. Correlation between spectral indices (BI, EVI, mNDWI, NDVI, and UI) and LST for the
2020 summer. Please refer to the online version of the article to see the color image.

In Figure 3, it is observed that some spectral indices are highly correlated with each
other (i.e., NDVI with EVI, and BI with UI). Therefore, to avoid the multicollinearity effect
in the regression model, only EVI and BI are used as predictors in the regression equation.
The resulting regression equation (Equation (6)) with reasonable variance is then used to
predict LST for 2050. For predicting 2050 LST, first BI and EVI are predicted for 2050 using
the CA-Markov model in FLUS again. Initially, 2010 and 2020 summer BI and EVI rasters
are used, and a probability of change matrix is created. Then, based on the probability
of change in that decade, the CA-Markov model is run to generate BI and EVI for 2050.
In the last, both BI and EVI are inserted in the regression model to get the LST for 2050.
Here, since BI and EVI spectral indices have 30 m spatial resolution, the resultant predicted
2050 LST has the same spatial details of 30 m resolution.

LST_2020_s = 34.125 + (54.44 × (BI_2020_s)) + (19.83 × (EVI_2020_s)) (6)

2.7. UTFVI Estimation and Its Spatial-Temporal Heterogeneities

Urbanization is the major contributor to changes in LULC and also the driver of
UHI. Previously, UHI has been evaluated by comparing temperature in urban areas with
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its neighboring rural areas [8]. UHI phenomenon has gained importance in recent years
due to its pronounced effects in metropolitan cities and consideration in urban designs
to develop a more livable environment in cities [58]. Previously, many researchers have
used different techniques to calculate the intensity of UHI specifically in urban and near
urban areas [1,8,59,60]. Remote sensing (RS) techniques have been proven to analyze data
continuously and cost-effectively. Using RS techniques, UHI can be monitored continu-
ously with the help of infrared satellite data. Instead of just point readings, the RS-based
UHI will show the intensity of heat stress over large geographical areas. According to
previous literature [59], the UHI is directly linked to different LULC classes and also to the
geographical distribution of vegetation cover. By using RS techniques, the UHI is calculated
independently in urban and rural areas following Faisal et al. [1].

A normalized method is adopted to compare UHI due to observed variations in LST
of different seasons within a year. This is given as Equation (7):

UHIN =
Ts − Tm

TStd
(7)

where UHIN is the normalized UHI, Ts is the LST, Tm is the mean LST of the study area,
and TStd is the standard deviation LST of the study area.

After computing the UHI, we use the UTFVI to describe its effect. The UTFVI is a
quantitative measure to explain UHI in terms of thermal comfort level in a city and is among
the most widely used thermal comfort indices [16,61]. The index value is quantitatively
calculated using the formula given in Equation (8):

UTFVI =
Ts − Tm

Ts
(8)

where the variables are similar to Equation (7).
The UTFVI is computed for both summer and winter seasons for each period (1990,

2000, 2010, and 2020), and maps are produced to provide spatial references on geographical
disparities. This approach is particularly helpful in understanding the distribution of urban
thermal comfort across space and time, allowing relevant authorities to take appropriate
measures via informed decision-making. To comprehend the large values, we bin the
UTFVI into six different classes [16]. The ranges of these six different values as noted in [62]
are given in Table 4. Besides this, we also predicted UTFVI for 2050 using the 2050 LST
derived earlier. By applying the same Equations (7) and (8) UTFVI based on 2050 LST at
30 m spatial resolution is prepared.

Table 4. Reference UTFVI threshold values used for categorizing six UTFVI classes.

UTFVI Threshold Value UHI Strength

<0 None

0.000–0.005 Weak

0.005–0.010 Middle

0.015–0.015 Strong

0.015–0.020 Stronger

>0.020 Strongest

3. Results
3.1. LULC Classification and Change Analysis

The results from the RF algorithm-based LULC classification between 1990 to 2020
with a 10-year gap interval are presented in Figure 4. It is noticeable that the urban area
expanded over three decades, whereas a decrease in barren land is observed. From a
broader perspective, it is evident that most of the vegetation land was converted into urban
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land, and barren land was transitioned primarily into vegetation and urban. To verify
the derived LULC information, an accuracy assessment is performed, and the results are
detailed in Table 5. The results show that OA is more than 0.91 in all years with K greater
than 0.89, which shows an excellent agreement between actual and classified pixels.

Figure 4. LULC classified maps of Bahawalpur for (a) 1990, (b) 2000, (c) 2010, and (d) 2020. Please
refer to the online version of the article to see the color image.

Table 5. Accuracy assessment of resulting classified LULC maps.

Year OA Kappa

1990 0.96 0.95

2000 0.94 0.92

2010 0.92 0.9

2020 0.91 0.89

Once the reliability and accuracy are confirmed, the area of different land use classes
is evaluated statistically. Area-wise distribution of LULC classes is shown in Table 6. It is
observed that the vegetation class is the most prominent in the study area, with the largest
area as compared to other classes. A decreasing trend is observed in the area of barren land
as it decreased from 3510.25 ha to 2383.01 ha between 1990–2020. On the other hand, the
urban class area increased from 2142.05 ha in 1990 to 4071.59 ha in 2020.
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Table 6. Area estimation of different LULC classes from 1990 to 2020.

LULC
Classes

1990 2000 2010 2020

Area (ha) Area (%) Area (ha) Area (%) Area (ha) Area (%) Area (ha) Area (%)

Urban 2142.05 11.48 2645.44 14.18 3329.16 17.85 4071.59 21.83

Vegetation 12,961.48 69.48 13,195.64 70.74 13,222.68 70.88 12,104.94 64.89

Water 41.17 0.22 8 0.04 97.96 0.53 95.42 0.51

Barren 3510.25 18.82 2805.87 15.04 2005.17 10.75 2383.01 12.77

3.2. Change Detection Analysis

To further investigate the area-wise transition per decade, we perform change detection
and the results are shown in Table 7. It is observed that urban areas experienced a rapid
increase of 1929.54 ha (90.08%) from 1990 to 2020. On the contrary, vegetation and barren
classes show decreasing trends with −856.54 ha (−6.61%) and −1127.24 ha (−32.11%)
during the study period. To assess the contribution of several LULC types to urban growth,
we further evaluated different land-use transitions into urban (Figure 5). The spatial
references of these transitions are presented in Figure 5a. It is evident that the surrounding
areas of the city are engulfed to facilitate its urban growth. The Sankey diagram in Figure 5b
represents the comparative transition of different land-use types in urban areas. It is evident
that the largest contribution to urban growth is made by the vegetation areas (68.32%)
followed by barren land (7.85%) and water (0.25%). This situation reflects the gravity of
urban growth and vegetation loss, which might result in higher temperatures in the study
area due to an increase in impervious surface.

Table 7. LULC classes area percent change and overall change from 1990 to 2020.

LULC
Classes

1990–2000 2000–2010 2010–2020 1990–2020

MC (ha) PC (%) MC (ha) PC (%) MC (ha) PC (%) MC (ha) PC (%)

Urban 503.39 23.5 683.72 25.85 742.43 22.3 1929.54 90.08

Vegetation 234.16 1.81 27.04 0.2 −1117.74 −8.45 −856.54 −6.61

Water −33.17 −80.57 89.96 1124.5 −2.54 −2.59 54.25 131.77

Barren −704.38 −20.07 −800.7 −28.54 377.84 18.84 −1127.24 −32.11

where MC = magnitude of change = vf − vi, PC = percent change = (vf − vi)/(vi × 100), vf = final year land use
type area, vi = initial year land use type area.

3.3. LULC Prediction and Validation for 2020

This study utilizes the top-down SD model and bottom-up CA integrated into the
FLUS model to simulate future LULC patterns. To inspect the performance of the FLUS
model, the LULC of 2000 and 2010 is used to initially predict the LULC for 2020. For that,
the SD model is used to derive transition potential and land use demand for the year 2020
and multiple CA-based ANN model is used for land use simulation in 2020. The transition
potential used for simulating land use demand in 2020 is shown in Table 8. The simulated
LULC for 2020 is prepared and is shown in Figure 6a.
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Figure 5. Transitions of different LULC classes to urban (1990 to 2020): (a) spatial reference to
transition, (b) estimated contribution of different LULC types to urban. Please refer to the online
version of the article to see the color image.

Table 8. Markov transition probability for simulated 2020 LULC map, shows alternations between
different LULC classes.

LULC Classes Urban Vegetation Water Barren

Urban 1 0 0 0

Vegetation 0.150807 0.83949 0.006483 0.003221

Water 0.327434 0.646018 0.026549 0

Barren 0.033848 0.278505 0 0.683871
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Figure 6. (a) LULC for 2020 (simulated) and (b) predicted LULC for 2050. Please refer to the online
version of the article to see the color image.

The performance of simulated LULC is tested by comparing area-wise statistics of
simulated LULC with actual 2020 LULC. Furthermore, the Chi-square test is performed to
check the performance of prediction results. The details of the Chi-square test are shown in
Table 9.

Table 9. Simulated 2020 LULC map assessment based on actual and predicted LULC patterns.

Chi-Square Test

LULC Class
Area (ha) of

LULC Classes
in 2020

Area (ha) of LULC
Classes in

Predicted 2020

Percent Wise Area of
Actual LULC 2020 (O)

Percent Wise Area of
Predicted LULC

2020 (E)
(O − E)2/(E)

Urban 4071.59 3918 21.83 21 0.0328

Vegetation 12,104.94 12,309 64.89 65.99 0.0183

Water 95.42 92 0.51 0.49 0.0008

Barren 2383.01 2335 12.77 12.52 0.005

Total 18,654 18,654 100 100 0.0569

Note: x2 = ∑ (O − E)2

(E) = 0.0569; degree of freedom = 3 where O and E represent the area of the particular LULC
class used for validation.

However, a problem associated with the Chi-square test as previously reported by
Vinayak et al. [4], is that it does not validate the spatial distribution of various land-use
patterns. To overcome this problem, four kappa matrices were derived namely kno, kstandard,
klocation, and klocation strata [63]. The calculated values of Kappa matrices are given in Table 10
and all values are greater than 0.7. The values of Kappa show that the simulation model
and its spatial patterns are accurate and can be used for future LULC simulations.
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Table 10. Resultant Kappa scores for the assessment of simulated LULC of 2020.

Type of Kappa Coefficient Kappa Score of Simulated
LULC for 2020

kno 0.85

kstandard 0.75

klocation 0.70

klocation strata 0.94

3.4. Predicting LULC for the Year 2050

The LULC of 2010 and 2020 is used to derive transition potential for 2050, shown in
Table 11. The transitional potential (Table 11) is then used to predict LULC patterns for
2050. The predicted LULC for 2050 is shown in Figure 6b, whereas Figure 6a shows LULC
in 2020. From a broader perspective, it is evident that urban areas are expected to increase
rapidly at the expense of agriculture and barren lands (Figure 7).

Table 11. Markov transition probability for predicted 2050 LULC map, shows alternations between
different LULC classes.

LULC Classes Urban Vegetation Water Barren

Urban 1 0 0 0

Vegetation 0.213969 0.744606 0 0.03641

Water 0.274707 0.355109 0.948409 0.021776

Barren 0.090291 0.402279 0 0.804489

Figure 7. Urban sprawl trends from 1990 to 2050. Please refer to the online version of the article to
see the color image.
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To further investigate the changes in the predicted 2050 LULC, area-wise change
detection is performed (Table 12). The results show that among LULC classes, the urban
class is expected to experience the highest increase of 2031.41 ha (49.89%), whereas veg-
etation and barren classes have experienced a decrease of −1812.94 ha (−14.98%) and
−259.01 ha (−10.87%), respectively. For urban sprawl assessment, only the urban class
from each year (1990, 2000, 2010, 2020, and 2050) is taken and overlapped to produce a
thematic map (Figure 7). Additionally, to visualize the state of urban sprawl in terms of im-
pervious surface expansion, the major road layer is overlayed at the top, which highlights
urban expansion taking place along roads-adjacent areas. Notably, the urban areas in 2050
are expected to increase more on the northeastern and southwestern sides of the study area
and the urban growth is prominent along roadside areas.

Table 12. LULC change analysis from 2020 to 2050.

LULC Class
Area in 2020 Area in 2050 Total Change Percent Change

(ha) (ha) MC (ha) (%)

Urban 4071.59 6103 2031.41 49.89

Vegetation 12,104.94 10,292 −1812.94 −14.98

Water 95.42 136 40.58 42.53

Barren 2383.01 2124 −259.01 −10.87

3.5. LST Seasonal Variation over Bahawalpur

Seasonal LST is evaluated using GEE from 1990 to 2020 using Landsat missions. In
summer (Figure 8a), the maximum surface temperature is observed in 2000 (57.21 ◦C),
whereas the lowest temperature is noted in 1990 (32.21 ◦C). In the summer of 1990, most
of the southeastern areas are highlighted as having high temperatures. In contrast, this
strength decreases in the 2020 summer. This is primarily because, in 1990, high-temperature
areas were barren (desert areas) which were converted into vegetation and urban areas
in 2020 (Figure 4). Additionally, each year, the lower part of Bahawalpur city shows
relatively higher LST compared to the central urban area. This is primarily because the
lower part of Bahawalpur comprises desert and barren land with sparse or no vegetation,
whereas the central urban areas have an impervious surface with green spaces. Similar
trends are observed for winter LSTs (Figure 8b). Just like the summer LST, the highest
temperature in winter is recorded for the year 2000 (48.67 ◦C), whereas the lowest is
recorded in 1990 (26.47 ◦C).

3.6. Spatial-Temporal Heterogeneities in Urban Thermal Field Variance Index

The urban thermal field variance index (UTFVI) quantifies the quality of urban health
and ecology and directly represents the degree of thermal comfort in urban areas—an
indicator of urban livability. The values of UTFVI are categorized according to the strength
of UTFVI defined by [62]. Figure 9 shows summer (a) and winter (b) distributions of UTFVI
in the study area. Visually, in both seasons, the lower barren part of the study areas shows
the strongest values of UTFVI, whereas the central part of the city (the core urban area)
shows increasing strength in acceding order according to years. The areas for each UTFVI
class and its percentage-wise statistics are presented in Table 13. A decreasing trend in
areas with lower UTFVI (none, weak and middle) whereas an increasing trend in areas
with higher UTFVI strength (stronger, and strongest) is observed. To further investigate
per-decade changes in seasonal UTFVI, change detection is performed (Table 14). The
overall change results show that the none, weak, and middle classes show decreasing
trends in both seasons except for summer in which a minor increasing trend of 0.07% and
10.7% is observed for weak and middle classes, respectively. It is evident that the areas
showing the least UTFVI strength have gone through a massive decline in the last 30 years
as the areas under the “none” class decreased by −39.99% and −34.56% in the summer and
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winter seasons, respectively. Most of these areas are converted into strong, stronger, and
strongest classes of UTFVI with an overall percentage of 31.55% (winter), 73.04% (winter),
and 27.46% (summer), respectively.

Figure 8. Summer (a) and winter (b) LST changes and their spatial distribution across the study area
between 1990–2020. The warmer colors (red shades) represent higher LST values, whereas the colder
colours (blue shades) represent lower LST. Please refer to the online version of the article to see the
color image.
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Figure 9. Spatial-temporal distribution of UTFVI across the study area for (a) summer and (b) winter.
The green shades represent no UTFVI, and the red shades represent the strongest UTFVI. The
categories are defined based on the values of UTFVI as described in Section 2.6. Please refer to the
online version of the article to see the color image.

Table 13. Area-wise distribution of UTFVI from 1990 to 2020. The % sign reflects the percent share of
each class as compared with the total area.

UTFVI

Summer Winter

1990 2000 2010 2020 1990 2000 2010 2020

Area
(ha) % Area

(ha) % Area
(ha) % Area

(ha) % Area
(ha) % Area

(ha) % Area
(ha) % Area

(ha) %

None 654 3.49 743 3.97 684 3.65 428 2.28 2643 14.1 3595 19.18 2881 15.37 1586 8.46

Weak 3637 19.41 4420 23.59 2619 13.98 1908 10.18 4121 21.99 5033 26.86 4594 24.51 4153 22.16

Middle 3785 20.2 5142 27.44 2548 13.6 2979 15.9 2103 11.22 2044 10.91 2492 13.3 2328 12.42

Strong 3258 17.39 3097 16.53 3650 19.48 4286 22.87 3335 17.8 2277 12.15 2015 10.75 3300 17.61

Stronger 3498 18.67 2375 12.67 5081 27.11 6053 32.3 3958 21.12 2360 12.59 3896 20.79 4106 21.91

Strongest 3908 20.85 2964 15.82 4157 22.18 3086 16.47 2564 13.68 3431 18.31 2857 15.25 3268 17.44
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Table 14. Percent change in UTFVI classes from 1990 to 2020.

UTFVI

Percent Change (%) Overall Change (%)

Summer Winter Summer Winter

1990–2000 2000–2010 2010–2020 1990–2000 2000–2010 2010–2020 1990–2020 1990–2020

None 36.02 −19.86 −44.95 13.61 −7.94 −37.43 −39.99 −34.56

Weak 22.13 −8.72 −9.6 21.53 −40.75 −27.15 0.78 −47.54

Middle −2.81 21.92 −6.58 35.85 −50.45 16.92 10.7 −21.29

Strong −31.72 −11.51 63.77 −4.94 17.86 17.42 −1.05 31.55

Stronger −40.37 65.08 5.39 −32.1 113.94 19.13 3.74 73.04

Strongest 33.81 −16.73 14.39 −24.16 40.25 −25.76 27.46 −21.03

3.7. LST and UTFVI Simulation for 2050

LST derived through multivariate regression for 2050 (summer) is shown in Figure 10b
while Figure 10a shows LST for 2020 summer. It is observed that the highest temperature
reaches 53.09 ◦C (an increase of ~2 ◦C from 2020). Moreover, the city’s central areas were
indicated by high temperatures similar to the surrounding desert areas in the southern
part of the city. Using 2020 UTFVI as a baseline (Figure 10c), we compared the situation
in 2050 using the predicted LST-based UTFVI (Figure 10d). It is observed that areas with
minimum UTFVI effect are drastically reduced in 2050 compared to 2020. Other than that,
areas with the strongest hold of UTFVI increased around the city’s central areas. To further
quantify the UTFVI changes from 2020 to 2050, we performed statistical change detection
between both UTFVI rasters (2020 and 2050), the results of which are shown in Figure 10e.
This analysis verifies our previous deductions that the areas with minimum UTFVI effect
are reduced in 2050 by −75.93%, and the areas with the strongest UTFVI effect increase
up to +138.63% in 2050. In Figure 10e, the stronger zone of UTFVI shows an increase
of +32.48% whereas other classes such as weak, middle, and strong shows a decrease of
−7.12%, −1.95% and −22.8%, respectively.

3.8. Association between Predicted Land Use and UTFVI for 2050

In the last, to quantify the relationship between predicted UTFVI and LULC, we
performed a geographical weighted regression (GWR) analysis using a 500 m2 grid. For
this, we designed two models, the first one being built up as explanatory and UTFVI as a
dependent while in the latter one, vegetation being explanatory and UTFVI as a dependent.
First, zonal statistics are performed and average UTFVI values are taken for each grid.
Then, for each grid, the land-use class percentage per grid is evaluated. The resulting data
are then employed in GWR models, and the results are shown in Table 15 and Figure 11.
It is found that while the outcome of both models is reasonably good given the higher
value of goodness-of-fit (R2), the AICc (an estimator of prediction error) for the model-1 is
comparatively lower (i.e., ~6297 for model-1 versus ~6502 for model-2. Hence, it is evident
that even though both the models can comprehend higher than 80% of the variance in
the data, the larger difference between AICc values, which is higher than the commonly
accepted threshold (cutoff value ≥ 3), indicates that built-up area-based model is more
suitable. The spatial distribution of standard error and local-R2 is presented in Figure 11.
It is observed that the general distribution of local-R2 for both models is similar and the
performance of the model is better even for congested urban areas (darker blue shades).
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Figure 10. (a) LST evaluated for 2020 (summer); (b) LST simulated for the year 2050 (summer);
(c) UTFVI for 2020 (summer); (d) UTFVI simulated for 2050 (summer); (e) area change bar plot
showing area changes between 2020 observed UTFVI and 2050 simulated UTFVI. Note that in (e),
data labels in red shows increase (severity in UTFVI) while green shows area decrease (reduction in
UTFVI). Please refer to the online version of the article to see the color image.

Table 15. GWR spatial model output for model-1 and model-2.

GWR Output Model-1 (Built-Up) Model-2 (Vegetation)

R2 0.8316 0.8722

AdjR2 0.7873 0.8383

AICc −6296.5043 −6501.9372

Effective Degrees of Freedom 597.8459 596.9261
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Figure 11. Spatial distribution of Std. Residual (a,c) and Local R2 using GWR model. The figure,
(a,b) shows the results of GWR model-1 using Builtup-2050 and UTFVI-2050 whereas (c,d) shows
GWR model-2 results using Vegetation-2050 and UTFVI-2050. Please refer to the online version of the
article to see the color image.

4. Discussion

While monitoring LULC changes in the face of rapid urbanization is essential to
the sustainable development of cities, the systematic evaluation of UHI through UTFVI
provides insights regarding the comfort levels of a city—representing the livability in
urban regions. Although urbanization is essential to economic growth, innovation, and
development, unplanned and unsustainable growth in cities can potentially result in severe
complications for residents [10]. This situation could potentially compromise the livability
and sustainability of cities under climatic changes—highlighting short- and long-term
challenges, respectively. Additionally, the UHI mitigation potential of urban vegetation is
directly associated with the local surface type [8]. In this context, studies as such play a
crucial role in informing urban policy and smart decision-making through empirical as-
sessments of historical LULC change, its prediction based on spatial-environmental factors,
and spatial-temporal urban comfort evaluation to cope with the UHI phenomenon. The
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United Nations projections show that global urban land will increase by 1.2 million km2

by 2030 [4]. Since rapid urban growth in developing countries is much higher than the
developed nations, it severely affects the spatial-environmental characteristics of urban
areas resulting in localized issues such as increased LST-induced UHI effect and unsustain-
able land resource allocation/utilization [64]. To deal with this issue, assessments should
be made not only to monitor and report historical trends and patterns of LULC changes
but projections of urban sprawl via state-of-the-art techniques should also be established
based on scientific backgrounds—such as demonstrated in this study. The results of LULC
change during 1990–2020 and the projection of 2050 from this study are therefore useful
information in the context of sustainable urban planning.

The increase in built-up areas at the cost of vegetation and bare land along with consid-
erable urban growth prediction in our study (see Figures 5 and 7) are consistent with studies
conducted in other urban areas in Pakistan and beyond. For instance, Baqa et al. [27] re-
ported an expected increase of 11.6% in Karachi’s urban areas —the largest city in Pakistan—
by 2030. Similarly, Tariq and Shu [21] concluded that urban areas in Faisalabad—3rd largest
city in Pakistan—would increase by 12.5% in 2048. Likewise, Kafy et al. [16] showed an
expected 11% increase in urban areas of Cumilla, Bangladesh—another developing nation
in Asia—in 2039. It is also notable that all these studies show rapid urban growth in respec-
tive cities. The same trends are found for our study area with a historical increase of ~90%
during 1990-2020 and a ~50% expected increase in urban areas in 2050. It is noteworthy
that the expected built-up increase in Bahawalpur is much higher than in Karachi and
Faisalabad as mentioned above. For Karachi, the reason for the lower increment is their
short-term prediction (2030 in Baqa et al. [27] versus 2050 in our case). Whereas, in the case
of Faisalabad, the lower expected increase is due to the urban saturation in Faisalabad city
(study area in Tariq and Shu [21]) as it is already highly urbanized, providing little room for
further development. The possible reasons for historical rapid urban growth in Bahawalpur
could be associated with population increase as the city faced a ~90% increase in population
during 1998–2017. As a result, there has been a 51% increase in residential areas during
1974–2010. Similarly, the city has gone through an industrialization process in the previous
decades resulting in a 735% increase in industrial land use during 1974–2010 [65]. This
urban growth and reduction in vegetation are the very reasons that the city has witnessed
an increase in LST of both the summer and winter seasons (Figure 8), which is also reported
for other urban areas around the world [4,16,66,67].

Urban heat island (UHI), the phenomenon describing the changes in urban climate
due to human interventions, primarily affects UTFVI in cities. The transition of lower
UTFVI zones into higher UTFVI strength regions (Figure 9, Tables 13 and 14) is also a
matter of concern for urban planners and designers as it would compromise the livability
of the city without proper measures for both short- and long-term. It is well known that
UTFVI adversely affects local air quality, wind patterns, and humidity resulting in reduced
urban comfort and public health-related concerns [68]. On the other hand, the increments
in built-up/impervious surfaces contribute towards stringer UHI effects in cities. Hence,
the results on LULC changes, its spatial inconsistencies, and spatial-temporal UTFVI
results from this study could progressively provide information on localized potential heat
wave zones—assuring sustainable urban planning, design, and development via initiating
essential action plans [16]. An unplanned increase/expansion in urban areas due to both
strategic and economic influences resulting in the downdrift in natural systems such as
vegetation as highlighted in this study, could potentially hamper the environmental health
and sustainability of the city. Therefore, informed decisions and action plans such as urban
green walls and other green infrastructure based on scientific evidence are integral to assure
long-term sustainability [67].

Increasing LST in the study area (Figure 8) as a result of thermal infrared waves
produced by impervious surfaces and grey infrastructure (i.e., buildings) leads to UHI or
UTFVI [16,69]. Another aspect resulting in a higher concentration of UTFVI in the southern
part of the city is the presence of desert land. In the south of the city lies the Cholistan desert,
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which might be the primary reason behind the abrupt changes in the city’s microclimate [70].
However, further evaluation in this regard is recommended to understand the phenomenon
from a micro-climate perspective. The situation of higher UTFVI can potentially impact
urban societies through higher summer-time energy demands, emissions, air pollution,
illness due to heat waves, and even deaths. To avoid these circumstances, strategies,
and policies such as lower-emission technologies, the clean air act, no net vegetation
loss, adoption of renewable energy resources, and implementation of nature-based urban
designs can progressively help control the anthropogenic factors of UHI, resulting in more
comfortable and livable urban places [71–74]. In this context, the results on variations in
LST, UTFVI, and LULC across space and time provided in this study provide better insights
into urban comfort by replacing the green with grey infrastructure/hardscape.

While this study relied on LULC and UHI, as indicators for urban thermal state, it is
crucial to discuss some limitations, which may have indirectly influenced this study. In
the evaluation of LULC, many aspects including the choice of model, training samples,
spatial and spectral resolution of satellite image play crucial role. For instance, some
studies [1,8,10] suggest that higher resolution images with machine learning approaches
should be preferred which in most cases yield good accuracy. Another study [75] concludes
that the sampling techniques play a great role in LULC classification. Similarly, for UHI
evaluation, in situ temperature readings are required to ensure high accuracy of derived
products [62]. This, require specialized instruments, with ability to work for longer periods.
However, for historical assessment of meteorological events, satellite data with calibrated
models are preferred [59,68]. To overcome such limitations, our study improvised with
the following alternatives. First, since previous studies [1,10,23] support machine learn-
ing approach for LULC, we adopted this, which results in improved accuracy. Second,
stratified sampling approach was used along with RF model, which minimize the need
of extensive samples for training [75]. For UHI evaluation, as there was no historical
high resolution numerical meteorological data available for Bahawalpur city, we adopted
recent approaches from [17,59]. Through their approach, we first used satellite date for
UHI historical assessment in the form of UTFVI. Later we used ANN models for future
simulations of urban thermal condition through UTFVI.

The inclusion of the study area in the Special Economic Zones (SEZs) in Pakistan
would upsurge industrial land use, which has already seen an increment of ~735% during
1974–2010 (https://pie.com.pk/bahawalpur-industrial-estate, accessed on 1 November 2022).
This industrial development will further increase the population influx demanding more
land resources for accommodation. LULC change prediction from this study can help
design possible ways out with minimum trade-offs regarding vegetation loss in the future.
Another potential strategy to tackle the UHI effect could be the adoption of “green ground”
and “cool pavements” [76,77]. While the former is based on doubling the green and plant
surfaces along with halving asphalt surfaces, the latter deals with increasing the albedo of
horizontal grey land cover such as impervious surfaces. In the case of Padua, Italy, Noro and
Lazzarin (2015) [76] showed that both strategies could reduce the daytime air temperature
by 3 and 4 ◦C, respectively. Similarly, O’Malley et al. [39] show that UHI mitigation
strategies such as the trees, shrubs, and grass (TGS), the use of high albedo materials
(HAM), and urban inland water bodies (UIWB) have significant potential. However, in
an urban environment, successfully implementing UHI mitigation measures also depends
on building layout and form. Therefore, it is better if the provision of UHI mitigation
measures is at the project’s conception stage. Hence, we strongly recommend further
exploration of these mitigation measures (i.e., TGS, HAM, and UIWB) for the feasibility of
their incorporation in the design of future urban development plans (i.e., expected LULC
changes due to SEZ).

5. Conclusions

While LULC is an important indicator of sustainable urban development, evaluating
the UHI effect provides a substantial gauge to measure the urban thermal state. Both of
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these indicators represent the sustainability and livability of rapidly urbanizing cities. In
this context, the primary goal of this work is to provide spatial-temporal insights regarding
LULC change, LST, and UTFVI during 1990–2020. For this purpose, the study leverages
earth observation data from multiple satellite missions and spatial modelling approaches.
Through literary review, this study overcome existing hurdles in geodata analytics by
incorporating machine learning based RF model, which result in robust classification
and by using ANN model with its proven results in meteorological forecasting. While
a significant increase in urban areas (impervious surfaces) is observed during the past
three decades, the CA-ANN-based prediction shows that a ~50% additional increase in
built-up areas is expected by 2050 on the expanse of vegetation cover, primarily followed
by barren land. During 1990–2020, since a decrease in vegetation and an upsurge in urban
areas is observed, the LST has significantly increased. This situation directly influences
the environmental conditions in the city along with having the potential to cause public
health-related issues.

The transition of low UTFVI to strong and stronger zones during 1990–2020 also
indicates reduced comfortability in the city—compromising livability in urban areas. The
results are particularly helpful to city planners and relevant authorities in designing a
sustainable environment via functional modifications and replacement of the current spatial
distribution of LULC. Doing so would progressively enhance the livability of the city by
mitigating the strong UTFVI effect. The effective LULC distribution and science-based
smart utilization of land resources directly contribute to reducing the UHI effect, urban
sustainability, and protection of natural systems within the cities—improving overall daily
life. Lastly, for future studies, it is recommended to explore the possibilities of up-scaling
the classification and prediction analysis of LULC and UHI up to regional and global scales
with higher resolution. Furthermore, future studies are suggested to integrate big data
analytics with open-source machine learning and deep learning modules (i.e., TensorFlow
and Pytorch) and cloud computing platforms (i.e., Google Earth Engine) to find new
possibilities in the context of sustainable cities, aiming to improve human thermal comfort.
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