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Abstract: Climate change has become a global issue, not only because it affects the intensity and fre-
quency of rainfall but also because it impacts the economic development of regions whose economies
heavily rely on rainfall, such as the West African region. Hence, the need for this study, which is
aimed at understanding how rainfall may change in the future over the Sahel, Savannah, and coastal
zones of the Volta River Basin (VRB). The trends and changes in rainfall between 2021–2050 and
1985–2014 under the Shared Socioeconomic Pathway (SSP2-4.5 and SSP5-8.5) scenarios were analyzed
after evaluating the performance of three climate models from the Coupled Model Intercomparison
Project Phase 6 (CMIP6) using Climate Hazards Group InfraRed Precipitation with Station data
(CHIRPS) as observation. The results show, in general, a relatively high correlation and low spatial
biases for rainfall (r > 0.91, −20% < Pbias < 20%) over the entire Volta Basin for the models’ ensemble
mean. An increasing trend and projected increase in annual rainfall under the SSP2-4.5 scenario is
6.0% (Sahel), 7.3% (Savannah), and 2.6% (VRB), but a decrease of 1.1% in the coastal zone. Similarly,
under SSP5-8.5, the annual rainfall is projected to increase by 32.5% (Sahel), +22.8% (Savannah), 23.0%
(coastal), and 24.9% (VRB), with the increase being more pronounced under SSP5-8.5 compared to
the SSP2-4.5 scenario. The findings of the study would be useful for planning and designing climate
change adaptation measures to achieve sustainable development at the VRB.

Keywords: climate change; trend analysis; climate models; climate scenarios; Volta Basin

1. Introduction

Rainfall is considered one of the most important climate variables and an essential
component of the hydrological cycle, as it is the key determinant of all water resources
across the world [1]. Since pre-industrialization, rainfall has been characterized by natural
variability, both temporally and spatially. However, the onset of industrialization has
resulted in the emission of an overwhelming quantum of greenhouse gases (GHGs) into
the atmosphere. This has altered the natural dynamics of the global climatic system leading
to worsening variability and change in climate variables, as evidenced by frequent unpre-
dictable seasonal and annual rainfall in recent times across the globe [2]. The consequences
of worsening rainfall variability and change are being felt in many parts of the world and
are expected to worsen in the future [3].

Over the past decades, several studies have examined the climate, its variability, and
change at the global, regional, sub-regional, and basin scales [4–6]. Despite the fact that
most previous studies relied on different resolutions of climate models, their findings were
largely consistent and coherent (i.e., many parts of the world are experiencing rising rainfall
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variability and change, as well as the associated socioeconomic risks). For instance, using
outputs from an ensemble of 21 global climate models (GCMs), Herrero et al. [7] reported
an expected increase in the mean annual rainfall across parts of East Africa. The fifth
Assessment Report of the Intergovernmental Panel on Climate Change (IPCC) [8] observed
that, even though there was difficulty concluding on the annual rainfall trends in most parts
of Africa over the past century due to insufficient observational data, research predicted
variability in annual rainfall with a marginal delay in the onset of the rainy season toward
the end of the 21st century.

In West Africa, high rainfall variability has affected the hydrological cycle, with a
rippling effect on the water resources of most river basins [9,10]. Studies have assessed
the impacts of climate change in the sub-region, but insufficient observational data have
restricted understanding of the scope, predictions, and projections of such studies as far as
the trans-boundary river basins are concerned. For instance, Nouaceur and Murarescu [11]
conducted analysis of rainfall variability and trend over the Sahelian part of West Africa
and observed a resumption of rainfall in the recent years following a long Sahelian drought,
but the scope of the study was limited to three countries (i.e., Senegal, Mauritania, and
Burkina Faso). The Volta River Basin (VRB) is an important trans-boundary basin shared
by six riparian states (Benin, Burkina Faso, Côte d’Ivoire, Mali, Togo, and Ghana) in West
Africa. Due to the high vulnerability of the basin to climate change, any changes in the
climate variables, particularly rainfall, could lead to changes in runoff generation and other
components of the water balance, which can affect the lives and livelihoods of the agrarian
communities in and around the basin.

Rainfall projections are important for developing appropriate adaptation measures
to minimize the impacts on society and the environment. Global (GCMs) and regional
(RCMs) climate models help in understanding the past climate and projecting future
changes. With their continuous development, climate scenarios simulated by GCMs in
the various phases of the Coupled Model Intercomparison Project (CMIP) have become a
central element of national and international assessments of climate change [10,11]. The
recently introduced state-of-the-art CMIP Phase 6 (CMIP6) is made up of models with
finer spatial resolutions, extended historical runs, improved parameterizations for cloud
microphysical processes, and the inclusion of additional processes and components in
the Earth system [11,12]. However, the use of CMIP models over a region requires a
systematic and comprehensive assessment of the GCMs’ simulation performances at a
regional scale [11]. Recently, Agyekum et al. [13] assessed the performance of CMIP5
models in simulating present-day climatology (1950–2004) precipitation over the basin
and observed that the models’ performances are dependent on the simulation of features
that influence the distribution of precipitation. Dembélé et al. [14] also performed a
comprehensive evaluation of the impacts of climate change on water resources in the basin
using CMIP5 models. They observed contrasting dynamics in the seasonality of rainfall,
depending on the selected greenhouse gas emission scenarios and the future projection
periods. In Yeboah et al. [15], climate change projections in the Volta Basin using the
CORDEX-Africa climate simulations under two emission scenarios of the Representative
Concentration Pathways (RCPs), namely RCPs (4.5 and 8.5) of the CMIP5 models, have
been assessed. The results showed that the precipitation pattern of the Volta Basin is
decreasing with time under RCP 4.5 and 8.5, along with a more frequent and intense
dry period.

To the best of the authors’ knowledge, there is limited research, if any, employing
the recently introduced CMIP6 models for assessing rainfall patterns in the Volta Basin.
Even though the study by Ajibola et al. [16] covered the entire West Africa and included
the basin, they only evaluated the historical performance of the High-Resolution Model
Intercomparison Project (HighResMIP) simulations within the framework of the CMIP6
models. Information on future rainfall projections, which is relevant in designing robust
policies for the management of the natural resources of the basin, is still lacking. Moreover,
studies on observed and anticipated climate change and variability using models have also
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become important in making policy decisions regarding adaptation and mitigation [17].
However, studies on climate change modeling are not often discussed within the context of
sustainable development, especially how such studies can help to achieve the sustainable
development goals. This study therefore seeks to move the discussion of the findings
within the sustainable development discourse. Given that the effects of climate change are
felt at many spatial scales and in various societal sectors, it raises important questions about
how countries, including those in West Africa, can advance toward meeting sustainable
development goals (SDGs). In this study, we discuss the implications of the findings with
respect to the attainment of the SGDs in the six riparian states.

The aim of the present study is to fill the identified gap by assessing the changes
in rainfall under the Shared Socioeconomic Pathways (SSP2-4.5 and SSP5-8.5) emission
scenarios over the Sahel, Savannah, and Coastal Zones of the VRB using climate outputs
from CMIP6 models. Analysis of the past, present, and future rainfall variability and
change using CMIP6 models will improve our understanding of the future climate of the
basin and allow for more reliable prediction of climate risks that are associated with local
weather phenomena, such as droughts and floods [18].

2. Materials and Methods
2.1. Study Area Description

The VRB (Figure 1), located between longitudes 5◦30′30′′ W and 2◦0′30′′ E, and
latitudes 6◦0′30′′ N and 15◦0′30′′ N, with an estimated surface area of about 414,000 km2, is
shared by six riparian states (Benin, Burkina Faso, Côte d’Ivoire, Mali, Togo, and Ghana)
in West Africa. The climate of the basin is controlled by the movement and interactions
of the Inter-Tropical Discontinuity (ITD) and the associated West African Monsoon [19].
Located within three climatic zones, the tropical climate, the humid south, and the tropical
transition zone, the basin is characterized by a bimodal rainfall regime in the south and
a unimodal one in the north. The basin has high annual rainfall variation, which ranges
from 300 mm (North) to 1700 mm (South), and temperatures ranging from 25.0 ◦C (South)
to 30.0 ◦C (North) (Figure 1C). The Guinea Coast is characterized by a bimodal pattern of
precipitation (a maximum peak in June and a second one in September), while the Savannah
and Sahel regions are characterized by a unimodal pattern (the maximum peak in August
in both cases). The topography at the basin is uniformly flat, with about 80% of the area
between −1 m and 400 m and steeper in some portions in the eastern and northwestern
parts (Figure 1B). In the VRB, an estimated population of about 19 million depends directly
or indirectly on the basin for their water supply and agricultural activities.

2.2. Observation and CMIP6 Models Data

Daily rainfall data for the period 1985–2014 obtained from satellite-climate products
were used in this study. Studies such as Paeth et al. [20] and Larbi et al. [21] have indicated
that the availability of high-quality datasets, especially in the case of precipitation over West
Africa, is problematic. As a result, gridded observational open-source datasets have become
a practicable option for model validation in the region. The rainfall data were from Climate
Hazards Group Infrared Precipitation with Stations (CHIRPS) at 5 km grid resolution [22].
CHIRPS data have been frequently used as observation data over West Africa by several
studies [23,24]. Other studies, such as Larbi et al. [21], have demonstrated the robustness
of the CHIRPS data in reproducing observed rainfall within the West African region. The
preceding studies have thus given confidence to the use of this particular dataset, though
potential uncertainties remain. Notwithstanding, validation of the CHIRPS data over the
three subdomains (Guinea Coast, Savanna, and Sahel) within the Volta Basin at the monthly
scale (Figure A1) was further performed using station data before the datasets were used
as observations.



Sustainability 2023, 15, 1472 4 of 17
Sustainability 2022, 14, x FOR PEER REVIEW 4 of 18 
 

 
Figure 1. The Volta Basin showing: (a) the basin within West Africa; (b) elevation, climate stations 
distribution, and domain designated as Guinea Coast (6° N–8 °N), Savanna (8° N–12° N) and Sahel 
(12° N–15° N); and (c) spatial distribution of rainfall and temperature for the period 1991–2010. 

2.2. Observation and CMIP6 Models Data 
Daily rainfall data for the period 1985–2014 obtained from satellite-climate products 

were used in this study. Studies such as Paeth et al. [20] and Larbi et al. [21] have indicated 
that the availability of high-quality datasets, especially in the case of precipitation over 
West Africa, is problematic. As a result, gridded observational open-source datasets have 
become a practicable option for model validation in the region. The rainfall data were 
from Climate Hazards Group Infrared Precipitation with Stations (CHIRPS) at 5 km grid 
resolution [22]. CHIRPS data have been frequently used as observation data over West 
Africa by several studies [23,24]. Other studies, such as Larbi et al. [21], have demonstrated 
the robustness of the CHIRPS data in reproducing observed rainfall within the West Af-
rican region. The preceding studies have thus given confidence to the use of this particular 
dataset, though potential uncertainties remain. Notwithstanding, validation of the 
CHIRPS data over the three subdomains (Guinea Coast, Savanna, and Sahel) within the 
Volta Basin at the monthly scale (Figure A1) was further performed using station data 
before the datasets were used as observations. 

Three (3) GCMs’ (Table 1) rainfall outputs at 100 km spatial resolution from the Cou-
pled Model Intercomparison Project (CMIP6) simulations for the historical (1985–2014) 
and future (2021–2050) were used. The GCMs are from the Oceanic Global Climate Model 
(OGCM) and are the latest phase of a coordinated effort by modeling groups across the 
globe. The models were selected by considering their equilibrium climate sensitivity (ECS) 
values, which are the expected long-term warming after a doubling of atmospheric carbon 
dioxide (CO2) concentrations. The selected GCMs have relatively low equilibrium climate 
sensitivity in the range from 1.9 to 3.0, which is consistent with the fifth Assessment Re-
port (AR5) range. The new CMIP6 climate change scenarios are based on five Shared So-
cioeconomic Pathways (SSPs) combined with different forcing levels (i.e., Representative 
Concentration Pathways, RCPs) to form eight main scenarios. 

  

Figure 1. The Volta Basin showing: (a) the basin within West Africa; (b) elevation, climate stations
distribution, and domain designated as Guinea Coast (6◦ N–8 ◦N), Savanna (8◦ N–12◦ N) and Sahel
(12◦ N–15◦ N); and (c) spatial distribution of rainfall and temperature for the period 1991–2010.

Three (3) GCMs’ (Table 1) rainfall outputs at 100 km spatial resolution from the
Coupled Model Intercomparison Project (CMIP6) simulations for the historical (1985–2014)
and future (2021–2050) were used. The GCMs are from the Oceanic Global Climate Model
(OGCM) and are the latest phase of a coordinated effort by modeling groups across the
globe. The models were selected by considering their equilibrium climate sensitivity (ECS)
values, which are the expected long-term warming after a doubling of atmospheric carbon
dioxide (CO2) concentrations. The selected GCMs have relatively low equilibrium climate
sensitivity in the range from 1.9 to 3.0, which is consistent with the fifth Assessment
Report (AR5) range. The new CMIP6 climate change scenarios are based on five Shared
Socioeconomic Pathways (SSPs) combined with different forcing levels (i.e., Representative
Concentration Pathways, RCPs) to form eight main scenarios.

Table 1. Details of CMIP6 climate models used in this study.

Model Institute Reference

BCC-CSM2-MR Beijing Climate Centre (BCC) and China
Meteorological Administration (CMA), China Wu et al. [25]

NorESM2-MM Norwegian Climate Centre, Norway Swart et al. [26]
MPI-ESM1-2-HR Max Planck Institute, Germany Gutjahr et al. [27]
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In this study, an emission scenario that combines SSP2 (i.e., a central pathway in
which trends continue their historical patterns without substantial deviations) and RCP4.5,
hereafter called the SSP 2-4.5 scenario, and the one that combines SSP5 (i.e., energy intensive,
fossil-based economy) with RCP8.5, hereafter called the SSP 5-8.5 scenario, were used. The
SSP 2-4.5 scenario combines intermediate societal vulnerability with an intermediate forcing
level and a warming in the range from 2.1 to 4.3 ◦C, while SSP5-8.5 is at the high end of
future pathways with a warming in the range from 3.8 to 7.4 ◦C. These scenarios were
selected in order to understand the future rainfall and temperature patterns under very
high CO2 emissions and mitigation challenges (i.e., SSP5-8.5) and medium CO2 emissions
and adaptation challenges (i.e., SSP 2-4.5). The data are archived at the Earth System Grid
Federation (ESGF) website under CMIP6 [28].

2.3. Performance Evaluation of CMIP6 Models

The performances of the CMIP6 models in simulating the observed rainfall over
the entire Volta Basin and for the three sub-regions (Guinea Coast, Savannah, and Sahel)
were evaluated at monthly and annual scales for the period 1985–2014 using the satellite
observational data. The annual cycle of the monthly mean analysis was used to assess
how well the CMIP6 models reproduce the bimodal rainfall (Guinea Coast) and unimodal
rainfall (Sahel and Savanah) patterns over the Volta Basin. The Taylor diagram was used
to further evaluate the performance of the CMIP 6 models at the monthly scale using
indicators such as root mean square error (RMSE), normalized standard deviation (σ) and
Pearson correlation coefficient (r) [29]. The RMSE, σ, and r represent the temporal errors in
the models, the temporal pattern, and the temporal variability, respectively. At the spatial
scale, the biases between the models and the observations were also estimated. The biases
describe the relative systematic error associated with the CMIP6 models’ data, where a
positive or negative value indicates overestimation and underestimation of the observed
rainfall data, respectively.

2.4. Rainfall Changes, Trends and Uncertainty Analysis

The flowchart for the study is presented in Figure 2. Rainfall analysis for the past
(1985–2014) and future (2021–2050) periods was performed at both monthly and annual
scales using the multi-model mean (MME) of the three CMIP6 models. The selection of
MME was to minimize the uncertainties of future climate projections [30]. The projected
absolute changes in the mean annual rainfall at the temporal and spatial scales were
estimated by determining the difference between the mean historical (1985–2014) climate
and the future (2021–2050) climate under the different climate scenarios. The t-test was
used to determine whether the obtained changes on the temporal scale were significant
or not. Furthermore, the mean annual cycle of the monthly rainfall from 1985–2014 was
compared with the selected scenarios. The spatial distributions of the changes in the past
and future rainfall were also analyzed with the R-software version 3.3.0.1959 (available at
cran.r-project.org/mirrors.html (accessed on 5 October 2022)) using the Inverse Distance
Weighting (IDW) technique. The IDW interpolation technique is based on the concept
of distance weighting, which is used to estimate the unknown spatial rainfall data from
the known data of sites that are adjacent to the unknown site [31]. The choice of the IDW
compared to other interpolation techniques is its usefulness when the distribution of the
estimated parameters is not a normal distribution [32], as in this study. The deterministic
IDW interpolation technique has also been demonstrated to perform well in spatial rainfall
distribution [21,33]. Detailed information on IDW is found in the study by Feng-Wen and
Chen-Wuing [32].

Uncertainty levels associated with GCM outputs are crucial in climate change assess-
ment. The violin plot was used to quantify the inter-modal spread of the projected changes
in rainfall in each zone and the entire basin. It was also used to gain some insights about
the associated uncertainties. The violin plot is basically a boxplot with the added benefit
of an overlaid distribution plot of the data (i.e., it shows how a dataset varies along one
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variable by combining a boxplot with a probability density function). The probability
density function (PDF) is a smoothed histogram used to show the shape of the dataset, with
a wider PDF indicating that the value occurs more frequently. A narrower PDF indicates
that the value occurs less frequently. The interquartile range of a boxplot expresses how
scattered the data are, with a higher value indicating a higher level of variability and, thus,
a higher level of uncertainty, and vice versa.
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Figure 2. Flowchart for the study.

To obtain an idea about the trends in the rainfall in the entire Volta Basin and the
three zones for the period 1985–2050, the non-parametric Mann–Kendall (MK) test was
computed at a 5% significant level. The MK test has been utilized in several studies (e.g.,
Okafor et al. [34]; Larbi et al. [21]; Nyembo et al. [35]) and proven to be suitable for non-
normally distributed hydro-meteorological data. The MK test assumes a null hypothesis
(Ho) that there is no trend, which is tested against the alternative hypothesis (H1) of the
presence of a trend [36]. Positive and negative values of MK test statistics (Z) indicate
upward and downward trends, respectively. Absolute Z values greater than or equal to
1.28, 1.68, and 2.32 indicate significance levels of 90%, 95%, and 99%, respectively. The
magnitude of the trend was estimated using Theil-Sen’s estimator.

3. Results
3.1. CMIP6 Models Perfomance Evaluation for Rainfall
3.1.1. Temporal Distribution

The temporal distribution of the annual cycle of the mean monthly rainfall show that
all the models were able to capture the general rainfall pattern in each zone (i.e., Sahel,
Savannah, Guinea Coast) and over the Volta Basin with some discrepancies (Figure 3). For
example, in the Sahel region, NorESM2-MM overestimates the amount of rainfall during
the peak season, while MPI-ESM1-2-HR, BCC-CSM2-MR, and the ensemble underestimate
the rainfall values during the peak season. For the Guinea Coast, the bimodal rainfall
patterns were captured by BCC-CSM2-MR and NorESM2-MM with some overestimation
and underestimation, respectively.

Presented in Figure 4, the models’ performances are evaluated at the monthly scale
using Taylor’s diagram based on the Pearson correlation coefficient (r), root mean square
error (RMSE), and normalized standard deviation. A higher correlation (r > 0.9) was found
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for all the models in the Sahel, Savannah, and entire Volta Basin, while in the Guinea Coast
zone, the correlation ranged between 0.7 and 0.9 (Figure 4).
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With the exception of the Sahel zone, the standard deviation values are below 1.0. In
the case of the Sahel zone, the MPI-ESM1-2-HR and BCC-CSM2-MR models have standard
deviation values of 1.8 and 3.0, RMSE values of 1.75 and 2.0, respectively.

3.1.2. Spatial Biases in Rainfall Distribution

The spatial pattern of rainfall (Figure 5) shows some biases ranging between −20%
and 20%, which cover about 90% of the basin for all the models except BCC-CSM2-MR,
which presents biases greater than −20% in the Sahel region. The BCC-CSM2-MR shows
underestimation of rainfall, the MPI-ESM1-2-HR shows overestimation, and the NorESM2-
MM shows both overestimation (in the north of the basin) and underestimation (in the
south of the basin) of rainfall.

3.2. Rainfall Projections and Trends under SSP2-4.5 and SSP5-8.5 Scenarios

Under the SSP5-8.5 scenario, the Sahel, Savannah, coastal, and entire Volta Basin would
experience an increase in the mean annual and monthly rainfall (Table 2 and Figure 6).
Similar projections are expected under SSP2-4.5, with the exception of the coastal zone,
which is expected to experience a reduction in both mean annual and monthly rainfall
(Figure 6) in the future. A higher increase in annual rainfall under the SSP5-8.5 scenario is
projected for Sahel (165.5 mm) and Savannah (219.5 mm) zones compared to SSP2-4.5 for
Sahel (30.3 mm) and Savannah (70.5 mm). In the coastal zone, annual rainfall is projected
to decrease by 12 mm under the SSP2-4.5 scenario but to increase by 240.2 mm under
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SSP5-8.5. In general, the projected changes in mean annual rainfall under SSP2-4.5 were
not statistically significant, while the projected changes under SSP5-8.5 were significant at
a 95% confidence level.
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Table 2. Mean annual rainfall (mm) values from the CMIP 6 model ensemble for the various zones
and the Volta Basin for the simulated historical (1985–2014) and the two climate scenarios in the
future (2021–2050) period.

Zones Historical SSP2-4.5 SSP5-8.5

Sahel 508.9 539.2 (+6.0) 674.4 (+32.5) *
Savannah 962.7 1033.2 (+7.3) 1182.2 (+22.8) *
Coastal 1043.5 1031.5 (−1.1) 1283.7 (+23.0) *
Volta 838.4 860.2 (+2.6) 1046.9 (+24.9) *

Note: projected changes (%) in annual rainfall values are in the bracket. * means significant at 95% confi-
dence level.
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SSP2.45 and SSP845 climate scenarios.

The spatial distribution of CMIP6 historical, future, and projected changes in rainfall
under the SSP2-4.5 and SSP5-8.5 climate scenarios over the Volta Basin is shown in Figure 7.
The rainfall pattern in the basin follows a north–south gradient, with an increase in rainfall
from the north to the south (Figure 7a). Under the SSP2-4.5 scenario, the rainfall is projected
to increase in the Sahel and Savanah zones but decrease in the coastal zone, while under
the SSP5-8.5 climate scenario, the result shows a projected increase in rainfall across the
Volta Basin (Figure 7b). The spatial increase in rainfall at the basin is found in the Savannah
and Sahel zones and is higher under SSP5-8.5 compared to SSP2-4.5 (Figure 7c).
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The trend analysis results for the annual rainfall over the Volta Basin from the years
1985 to 2050 under the two scenarios of climate change are presented in Table 3. The results
show a statistically increasing trend in rainfall in the Sahel and Savannah zones, while the
coastal zone shows a statistically decreasing trend under the SSP2-4.5 scenario. The rainfall
trend under SSP5-8.5, however, shows a statistical increase in all the three zones.

3.3. Projected Changes in Rainfall and Its Uncertainties Associated with the GCMs

It is evident from Figures 8 and 9 that there are differences in the range of rainfall
projection among the three models in the different zones. For example, in the Sahel
zone under the SSP2-4.5 scenario, the percentage changes in rainfall are within the range
from −38% to 16.6% for NorESM, −35.1% to 31.2% for BCC_CSM2, −34.5% to 76.5% for
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MPI_ESM, and −13.6% to 26.4% for the ensemble mean. Similarly, in the Volta Basin, the
percentage changes in rainfall are within the range from −30% to 48% for NorESM, −28%
to 41% for BCC_CSM2, −16% to 20% for MPI_ESM, and −9.9% to 26% for the ensemble
mean. Under the SSP5−8.5 scenario (Figure 8), the changes in rainfall in the Volta Basin are
within the range from −13% to 55% for NorESM, −42% to 29% for BCC_CSM2, −17% to
30% for MPI_ESM, and −9% to 30% for the ensemble mean. It can therefore be seen under
both scenarios in the Volta Basin that a higher range of the projected changes in rainfall
is found in NorESM, followed by BCC_CSM2, with MPI_ESM and the ensemble mean
indicating the lowest range of rainfall projections.

Table 3. Mann–Kendall trend test (Z) and Sen’s slope (Q) estimator results for annual rainfall from
1985–2050 under the SSP2-4.5 and SSP5-8.5 scenarios of climate change.

Zones CMIP 6 Historical+ SSP2-4.5
(1985–2050)

CMIP 6 Historical+ SSP4-8.5
(1985–2050)

Z Q Z Q

Sahel 3.88 ** 2.1 5.93 ** 3.8
Savannah 2.56 ** 1.5 5.91 ** 4.9
Coastal −3.08 ** −3.0 5.38 ** 4.9
Volta Basin 0.38 0.20 5.93 ** 4.4

** indicate significance level of the trend at 95%.
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Figure 8. Violin plots of the projected changes in annual mean rainfall between the future (2021–2050)
and the historical (1985–2014) period by the different GCMs and the ensemble under the SSP2-4.5
scenario for Sahel, Savannah, Guinea Coast, and the Volta Basin.

The uncertainty levels associated with the GCMs’ projections, as shown by the in-
terquartile range (i.e., black bar in the center of the violin), is different for the individual
models depending on the location (Figure 8). For example, in the coastal zone under the
SSP2-4.5 scenario, a very high level of uncertainty (i.e., higher value of IQR) is found in the
NorESM (IQR = 18.7%), followed byBCC_CSM2 (IQR = 13.4%), with MPI_ESM indicating
the lowest level of uncertainty (IQR = 12.8%) in the rainfall projections. Similarly, in the
coastal zone, a very high level of uncertainty (i.e., higher value of IQR) is found in the
NorESM (IQR = 81.7%), followed by BCC_CSM2 (IQR = 23.9%) with MPI_ESM indicating
the lowest uncertainty (IQR = 14.4%). In general, the ensemble mean has the lowest IQR,
with the exception of the Sahel zone, where it appears to be similar to the NorESM, as
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shown in Figure 8. Similar to the uncertainty in the models under SSP2-4.5, Figure 9 depicts
that in most cases the ensemble mean shows the lowest degree of uncertainty (i.e., shorter
IQR) in projecting the changes in rainfall when compared to the individual GCMs under
SSP5-8.5 in the Volta Basin.
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4. Discussion

The present study assessed the future changes in rainfall by first and foremost evalu-
ating the GCMs’ ability to mimic the patterns of observed rainfall. As shown in Figure 2,
the observation data exhibit a single peak of rainfall over the Sahel and Savannah zones
and two peaks of rainfall over the Guinea Coast (i.e., a primary maximum in June and
a secondary one in September). These two different rainfall patterns (i.e., unimodal and
bimodal) were all captured relatively well by the three individual CMIP6 GCMs and their
ensemble. These, together with the overall good values of the statistical indicators used,
lend credence to the robustness of the ensemble mean of the three CMIP6 GCMs that were
used. This is consistent with the observation by Kim et al. [37] that there has been an
improvement in the performance of the CMIP6 GCMs for modeling rainfall in comparison
with the CMIP5.

The determination of the biases between the models and the observations is also a
key measure of the robustness of GCM outputs. With the exception of the BCC-CSM2-MR
model that presents dry biases in rainfall greater than −20% over the Sahel region, the
spatial pattern of rainfall shows some biases ranging between −20% and 20% over most
parts of the Volta Basin (about 90% coverage) for all the models. What this means is that
the models’ outputs show a mix of some underestimation, some overestimation, and ac-
curate estimation of the spatial pattern of rainfall over the basin. According to Sood and
Smakhtin [29] and Jain et al. [30], the causes of uncertainties that lead to either overestima-
tion or underestimation of values of GCMs can be mainly attributed to: (i) approximations
during numerical modeling; (ii) different feedback mechanisms (cloud and solar radiation,
greenhouse gases, aerosols, natural and anthropogenic sources, ocean circulation, water va-
por and warming, ice and snow albedo); and (iii) physical parameterizations, initializations,
and model structures. In the Volta Basin, as further posited by Agyekum et al. [13], the rain-
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fall, which is determined mainly by two air masses, namely, the dry, cold “northeasterlies”
winds from the Sahara, and the moist, warm “southwesterlies” winds from the Atlantic
Ocean, is likely to be overestimated or underestimated by GCMs that do not adequately
represent these two air masses but exaggerate their effects. However, in comparison with
previous studies (e.g., [13]), the estimated bias range between −20% and 20% obtained by
the three CMIP6 GCMs is relatively acceptable. For instance, in the evaluation of CMIP5
GCMs over the Volta Basin, Agyekum et al. [13] showed that the CMIP5 GCMs estimated
the observed rainfall over most parts of the basin with a relative bias between −114% and
196%. This shows the relative improvement in CMIP6 GCMs’ performance over the Volta
Basin. According to Agyekum et al. [13], the multi-model ensemble mean is recommended
for use over the Volta Basin because of its ability to estimate comparatively accurate rainfall
over the area.

Under the SSP2-4.5 scenario, spatial-temporal variability was found in the rainfall
projections. Eyring et al. [10] clarified that, while GCMs generally agree on expected
temperature increases across the globe, the issue of where and how rainfall will change,
remains diverse among the models. This, according to Jain et al. [30], can be attributed
to the high variability in rainfall, physical parameterizations, initializations, and climate
model structures. This supports the observed spatial variability of the changes in rainfall
at the Volta Basin under the SSP2-4.5 scenario, where rainfall is projected to decrease at
the coastal zone but increase at the Sahel and Savannah zones. Our study also predicts a
significant increase in rainfall on a spatiotemporal scale under the SSP5-8.5 scenario, which
is consistent with the findings of Eyring et al. [10], which indicate that GCMs generally
predict a 16–24% increase in heavy rainfall intensity in most parts of the world in the
future. The link between changes in rainfall due to climate change and the attainment of
the Sustainable Development Goals (SDGs) is a strong one. The rainfall projections in the
Volta Basin are expected to have a significant impact on the availability and accessibility of
basic human needs such as food and water. In the Volta Basin, agriculture is the dominant
economic activity and accounts for 40% of the basin’s economic activities. Depending on
the scenario considered, our study findings have both positive and negative implications
for agriculture. For example, under the SSP2-4.5 scenario, the projected increase in the mean
annual rainfall (which is less than 10%) in the Sahel and Savannah zones can significantly
improve agricultural productivity (i.e., increase in crop, livestock and fish yields) if well
distributed in the growing season there by ensuring food security (i.e., SDG 2), and reduce
poverty (i.e., SDG 1). These improvements lead to positive change in the living conditions
of farming households. This is consistent with studies that report a positive relationship
between rainfall and agriculture [38]. Intuitively, improvement in agricultural production
through reliable rainfall will lead to a positive effect on the incomes and livelihoods of
farming households where poverty rates are high [39]. However, the very high increase in
rainfall under the SSP5-8.5 scenario, if not well distributed in the growing season, may lead
to flooding that can cause devastation effects on agriculture and other livelihoods.

Without doubt, poor smallholder farmers in Africa form the majority of the agricul-
tural labor force and contribute to about 80% of food production on the continent [40]. As
such, climate-induced poverty, poor nutrition, and food insecurity in vulnerable small-
holder farming communities will be disastrous to the economic development of African
economies, where agriculture is the major contributor to gross domestic product and foreign
income as well as the major employer [41,42]. The tendency of climate change to reduce
the contribution of agriculture to the gross domestic product has been highlighted [43]. Ac-
cording to the World Bank [43,44], addressing poverty and food insecurity is instrumental
in enhancing sustainable economic growth and development, especially in vulnerable and
at-risk regions such as the Volta river basin. Consequently, improvements in agriculture,
which is the major economic activity in the basin, will play a key role in boosting the local
economies of the riparian states.

On the contrary, the projected decrease in rainfall in the coastal zone under the SSP2-
4.5 scenario poses a negative impact on the water resources, and therefore necessitates
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innovative methods of water storage for households during the dry seasons [45]. Under
the SSP5-8.5 scenario, the very high increase in rainfall at the basin can have a negative
impact, such as flooding, thereby affecting agricultural productivity and economic growth
in the catchment area in the future. In the basin, experiences in the past have shown that
there are occasional erratic rainfall periods that characterize the three zones [46]. Previous
studies in Ghana indicate that climate extremes such as floods have resulted in a drastic
reduction in the national output of maize (6.3%) and rice (9.3%) [47]. This is problematic as
it has serious implications on household food security, as a result of the rising prices of food
commodities [48], thereby affecting the purchasing power of poor households who form
the majority in developing economies of the Volta Basin. Arndt et al. [42] also contend that
climate change is a big blow to developing economies, such as Ghana, as it significantly
reduces national welfare, with severe impact among poor households.

The SDG 7 emphasizes the need for states to promote the adoption and use of clean
and affordable energy, which is required to drive sustainable development. Fortunately,
the Volta Basin serves as an important source of energy, particularly hydropower, which is
required for industrialization, economic growth, and development [34]. However, riparian
states, as well as Africa as a whole, face significant challenges in ensuring consistent
energy supply for economic growth and development. The results of the study show
that a future climate scenario of increased rainfall offers a great opportunity for energy
supply in the Basin. For instance, in the case of the Akosombo dam in Ghana, this means
more water will be received from its headwaters, which will also lead to a maximum
functioning of the dam. However, the likelihood of high variability in rainfall patterns (e.g.,
under SSP5-8.5) can derail energy generation and supply, which is consistent with existing
studies [49]. Implicitly, a rise or a decline in rainfall over the Volta Basin has implications for
the economic development of riparian states where the basin serves as the major, if not the
main, source of hydropower. For instance, regular generation and supply of hydropower,
facilitated by an increase in rainfall, will boost the economic activities of households and
industries, thereby positively affecting national economic development. On the contrary,
a decline in rainfall will affect access to energy, with a significant negative effect on the
productivity of households and industries. Thus, there is a need to increase the energy
supply mix for countries in the basin to offset any uncertainty.

5. Conclusions

Climate change is a major challenge in achieving sustainable development globally,
particularly in West Africa. To contribute to our understanding of climate change and
how it affects the SDGs, this study assessed the changes in rainfall under different climate
change scenarios over the Volta River Basin in West Africa using an ensemble mean of three
CMIP-6 models. Annual rainfall is expected to increase significantly over the Sahel zone,
Savannah zone, and generally over the entire VRB under the SSP2-4.5 scenario, although it
is expected to drop in the coastal zone. Similar to SSP2-4.5, the SSP5-8.5 scenario predicts
a significant increase in annual rainfall in the Sahel, Savannah, and coastal zones and
generally over the entire VRB, with the increase under SSP5-8.5 being more pronounced
than the increase under SSP2-4.5. The findings of the present study using CMIP6 models
give an improved understanding of the future rainfall pattern of the basin relative to
CMIP5 models, allowing for more reliable prediction of climate risks that are associated
with local weather phenomena, such as droughts and floods. The findings, for example,
show that the anticipated changes in rainfall patterns in the three zones (Sahel, Savannah,
and coastal) necessitate different adaptive capacities to climate change. As an example, in
these two zones (the Sahel and the Savannah), coping capacities need to be increased in
dealing with flood events due to the higher rainfall projections under the SSP5-8.5 scenario.
This may include intensive sensitization and resilient infrastructure by governments and
the Volta Basin Authority to minimize the effects of flood events that may occur. Higher-
resolution regional climate models (RCMs) would be preferable for rainfall projections,
but GCMs were used due to the unavailability of RCMs in the CMIP-6 project. Future
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studies using RCMs or more than three GCMs for rainfall projections over the area are
recommended. Employing more than three GCMs could help reduce model uncertainty
and improve projections.
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