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Abstract: Slags and rubber from end-of-life tires represent a liability to the steel and tire industry,
causing economic and environmental problems that are difficult to manage. Transport infrastructures
can use these industrial by-products instead of extracting natural raw materials, but the adequate
mechanical performance of the materials needs to be assured. This paper addresses the mechanical
behaviour of slag–rubber mixtures in the laboratory with CBR, monotonic and cyclic triaxial tests. In
addition, light falling weight deflectometer tests were also performed in a physical model. The results
were analysed to meet technical specifications from Brazil, Portugal and Australia using railway
sub-ballast layers, capping layers or road pavement layers as the base and sub-base to identify the
applicability range of slag–rubber mixtures for transport infrastructures. Concerning the analysed
parameters, it was demonstrated that slag–rubber mixtures can show resilient behaviour and strength
adequate for the support layers of transport infrastructures provided that the rubber content is below
5% in weight and that the slag is milled to comply with the grain size distribution ranges available in
the technical specifications of the cited countries.

Keywords: CBR; triaxial tests; resilient modulus; industrial by-products; physical model

1. Introduction

In Portugal, electric arc furnace slags have been used as aggregates for construction,
being dense, stiff, clean and resistant to abrasion. Laboratory tests, corroborated by full-
scale field trials, have demonstrated that these steel slags have better mechanical properties
(stiffness and resistance against permanent deformation) than standard base course materi-
als. In addition, leaching and lysimeter tests have not revealed any environmental or public
health risks [1]. More recently, this material has been studied as an alternative aggregate for
railway ballast, demonstrating enhanced performance under the higher loads of heavy-haul
trains [2]. This is in agreement with other studies, including both experimental evaluations
and numerical modelling of the performance of coarse unbound materials containing steel
slag [3,4].

Rubber from end-of-life tires can be reused as a whole or after shredding in differ-
ent applications as specified in ASTM D6270 [5], benefiting from its resilient properties.
According to Downs et al. [6], scrap rubber tires do not pollute ground water tables.

The different applications for slags and rubber contribute to reducing the amount
that is landfilled or stockpiled, which has associated economic and environmental costs.
Moreover, the use of these industrial by-products in transportation infrastructures avoids
the extraction of natural raw materials, benefiting from all the advantages of a circular
economy [7,8].

Several research studies have been conducted on the properties of scrap tires when
mixed with sand, such as density, compactness, compressibility, stiffness and shear strength.
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Mashiri et al. [9] considers that sand–rubber’s behaviour is mostly influenced by the rubber
content: for a low rubber content, the addition of rubber increased the shear strength,
initial tangent modulus and dilatancy, while for a higher rubber content, the opposite
occurred, leading to an optimum point that the authors found to be around 35% (mass
proportion). Fu et al. [10] also highlighted that the size and aspect ratio of rubber particles
has a significant influence in the mixture shear behaviour. While shreds and larger chips
typically increase the peak strengths (e.g., [11,12]), smaller chips, crumbs or granules often
either have no effect on the strength or a negative one (e.g., [13–15]).

Sand and gravel–rubber mixtures have been studied in terms of their cyclic and
dynamic properties for vibration isolation purposes [16–20], for railway ballast mixtures
to reduce particle breakage and increase durability [21–25], and for resilient behaviour
evaluation for their application in ballast and sub-ballast layers [26,27].

However, analyses of slag–rubber mixtures’ behaviour are still limited [28,29]. The
idea of using two industrial by-products instead of one represents a significant advance
towards a circular economy. Transport infrastructures use a great amount of raw materials
and are therefore a convenient application for industrial by-products. For this purpose,
thorough studies are required to assure that these alternative materials have the necessary
mechanical performance to be used in transportation infrastructures.

Steel slags have a complex morphology [30,31] that affects the interlocking between
particles. As they are very dense and strong, the particle breakage is expected to be
reduced [32], but the contact stress may be significant. The introduction of rubber may
reduce those contact stresses, reducing the stiffness and increasing the energy absorption
capacity [33]. For this purpose, triaxial compression and cyclic triaxial tests were performed
on slag–rubber mixtures compacted on the optimum point of a modified Proctor compaction
curve. In addition, a physical model has been prepared which enables the application of the
original grain size distribution curve, as well as the execution of light weight deflectometer
(LWD) tests. These tests are economic and fast, enabling stiffness evaluations for a large
number of points, as well as more representative of the dynamic action existing in a
transport infrastructure [34–36].

2. Materials and Methods
2.1. Materials

The steel slag used in this study was collected in the National Steel Industry of Maia
(SN Maia), part of MEGASA group, close to the city of Porto (Portugal). The chemical
composition of this slag obtained by X-ray fluorescence is presented in Table 1 and the
respective oxides are presented in Figure 1. The main elements are iron, calcium and silica
whose corresponding oxides comprise almost 70% of the total composition. The amount of
calcium and magnesia oxides can generate swelling problems due to their hydration, which
creates calcium and magnesia hydroxides. However, these slags undergo an industrial
process, as described in [1], which enables them to be classified by European CE marking
as ‘Inert Steel Aggregate for Construction’ for use in civil engineering works and road
construction.

Table 1. Chemical composition the slag obtained by X-ray fluorescence.

Elements Chemical Composition (%)

Si 14.1
Ca 26.3
Mg 7.6
Al 8.5
Fe 29.2
Mn 6.3
Cr 3.6

Others 4.4
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Figure 1. Slag chemical composition.

The slag particle size distribution (PSD) when it comes from the steel industry is
presented in Figure 2, as original PSD. Its main properties are summarised in Table 2.
together with the reference values according to EN 13,242 [37]. The lack of fine particles
is its major disadvantage, as most technical specifications associated to the application of
this material in the unbound granular layers of transport infrastructures require 4–8% to
be fine (particles < 0.063 mm) [38]. In Figure 2 shows the particle size distribution range
defined by the Portuguese specification for sub-ballast layers [38], which is similar to the
specification for road base and sub-base layers. In order to comply with this specification,
a new particle size distribution was defined (identified in Figure 2 as selected PSD) and
the material was milled in a ball mill. The amount retained in each sieve for the selected
PSD was obtained according to Equation (1) using an n value of 0.38. This distribution
allows a high level of compaction according to [39], which was corroborated by the Proctor
compaction tests presented below.

p = 100
(

d
D

)n
(1)

where:
p—% of material passed on the sieve with mesh size d;
D—maximum particle size;
n—parameter generally assumed to be close to 0.35 to obtain the maximum density.
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defined by the Portuguese specification [38].
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Table 2. Slag parameters in the original PSD.

Parameters Standard
Reference

Values
(EN 13,242 [35])

Average
Values

Fines (%) NP EN 933-1 ≤5 0.9
Flakiness index NP EN 933-3 ≤20 2.2

Shape index EN 933-4 ≤20 4.2
Los Angeles index (%) EN 1097-2 ≤25 17.5

Particle’s
density (g/cm3)

Impervious particles NP EN 1097-6 3.58 3.59
Dry particles NP EN 1097-6 3.39 3.44

Saturated particles NP EN 1097-6 3.44 3.48

Water Absorption (%) NP EN 1097-6 ≤1.6% 1.2
Sulphur (%) EN 1744-1 ≤1 0.1

Volumetric swelling (%)
UNE EN

1744-1:2010 +
A1:2013

0.15

The material in the selected PSD is considered a well-graded gravel with silt (GW-GM)
according to the Unified Classification System [40], and the main geotechnical properties
are summarized in Table 3.

Table 3. Geotechnical properties of the slag in the selected PSD.

Parameters Values

Plastic Limit NP
Liquid Limit N/A

D50 4.00 mm
Specific gravity 3.53

Fines fraction (sieve Nº 200) 8.00%
Uniformity Coefficient 100
Curvature Coefficient 2.25

NP—non plastic; N/A—not applicable.

The rubber used in this work results from mechanical shredding of end-of-life tires
that are provided by GENAN©. This material is free from metallic wires and its particles
range between 1.5 and 7 mm as seen in Figure 2, being classified as granulated rubber
according to ASTM D6270 [5], with the properties indicated in Table 4.

Table 4. Rubber parameters.

Parameters Test Method Values

Specific gravity ASTM D 1817-06(2016) 1.160
Bulk density EN 1097-3 (1998) 0.395 g/cm3

Polymer content ISO 9924-3 (2009) ≥40%

2.2. Testing Procedures

The CBR tests as well as the monotonic and cyclic triaxial tests were performed on the
slag–rubber mixtures using the selected PSD for the slag. When the rubber is added, the slag
is replaced by rubber between 1.5 and 7 mm, so that the PSD remains unchanged (Figure 3a).
Both materials were manually mixed until a homogeneous mixture was obtained, and then
water was added to obtain the optimum moisture content.
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Compaction was performed using a vibrating hammer adapted for this specific purpose
with a rod coupled with a 148 mm diameter disc. As demonstrated by Fortunato et al. [41],
vibrocompaction is more adequate for granular materials, better reproducing the energy
transmitted by the roll compactors in the field, in contrast to Proctor dynamic compaction,
which tends to break the particles. For each layer of 50 mm thickness, 1 min of vibratory
compaction was performed.

Specimens with rubber contents (Rb) of 0%, 2.5%, 5%, 7.5% and 10%, defined as mass
ratios between the rubber and slag, were prepared on the optimum compaction point.
These percentages were selected because [26,42] have shown that values above 10% are not
adequate for infrastructures layers.

The specimens for the triaxial tests were moulded into a 300 mm high (plus 50 mm
extension), 150 mm diameter mould so that the diameter of the specimen was 5 to 6 times
larger than maximum particle dimension (31.5 mm) [43]. The mould and the compacted
specimen are shown in Figure 3b,c. The consolidation phase took at least 12 h (Figure 3d)
to allow for full dissipation of excess pore pressures. For the monotonic tests, a strain rate
of 0.2 mm/min was applied by a 100 kN load frame, and a shear plane failure was formed
approximately after the peak, which is typical of dense materials, as illustrated in Figure 3e.

The cyclic triaxial tests followed method B of EN 13286-7 [44] (constant effective
confining stress), comprising a conditioning of 20,000 cycles with σ′3 = 70kPa; q = 340 kPa
and the load stages indicated in Table 5. in terms of effective confining stress (σ′3) and
maximum deviatoric stress (qmax). The applied confining stress was considered effective,
because the magnitude of suction was almost insignificant for these materials and the
generated excess of pore pressure rapidly dissipated. Schulz-Poblete et al. [42] have studied
the influence of suction measured with tensiometers in sub-ballast material through box
tests and concluded that suction was small (<10 kPa) or absent and did not play a significant
role in material’s behaviour. A cyclic sinusoidal load was applied with a frequency of
1 Hz, oscillating between a small deviatoric stress at around 5 kPa (qmin) and a maximum
deviatoric stress (qmax). Internal instrumentation was used in these tests with 4 linear
variable differential transducers (LVDT) (3 axial and 1 radial), providing more accurate
resilient modulus, as can be seen in Figure 3f.



Sustainability 2023, 15, 1563 6 of 20

Table 5. Stress levels applied in the cyclic triaxial tests.

Constant Confining Stress, σ’
3 (kPa) qmax/σ’

3

20 1.50; 2.50; 4.00; 5.75

35 1.43; 2.29; 3.29; 4.29; 5.71

50 1.60; 2.30; 3.00; 4.00; 5.60

70 1.64; 2.14; 2.86; 4.00; 4.86

100 1.50; 2.00; 2.80; 3.40; 4.00

150 1.33; 1.87; 2.27; 2.67; 3.17

Physical models with dimensions of 0.8 × 0.8 × 0.64 m (Figure 4a) were built to assess
the mechanical behaviour of the slag–rubber mixtures on a larger scale in comparison with
triaxial tests. For this purpose, the original PSD for the slag (Figure 2) was used. On the
bottom of the model, two layers of slag with 10 cm thicknesses were compacted to act as a
foundation material and to avoid the effect of the bottom boundary. Then, the upper part
of the model was compacted in seven layers of 6 cm. Three models were built by varying
the upper part, which had different rubber contents of 0%, 2.5% and 5%. Compaction
was always performed with a vibrating hammer (Figure 4b). On the three models, the
dynamic stiffness modulus was measured with a light weight deflectometer (LWD) with a
plate 200 mm in diameter (Figure 4c,d) to avoid the influence of the foundation material,
considering that the depth of the stress bulb was twice the diameter of the plate. The test was
performed on the centre of the model to avoid boundary effects and the geophone where
the deflections were measured was located in the centre of the plate, as done previously
by [45].
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3. Results and Discussion
3.1. Compaction Properties

Figure 6 shows the variation in the dry density with the water content obtained by the
modified Proctor [46] test and the vibrating hammer for the slag with the selected PSDs.
The same figure also presents information regarding the different slag–rubber mixtures
(made with the slag with the selected PSDs) performed with the vibrating hammer. As
observed by [35], in coarse materials with a poor quantity of fines, the compaction curve is
not well defined, and it is difficult to evaluate the maximum dry unit weight and optimum
water content. The slag dry density is similar with both the vibrating hammer and modified
Proctor, although the vibrating hammer allowed for a slightly higher maximum dry unit
weight since granular materials compact better with vibration. In all the mixtures, the higher
dry density values occured when the material was dry or almost saturated, corroborating
the results found by [47].
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While 4% of the water content presented slightly higher dry densities due to particle
lubrication, the water contents higher than 4% resulted in drainage during compaction. For
this reason, all the specimens for monotonic and cyclic triaxial and CBR tests were moulded
with the same water content of 4% to avoid the influence of water content variation on
the mixture behaviour. The moulding dry unit weight was the maximum value obtained
for each rubber content. For the preparation of the three physical models, the slag on the
original PSD mixed with rubber was compacted at an optimum water content of 3% and at
a maximum dry density depending on the rubber content (Figure 7).
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Figure 7 shows, for each rubber content, the moulding dry unit weight obtained
in the compaction test for each mixture normalised by the moulding dry unit weight of
the slag without rubber (Nρ). The normalised dry densities of the slag–rubber mixtures
are presented for both the selected PSD and for the original PSD. A clear linear relation
was obtained for the data corresponding to both cases. Besides the different PSDs, the
normalized dry density followed the same trend with rubber. Although it was expected
that the increase in the quantity of rubber would cause a reduction in the dry density due to
the lower unit weight of the rubber grains (Tables 3 and 4), such a clear linear relation can be
very useful when estimating the mixture dry density, which depends on the rubber content.

In the past, CBR values were one of the most important parameters present in the
specifications for granular materials for transport infrastructures. For this reason, this
parameter is still in most technical documents, although other parameters, such as the re-
silient modulus, are gaining importance for design purposes. Comparing the specifications
used in different countries, it becomes clear that while Portugal and Brazil have a single
CBR limit applicable for sub-base or sub-ballast layers, Australia distinguishes the CBR
values depending on the location of the material. Moreover, Australia requires higher CBR
values than Portugal and Brazil for the same layer.

Figure 8 presents the CBR values obtained for the slag–rubber mixtures prepared
on the selected PSDs. A rapid decrease with the increase in rubber content is observed,
indicating that the rubber has a very important influence on the mixture’s mechanical
behaviour. A small increase of 2.5% in the rubber content (from 0% to 2.5%) reduced
the CBR values to half of the original value. In contrast, for higher rubber contents, the
increment of rubber has a smaller impact on the CBR values, as the behaviour is already
controlled by the rubber particles instead of the slag grains. This demonstrates that for
higher percentages of rubber, there is more rubber–rubber contact, decreasing the strength



Sustainability 2023, 15, 1563 9 of 20

of the mixture. However, for mixtures with rubber contents less than 7.5%, the CBR
values are still within the limits recommended in the Brazilian and Portuguese technical
specifications for unbound layers in transport infrastructures.
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3.2. Stress–Strain Behaviour

Figure 9 presents the stress–strain curves obtained in monotonic triaxial compression
tests for the different slag–rubber mixtures, in terms of the deviatoric stress (q = σ1 − σ3)

normalised by the mean effective stress (p′= σ′1+2σ′3
3 ) and axial deformation (εa).

Sustainability 2023, 15, x FOR PEER REVIEW 10 of 22 
 

 
Figure 8. CBR values for different rubber contents (Rb) and acceptable limits according to [38,48,49]. 

3.2. Stress–Strain Behaviour 
Figure 9 presents the stress–strain curves obtained in monotonic triaxial compression 

tests for the different slag–rubber mixtures, in terms of the deviatoric stress (q=ߪଵ −  (ଷߪ

normalised by the mean effective stress (݌ᇱ= ఙభᇲାଶఙయᇲଷ  ) and axial deformation (εa). 

  
(a) (b) 

  
(c) (d) 

0

0.5

1

1.5

2

2.5

3

0 2 4 6 8 10 12 14 16

q/
p'

εa(%) 

Slag

0

0.5

1

1.5

2

2.5

3

0 2 4 6 8 10 12 14 16

q/
p'

εa(%) 

Rb = 2.5%

0

0.5

1

1.5

2

2.5

3

0 2 4 6 8 10 12 14 16

q/
p'

εa(%) 

Rb = 5.0%

0

0.5

1

1.5

2

2.5

3

0 2 4 6 8 10 12 14 16

q/
p'

εa(%) 

Rb = 7.5%

Figure 9. Cont.



Sustainability 2023, 15, 1563 10 of 20
Sustainability 2023, 15, x FOR PEER REVIEW 11 of 22 
 

 
(e) 

 
Figure 9. Monotonic triaxial compression tests’ results: deviatoric stress normalized by mean effec-
tive stress (q/݌ᇱ) for several rubber contents: (a) 0%; (b) 2.5%; (c) 5.0%; (d) 7.5% and (e) 10.0%. 

Figure 9 shows that the slag–rubber mixtures have a stress–strain behaviour typical 
of dense granular materials, with a peak strength followed by post-peak softening. How-
ever, it is observed that the peak of the stress–strain curve is more pronounced for a 
smaller quantity of rubber and a lower confining stress. The increase in the rubber content 
results in a reduction in the peak resistance and higher axial strain at peak, which repre-
sents a loss in stiffness. This is expected since the slag is being replaced by a more deform-
able material. Notwithstanding, a high residual friction angle was obtained even in the 
specimens with a rubber content of 10%.  

To understand the effect of the rubber content on the stress–strain curves, the brittle-
ness index, as proposed by [50] and described in Equation (2), is presented in Figure 10., 
assuming that the residual strength corresponds to the last measured point of the stress–
strain curve at around a strain of 14%. ܫ஻ = ௣௘௔௞ݍ − ௣௘௔௞ݍ௥௘௦௜ௗ௨௔௟ݍ  (2) 

As observed in Figure 10, the brittleness index, which represents the strain-softening 
behaviour typical of dense granular materials associated to dilatant behaviour, tends to 
decrease with the amount of rubber. This may be due to the residual strength that tends 
to be approximately similar for all rubber contents while the peak strength tends to de-
crease. This means that with increasing confining pressures and rubber content, the dila-
tion is smaller and so are the brittleness index and peak strength. In granular materials, 
an increase in the confining pressure corresponds to a reduction in brittleness, since the 
confining pressure prevents dilation [51]. This is also visible in the slag–rubber mixtures 
with confining pressures of 20 and 50 kPa. However, for 70 kPa of confining pressure, this 
is not so evident. 

0

0.5

1

1.5

2

2.5

3

0 2 4 6 8 10 12 14 16
q/

p'

εa(%) 

Rb = 10.0%

Figure 9. Monotonic triaxial compression tests’ results: deviatoric stress normalized by mean effective
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Figure 9 shows that the slag–rubber mixtures have a stress–strain behaviour typical of
dense granular materials, with a peak strength followed by post-peak softening. However,
it is observed that the peak of the stress–strain curve is more pronounced for a smaller
quantity of rubber and a lower confining stress. The increase in the rubber content results
in a reduction in the peak resistance and higher axial strain at peak, which represents a loss
in stiffness. This is expected since the slag is being replaced by a more deformable material.
Notwithstanding, a high residual friction angle was obtained even in the specimens with a
rubber content of 10%.

To understand the effect of the rubber content on the stress–strain curves, the brittle-
ness index, as proposed by [50] and described in Equation (2), is presented in Figure 10,
assuming that the residual strength corresponds to the last measured point of the stress–
strain curve at around a strain of 14%.

IB =
qpeak − qresidual

qpeak
(2)
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As observed in Figure 10, the brittleness index, which represents the strain-softening
behaviour typical of dense granular materials associated to dilatant behaviour, tends
to decrease with the amount of rubber. This may be due to the residual strength that
tends to be approximately similar for all rubber contents while the peak strength tends
to decrease. This means that with increasing confining pressures and rubber content, the
dilation is smaller and so are the brittleness index and peak strength. In granular materials,
an increase in the confining pressure corresponds to a reduction in brittleness, since the
confining pressure prevents dilation [51]. This is also visible in the slag–rubber mixtures
with confining pressures of 20 and 50 kPa. However, for 70 kPa of confining pressure, this
is not so evident.

3.3. Strength Envelope

Figure 11 presents the Mohr–Coulomb strength envelope obtained for each mixture in
a deviatoric stress versus mean effective stress plot, with the corresponding peak angles of
shearing resistance. The angles of shearing resistance slightly decrease with rubber contents
up to Rb = 5% and then tend to stabilize at around 53◦ for higher rubber contents. All
mixtures have high peak angles of shearing resistance, indicating that the rubber presence
has a higher effect on the stiffness than the strength behaviour. This is expected due to
the high particle size of the slag grains, which leads to high dilatancy angles. In Figure 11,
the stress paths followed during the cyclic triaxial tests (expressed in Table 4) are also
presented.
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3.4. Secant Stiffness

In Figure 12, the secant stiffness modulus at 50% deviatoric stress normalized by the
confining pressure is presented for different rubber contents as a function of the peak
deviatoric stress. For lower rubber contents, there is a reduction in the stiffness modulus
with an increase in rubber, but for rubber contents higher than 7.5%, there is a trend for
secant modulus stabilization, in agreement to what is noticed for the strength. This may
indicate that for rubber contents higher than 7.5%, the behaviour is probably controlled by
the rubber, irrespective of the rubber content.
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3.5. Resilient Moduli during Cyclic Loading

The resilient modulus (Mr) is defined as the unloading modulus (see Figure 13 and
Equation (3)) after several cycles of repeated loading.

Mr =
∆q
εr

=
qmax − qmin

εr
(3)
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Given the stress dependency of the resilient modulus in unbound granular materials,
many models have been proposed to express Mr as a function of applied stress [52]. Trying
to represent the increase in the resilient modulus value with increasing confining stress,
Biarez [53] proposed the following equation for uniform sands:

Mr = k1σk2
3 (4)
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On the other hand, for clayey soils, Moossazadeh and Witczak [54] identified a greater
influence of the deviatoric stress, proposing the following expression:

Mr = k1qk2 (5)

The most used model [55–57], commonly known as K-θ, is a function of the sum of
principal stresses (θ = σ1 + σ2 + σ3):

Mr = k1θk2 (6)

Due to its simplicity, this model and its variations have been widely used in the
analysis of material stiffness associated with the stress state, assuming a constant Poisson’s
coefficient (usually between 0.2 and 0.3 for granular materials). However, this model
considers that the modulus is only a function of the sum of principal stresses, which is not
reasonable, since the addition of the deviatoric stress induces more shear deformations.

In Equations (4) to (6), ki are empirical parameters obtained from the experiments,
σ′3 is the confining stress, θ is the first invariant of stresses in axisymmetric conditions
(θ = σ1 + 2σ3), and q is the maximum deviatoric stress (q = σ1 − σ3).

In Figure 14, the resilient behaviour of the slag–rubber mixtures is presented (for
rubber contents between 0% and 5%) as a function of the confining stress (Figure 14a),
deviatoric stress (Figure 14b) and first invariant of stresses (Figure 14c), together with the
empirical parameters that show the best adjustment to the experimental data in the basis of
the minimum square fit. As expected, this figure shows a decrease in the moduli with an
increase in the percentage of rubber. However, it is not the purpose of this study to increase
the mechanical properties of the slag by introducing the rubber. Instead, the aim is to
identify the possible applications of these mixtures containing two industrial by-products.

It is thus interesting to note that the trend that is typically seen in granular materials of
increases in moduli with increasing stress levels is still observed in the slag–rubber mixtures.
For this reason, the resilient moduli empirical correlations presented in Equations (4)–(6)
were applied to this material. There is a strong correlation with σ′3 and θ, but less with q,
which may be expected as Equation (5) was developed for clays.

Figure 15 shows the dependency of the empirical constants (k1 and k2) with rub-
ber content for the first three models. Although the models are different, the empirical
constants assume similar values, having a clear relation with rubber content, with ex-
ception of k1 from Equation (4). For k1 there is a linear decrease with the rubber content
(for Equations (5) and (6)), while k2 tends to increase up to a rubber content of 2.5% and
then stabilises.

Table 6 presents the range of resilient modulus values obtained in the cyclic triaxial
tests for three rubber contents (0%, 2.5% and 5%). The successive addition of a small quan-
tity of rubber causes a significant reduction in stiffness (approximately 3.2 and 6.6 times,
respectively) at low stresses. This reduction is slightly smaller (1.72 and 2.95 times) for the
higher stress level, indicating that the effect of the rubber particles’ compressibility is felt
mainly under low stress levels. At high stress levels, the particles are already compressed,
presenting greater resistance to deformation.

Table 6. Resilient modulus values depending on the rubber content and stress level.

Stress Level
Rubber Content

0% 2.5% 5%

Lower stress level σ′3 = 20 kPa, q = 30 kPa 170 MPa 50 MPa 25 MPa
Higher stress level σ′3 = 150 kPa, q = 475 kPa 1000 MPa 580 MPa 340 MPa
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According to Shahu et al. [58], the resilient modulus values required for a sub-ballast
layer are around 60–100 MPa, indicating that the slag rubber mixtures studied herein have
resilient moduli values acceptable for sub-ballast layers when the confining pressure is
larger than 20 kPa and the rubber content is up to 2.5%.
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3.6. Comparison with Previous Studies

Table 7 summarises the results obtained in this study, together with data from other
studies. It can be seen that the different research studies show relatively close values
among the studied materials. As expected, the addition of rubber causes a decrease in
the maximum dry density since rubber is a lighter material than the other aggregates.
Moreover, since rubber is a more compressible material [59], it causes a decrease in the CBR
and resilient modulus.

Table 7. Summary of obtained results and literature data.

References Material
Maximum Dry

Density (pd) (g/cm3)
California Bearing

Ratio Test (CBR) (%)
Resilient Modulus

(MR) (MPa) φ’peak (◦)

This study Steel Slag + 0–5% of Rubber 2.45–2.85 80–213 25–170 60–71
Ferreira [60] Steel furnace slag 2.43 72 127 42.5

Hidalgo-Signes et al. [26] Granite Aggregate + 0–5%Rubber 2.17–2.32 27–154 92.8–249.6 40◦ (only for 0%)

Qi et al. [28] Steel furnace slag + Coal Wash +
0–40% of Rubber Crumb 1.27–2.1 4–58 20–140 44–52

Arulrajah et al. [27] Crushed Rock + 0–3% of Rubber 2.1–2.2 90–130 27–210 Not measured
Maghool et al. [3] Steel furnace slag 2.43 55 198 55

Zhang et al. [61] Granite Aggregate +
0–30%Rubber 1.6–2.0 Not measured 150–275 36–37.8

Depending on the rubber content, the values of the resilient modulus range between
20 and 249.6 MPa, while the peak angles of the shearing resistance are always high, between
40 and 71 degrees.

Comparing the results of the slag–rubber mixtures obtained in this work with the
granitic aggregate–rubber mixtures found in the literature, it seems that the slag without
rubber has greater resilient modulus values than natural aggregates, which is in agreement
with previous studies [1] demonstrating the enhanced mechanical performance of slag
particles. However, when the rubber is added, the opposite is verified, which may be
associated to the interlocking of slags and rubber. This is more easily analysed when the
same stress levels are compared. Hidalgo Signes et al. [26] obtained resilient modulus
values ranging from 92.8 to 249.6 MPa for a confining stress of 34.5 kPa and a deviatoric
of 103.4 kPa. In a similar stress state (σ′3= 35 kPa, q = 115 kPa), the mixtures analysed in
this paper vary from 53 to 362 MPa for rubber contents of 5% and 0%, respectively. Zhang
et al. [61] obtained resilient modulus values between 150 and 275 MPa with a confining
stress of 50 kPa and a deviatoric stress of 200 kPa. For the same stress conditions, the
resilient moduli of the mixtures studied in this paper vary between 86 and 529 MPa for
rubber contents of 5% and 0%. However, more studies are needed to confirm this trend as
it is expected that particle grain size has a major influence on the resilient moduli.
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3.7. LWD Dynamic Moduli

Figure 16 presents the results of the dynamic modulus obtained in the LWD tests
performed on the physical model. As observed above, the deformability modulus decreases
with the increase in the rubber content. These moduli should be analysed in terms of the
recommended values in the technical specifications for roads and railways. FGSV [62]
provides the minimum values for the LWD modulus, which are 50 MPa on the top of the
sub-ballast, 40 MPa on the top of the capping layer and 25 MPa on the top of the earthworks.
In this context, the mixture with a 0% rubber content could be used as a sub-ballast layer,
while the mixture with a 2.5% rubber content could be applied in the capping layer. Higher
rubber contents do not seem adequate for the upper pavement layers, but these mixtures
may still be used on the top of earthworks or embankments.
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4. Conclusions

The use of industrial by-products, such as slags and rubber from end-of-life tires, in
transport infrastructures has both economic and environmental benefits since it avoids
the extraction of natural raw materials and provides a solution for the disposal of these
materials. This paper evaluates the mechanical performance of slag–rubber mixtures for
rubber contents of 0%, 2.5%, 5.0%, 7.5% and 10% to meet Brazilian, Portuguese, Australian
technical specifications regarding their application in railway sub-ballast layers, capping
layers or road pavement layers as bases and sub-bases. The aim is to understand under
which conditions these industrial by-products can be applied in these layers without
compromising the mechanical behaviour. For that purpose, laboratory tests (such as CBR,
monotonic and cyclic triaxial tests) were performed in slag–rubber mixtures with a wide
grain size distribution curve, while light weight deflectometer tests were performed in a
physical model made with slag–rubber mixtures in which the original grain size distribution
curve of the slag was used. From this study, the following conclusions were made:

− A small increase of 2.5% in rubber (from 0% to 2.5%) reduced the CBR values to
half of their original value. However, for higher rubber contents, the increase of
rubber has a smaller impact on the CBR values. For this reason, the CBR values
obtained for mixtures with a rubber content less than 7.5% still comply to the technical
recommendations available for sub-base and sub-ballast layers according to Brazilian
and Portuguese technical specifications;

− − For rubber contents lower than 7.5%, the secant stiffness modulus at 50% of the de-
viatoric stress (E50) decreases with the rubber increase, but for higher rubber contents,
the secant modulus tends to stabilise, in agreement with what is noticed for the angle
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of shearing resistance, indicating that beyond 7.5%, the behaviour may be controlled
by the rubber irrespective of the rubber content;

− The increase in rubber reduces the resilient modulus drastically, but mixtures with
rubber percentages up to 5% show an acceptable performance under cyclic conditions,
reaching resilient modulus values similar to those of other research studies.

− The tests performed on the physical model provided dynamic modulus values al-
lowing for the application of slag–rubber mixtures on the capping and embankment
layers of transport infrastructures for rubber contents of 2.5% and 5%, respectively.

Considering the significant economic and environmental benefits of using two in-
dustrial by-products in transport infrastructures, this work has evaluated the possible
application of the different slag rubber mixtures. It was demonstrated that slag–rubber
mixtures can show resilient behaviour and strength adequate for the support layers of
transport infrastructures provided that the rubber content is below 5% in weight and that
the slag is milled to comply with the grain size distribution ranges available in the technical
specifications of the cited countries. However, more studies are being conducted to evaluate
the long-term behaviour of these mixtures, namely in terms of the permanent deformation
due to a large number of cyclic loads, as well as leaching tests.
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