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Abstract: Airline hubs are often defined as nodes with a high degree of connectivity. Connectivity
is measured by the “degree” of the node. The degree distribution of hub networks tends to have
a convex shape (curved towards the origin), while point-to-point networks have a higher number
of high-degree nodes and a concave shape. This study aims to classify airline networks based on
their hub orientation, expanding our understanding of network differences. The analysis in this
paper involves fitting a power-law distribution, determining the range of degree distribution, and
calculating the distribution of betweenness. These analyses provide insight into the classification of
each airline. Each measurement helps to clarify the ambiguity in other scores. The goal is to establish
a small set of rules that can clearly distinguish between the main types of networks. The classification
includes four types of networks: One-hub, P2P (point-to-point), Multi-hub, and Complex networks.
There is a well-recognized empirical distinction between hub networks, which have a few places with
large betweenness, and point-to-point cases, which have a larger number of places with moderate
betweenness. The significance of these results in terms of geographic importance is demonstrated
by sorting 284 different airline networks based on these dimensions. These findings are expected to
provide valuable information about the resilience and recovery of a network, as networks with many
long-range connections are particularly vulnerable to a decrease in traffic. Additionally, these results
have implications for the ability of networks to recover from a downturn.

Keywords: airline network; network classification; hub-and-spoke system; point-to-point system;
fleet operation

1. Introduction

Hubs are crucial components of airline networks as they handle significant traffic
to and from other nodes through their extensive connections. Hubs are often considered
special and essential for the network’s operation. In practical terms, these nodes are
sometimes classified based on traffic levels, such as the classification used by the Federal
Aviation Administration (FAA) for American hubs [1]. In analytical transport research,
hubs are defined based on the throughput and connectivity they provide [2,3]. Hubs serve
as facilities through which flows are channelled, while spokes are arcs connecting origins
or destinations to one or more hubs. Hubs are designed to ensure efficiency within the
operational constraints faced by airlines [4,5].

The main aim of this paper is to explore the specific characteristics that can be used to
identify network structures. For example, a hub should have strong connections to other
hubs and many regular nodes, while each regular node should be connected to only a
few hubs. Additionally, we would expect minimal direct connections between non-hub
nodes, and each non-hub node to be connected to an average of two or three hubs. By
examining the degree distribution of nodes, we can identify the characteristic shape of hub
networks. This contrasts with point-to-point (P2P) networks, which tend to have numerous
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short-range connections between a small number of city pairs. P2P networks also have
relatively few nodes with low degrees, and many places are connected to multiple partners.
But it also should be noted that the network structures of airlines are not completely aligned
to one of these network types. Rather, many airlines are likely to show nuanced structures
in which the contrasting characteristics of the types are blended in a complex way.

This paper applies an objective quantitative classification scheme to explore the ge-
ography of a large number of airline networks. This application has current relevance as
an airline’s network structure greatly influences the fuel costs and pollutant emissions for
the amount of movement accomplished. Networks with longer range connections have
particular aircraft needs [6] and their resilience and ability to rebound from disruption
(such as COVID-19) depend on the extent to which the carrier is committed to a hub
structure [7,8]. Alternatively, it might be anticipated that point-to-point networks may be
capable of rapid rebound due to their operational simplicity. Airlines adapt their aircraft
fleets to the varying operational conditions induced by their network structures, which
results in differential economic/environmental effects.

The foundation of our approach lies in using measurements not only for the levels
of the direct and indirect connections of airports, but also their respective distributions.
This provides a framework for comparing networks based on their distinctive topological
characteristics. It is also useful to perform such a comparison because there is a strong
possibility that airlines with a similar network structure might have similar cost structures
and environmental impacts. This approach will provide a framework for airlines to address
issues such as cost allocation for their shared infrastructure. This refers to the problem of
sharing costs over multiple users of their links, and to impute costs and to understand the
effects of congestion and bottlenecks. The paper also adds to our understanding of network
organization as it identifies opportunities to add more links and may justify decisions to
acquire aircraft with new range characteristics, such as single-aisle high-efficiency medium-
haul jets (e.g., Boeing 737 Max).

2. The Literature

Air transport networks display complex topological characteristics, attributable to the
airlines operating various networking strategies and aircraft fleets. For example, Low Cost
Carriers (LCCs) tend to organize their route networks in the form of point-to-point networks
with single aircraft-type fleets usually consisting of narrow-body aircraft. Major network
carriers on the other hand, prefer the hub-and-spoke system, concentrating their flows on
a few main airports, and operating through a combination of small and large aircraft [9].
Also, through cooperating with major airlines, some regional airlines in the US and Europe
maintain routes that are usually feeder ones into the hub-and-spoke networks of major
airlines [10,11]. Recently, LHLCCs (Long-Haul LCCs) such as Norwegian have entered
the inter-continental-route markets through utilizing relatively new aircraft types with a
long range and of medium size [12]. Worldwide or regional air transport networks are
shaped by subnetworks of airlines reflecting their complex aircraft operations across routes.
Therefore, decomposing the subnetworks and comparing the topological characteristics
between them can be an effective way to understand useful details in the complex topology
of the aggregated network.

We are not the first to explore network structure. Indeed, there has been a fasci-
nating variety of prior works exploring many facets of the organization of air networks
(Further reading material is in the following: [13–15]). Network analysis has been widely
applied to complex air transport networks at varying geographical scales to characterize
their topologies, as well as to recognize the relevant network properties in the transport
systems [16–20]. This methodology is often applied to understand the topological features
of the worldwide air transport network (WAN). For example, Guimera et al. [17] examine
the large-scale structure of the WAN, and confirm the disparity between the centrality and
betweenness of core airports in particular, due to the reality of geopolitical constraints.
Woolley-Meza et al. [21] find unusual discontinuity in the node and link betweenness dis-
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tributions of the WAN such that the nodes and links of the network naturally segregate
into two distinctive functional groups. Wandelt and Sun [22] find stability in the scale-free
and small-world properties of the international air transport networks from 2002 to 2013.
Recent similar analyses focus on the emerging aviation markets including China, India, and
South East Asia, and also confirm the existence of those two properties in these regional
markets with rapidly growing network connectivity [23–27]. Identifying core hubs and
assessing their competitiveness, in terms of connectivity, is another topic addressed [20].
Also, the vulnerability/resilience of air transport networks to random or targeted events are
often examined based on topological properties derived through network analysis [28–30].
These studies focus on exploring the accumulated structures of global/regional air trans-
port networks through employing network- or node (and link)-level measurements. And
they regard hub airports as core observation targets that affect the overall structure of
the networks [26].

Finally, network analysis is often utilized to detect temporal changes in air transport
networks. For example, Azzam et al. [31] find non-stationarity in degree distributions
of the WAN for 1979~2007 because the rapid growth of the number of links leads to
the continuous densification of the network. (As a result, the average degree increases
while the average shortest path length decreases.) Recently, many studies have analyzed
the abrupt shrinkages in the worldwide or regional aviation markets during COVID-19
using network analysis [32–36]. These studies identify the differential changes (shrinkages
and recoveries) of network connectivity (and structure) affected by the geographical and
functional conditions of airports and routes. The structural changes in the networks during
COVID-19 reflect the various reactions of airlines to the market crisis, but few look at them
based on the subnetworks of airlines.

This research paper builds upon previous studies by focusing on subnetworks, i.e.,
networks of airlines within the WAN. Previous studies in network analysis have primarily
examined the overall shape and topological characteristics of airlines’ networks, which
are heavily influenced by the concentration of connectivity at hubs. Hub-and-spoke (HS)
and point-to-point (P2P) networks are well-known representative types in airline networks,
reflecting their operational strategies. However, in reality, airline networks often deviate
from these two types in terms of network structure. Many airlines fall somewhere on a
continuum between HS and P2P.

Based on network analysis, therefore, we propose a methodology for categorizing
airline networks into four types, as One-hub, Multi-hub, Complex, and P2P networks.
Recognizing gaps between the empirical networks of airlines and typical network types,
our methodology aims to classify airlines into meaningful types along the continuum
between HS and P2P by detecting variations in the presence and organization of hub-
and-spoke arrangements using node-connectivity and distribution measurements. We
then establish connections between the classified airlines and their distinctive network
structures and operational characteristics, such as aircraft size and route distance, to show
the usefulness of our classification method. This methodology not only enhances our
understanding of the variation in network structures among the airlines but also enables
us to track their short- and long-term changes resulting from various factors, such as
the impact of the COVID-19 pandemic. It serves as a foundation for comprehending the
dynamics of airlines’ network structures and their evolution over time.

The remainder of this paper is organized as follows. Section 3 provides a method
for classifying the networks of airlines into four types. Then, the results section examines
the topological and operational differences among 284 air carriers in the world, based on
their network types classified using our scheme. We conclude the paper with comments on
contributions, limitations, and next research steps.

3. Methods

This research develops a classification that selects single-hub systems (using the be-
tweenness distribution), point-to-point systems (using a power-law cut-off), and then
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multi-hub and complex systems (differentiated using the power-law slope). To operational-
ize this approach, we need some decision rules on these three dimensions. The rules are
applied to 284 airlines and are illustrated in greater detail for the top 30 (in terms of the
number of seats supplied) because the validity of the classification can be seen clearly
in these well-known airlines. The analysis considers direct links for passenger transport
between nodes as defined in the OAG flight schedules data in Q2 of 2012~Q1 of 2013.

3.1. Betweenness and Connectivity

Imagine a trip from an origin (O) to a destination (D). The route could be direct or
might pass through intermediate stops at hub locations. Each transition through a hub
generates an additional betweenness count. The sum of hops minus one is the same as
the sum of all the betweenness scores impinging on the hubs. In other words, every
OD pair contributes hops minus one to the betweenness at some intermediate nodes. For
example, consider nodes (A) and (D), connected by a 3-hop path A -> B -> C -> D. The path
clearly passes through 2 intermediate nodes (B and C) and therefore adds 2 to the overall
betweenness. Summing up over all the OD pairs, we get the total impact at all intermediate
places. Such scores would be low for point-to-point cases. We can also compute the
maximum betweenness over all nodes and the place where this occurs is almost certainly a
main hub. If a network has only one hub (allowing for a few incidental added links), then
all interactions must pass through that hub, and betweenness will approach its theoretical
peak value.

Counting betweenness and assigning the score to places in the network is a quick tool
for distinguishing hubs. A network with a peak level of betweenness (i.e., low dispersion, or
entropy) contrasts with a network with many nodes sharing moderate levels of betweenness
(and having a higher entropy score). For example, Emirates (EK) represents the former
case as the betweenness score percentage of their main hub (DXB) is more than 90%. As an
example of the latter, the percentages of Southwest (WN) betweenness scores are distributed
over a wider node set (see Figure 1). On the other hand, there are other carriers that show
somewhat moderate concentration patterns of betweenness scores on multiple nodes such
as Delta (DL) and China Southern (CZ), which indicates the necessity of employing other
complementary measurements. In our classification scheme, any node that accounts for
more than 5% of the total level of betweenness is classified as a hub. This score is used to
identify single-hub networks where one node dominates the betweenness.
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Figure 1. Distributions of betweenness score percentages of four air carriers (EK: Emirates, WN:
Southwest, DL: Delta, CZ: China Southern, dotted-line indicates 5% of betweenness score).

3.2. Power-Law Curve Fitting

When we organize the nodes by degree, we obtain a rank order distribution from the
rank 1 node (with the highest degree) to the lower order nodes that have a degree of one or
two. An analytical distribution for this, relating degree (D) to rank (R) is

D = k R −y

where k and y are empirical parameters chosen to fit particular data. The maximum value
of R is the number of ranked entities. A sketch of this relationship, in log form, is shown in
Figure 2 for Southwest Airlines (WN).
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In Figure 2, Panel (top left) shows the degree vs. the rank, in logarithm form. Panel
(top right) shows the gaps between degrees—computed as the step between degrees at
each rank—and computes the biggest such gap as 12 in this particular network. Generally,
this gap will be large for very bi-modal distributions and will be smaller when there is
greater continuity in rank sizes. In fact, the gap averages about 80% for one-hub systems
and 18.2% for point-to-point cases. The significance here is that the greatest difference
between node degrees is large for one-hub (bi-modal) networks, and much smaller for
point-to-point systems. Panel (lower left) shows the occurrence of each degree value. Few
nodes in this network have a degree of one, shown as the intercept on the y-axis. Panel
(lower right) shows the complementary cumulative probability for each degree level. This
curve measures the probability that a node has a degree greater than or equal to D (shown
on the x-axis). Of course, the probability that a node has a degree at least equal to one,
is one; recall that these values are plotted on logarithmic axes and log (1) = 0. The log
of probabilities (numbers less than or equal to 1) are less than 0. As we obtain higher
degree values, the probability of that degree or higher decreases. Fitting to this empirical
distribution provides the power-law parameter.

Interpreting Panel (lower right) helps us to understand the methodology we should
use: The first six points are in an area labelled as the cut-off. This means that the share of the
cumulative distribution accounted for in lower degree nodes (1–6) is not important to the
fitted distribution. To the right, the fitted complementary cumulative distribution function
(CCDF) is shown with a slope of −1.28. This corresponds to a power-law parameter
of −2.28 and is often reported without the sign, as it is added to the equation with a
negative sign.

To fit an empirical function to data of this kind, we use the robust fitting techniques pro-
vided by Clauset et al. [37]. Their paper endogenously estimates the cut-off and power-law
parameter according to a goodness-of-fit-based method. They describe the fitting procedure
as follows: (1) for each possible choice of the cut-off, estimate the power-law parameter
(slope) via the method of maximum likelihood, and (2) calculate the Kolmogorov–Smirnov
goodness-of-fit statistic Z. The selected cut-off is the value that gives the minimum value of
Z. In some cases, the power-law relationship fits only the upper portion of the data. This
occurs when the distribution has a large number of nodes with fairly high degrees. This hap-
pens for point-to-point systems, so identifying the cut-off can help facilitate their detection.

There are expectations regarding the size of the power-law parameter depending on
the type of network. Barabasi and Oltvai [38] show that values of this resultant parameter in
specific numerical ranges are “hub”-oriented: for b = 2 a hub-and-spoke network emerges,
and for 2 < b < 3 multi-hubs do. However, it is not enough to judge complex network
topology with that single parameter, since there are variations in empirical connectivity
patterns even between airlines that have similar power-law parameters. Also, there exist
some ambiguous networks, perhaps located on a continuum between hub-and-spoke and
point-to-point ones. Therefore, we suggest a classification scheme with multiple steps in
order to divide the various forms of airlines’ networks into four types.

A classification tree, allowing the cases to be broken into systematic categories, is
shown in Figure 3. There are four classification types, determined by exploring the networks
and defining their characteristic features. There are three elements to the classification rules:
(1) how many nodes have a large proportion of betweenness; (2) what the cut-off is; and
(3) what the power-law parameter is. A power-law analysis is useful here—especially with
the endogenous selection of a cut-off (i.e., an indication of the range of values where the
power law holds). Curve fitting software that endogenously determines the cut-off allows
us to find the range of values over which a power law fits—it is shown that cases with a
large cutoff value tend to be point-to-point networks.
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Figure 3. Classification tree moves from top to bottom, selecting single hub-systems (using between-
ness) as One-hub, point-to-point systems (using power-law cut-off) as P2P, and then Multi-hub and
Complex systems (differentiating them using the power-law slope).

Step 1: Detect the obvious one-hub systems called the One-hub type. For them,
there is typically an order of magnitude drop between the degree of the first- and second-
rank nodes. A simple way to confirm this pattern is that the single hub will have a
dominant proportion of all the betweenness scores. These systems also have one node with
a significant betweenness score. A pure one-hub system, without side connections, has
2(n − 1) edges, and a betweenness score of (n − 1)(n − 2).

Step 2: Determine cases with a large power-law cut-off, meaning that the power
law is fitted only to larger degree values. Typically, a cut-off of c ≥ 3.5 corresponds to a
point-to-point network called the P2P type, and the resultant degree distribution will have
a concave shape.

Step 3: Moving now to networks without a high cut-off, there are several systems with
very typical power-law parameters (a power law greater than 2), consistent with Barabasi,
these are classed as multi-hub systems and called the Multi-hub type.

Step 4: Detect systems that have such an unusual degree pattern that they are very
unlikely to be purely hub-based, for example systems where the average number of links
is multiple times the expectation for most other systems, which are called the Complex
type. (As a corroborating observation, there are many nodes with a high proportion
of betweenness).

4. Results
4.1. The Classification Results

Applying the classification routine to our 284 carriers’ networks yields a network
typology. Table 1 shows the descriptive statistics of the carrier networks sorted by the four
network types resulting from our classification scheme. For each type of network, we see
the number of associated carriers, the average size of the network in terms of nodes and
edges, the average number of nodes with at least a 5% share of the total betweenness, and
finally two measures from the fitted power law: averages of power-law exponents and
cut-off values, respectively. Each of the network types has distinctive descriptive statistics
compared to the other types; One-hub networks have the smallest number (on average) of
nodes with a significant proportion of betweenness (exactly equal to 1). P2P networks have
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the largest cut-off value (on average) with strong variability, which is in turn related to the
largest number of nodes with a significant proportion of betweenness. Multi-hub networks
have power-law exponents between 2 and 3 (as expected) while Complex networks have
ones less than 2. Even though they have a similar number of nodes with a significant
proportion of betweenness, these two network types show quite distinctive characteristics
in terms of their cut-off values on average; in our classification routine, the cut-off value is
not the criterion used to divide networks into Complex and Multi-hub types. The average
cut-off of Complex network carriers is close to the One-hub type (rather than the Multi-hub
type), while their average number of significant BC share nodes is the second highest
after P2P. This implies that the Complex type is close to a hybrid of the One-hub and
P2P network types; their networks are largely based on a few hubs but their connections
are more distributed over hub and non-hub nodes in a complex manner. Several possible
explanations for this observation are as follows: the Complex case might represent networks
that are still evolving towards the creation of a hub; another possibility is that the network
has emerged as an assemblage of other earlier networks, and the points of contact between
the two or more joined systems take on a special joining or gateway function. Finally,
some complex cases cover very far-flung regions (e.g., Qantas) so it is possible that their
complexity arises from arms stretching far beyond their core neighbourhood. The results
indicate the importance of the complementary use of the three measures because of their
distinctive scope in characterizing network structure.

Table 1. Descriptive statistics of 284 carriers using four network types.

Network Type Number of
Carriers

Average (std.)
Number of Nodes

Average (std.)
Number of

Edges

Average (std.)
Number of

Nodes with BC
(>5%)

Average (std.) of
Power-Law
Exponents

Average (std.) of
Cut-off Values

One-hub 45 65.47 (35.92) 164.53 (96.16) 1.00 (0.00) 2.58 (0.45) 1.13 (0.40)

P2P 33 55.03 (37.91) 392.09 (462.13) 4.82 (1.70) 2.96 (0.45) 6.85 (4.19)

Multi-hub 187 44.95 (52.05) 152.89 (251.51) 3.93 (1.51) 2.55 (0.43) 1.85 (0.66)

Complex 19 50.90 (35.46) 230.21 (258.02) 4.05 (1.43) 1.87 (0.11) 1.05 (0.22)

Total 284 49.77 (47.93) 187.70 (279.72) 3.58 (1.82) 2.55 (0.48) 2.26 (2.28)

The results of applying this analysis to the top 30 airlines are shown in Table 2. The
networks are organized in groups by type, One-hub, P2P, Multi-hub, and Complex, based
on the tabulated values of their scores. The top 30 carriers are among the most recognized
airlines with very large passenger flows. We used these because they are thought to be easily
characterized, visualized, and understood examples of the types of carriers, and so our
classification results will in some sense be unsurprising for them. For example, the contrast
between Delta and Southwest is clear in their operations and in the statistics we present.
We also present selected organized graphics from these main cases. We then use that same
method for many hundreds of other carriers. The top 30 cases provide a manageable set of
networks where the known characteristics of the cases are widely appreciated.

Table 2. Summary of 30 air carrier networks with measurements related to the network
classification scheme.

Airline Carrier
Code Nodes Edges Nodes with

>5% BC Cut-Off Power-Law
Exponent p Goodness of

Fit Type

Emirates EK 114 246 1 1 2.97 0.27 0.02 One-hub

Turkish Airlines TK 186 499 1 1 2.46 0.90 0.01 One-hub

Iberia Airlines IB 127 408 1 1 2.06 0.66 0.03 One-hub

KLM Royal Dutch KL 135 268 1 1 3.50 0.19 0.03 One-hub

Alitalia AZ 87 289 1 1 2.01 0.75 0.03 One-hub

Southwest Airlines WN 73 1012 6 7 2.28 0.43 0.07 P2P
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Table 2. Cont.

Airline Carrier
Code Nodes Edges Nodes with

>5% BC Cut-Off Power-Law
Exponent p Goodness of

Fit Type

Ryanair FR 161 2278 5 24 3.35 0.39 0.09 P2P

easyJet U2 132 1272 6 19 3.07 0.26 0.11 P2P

TAM Brazilian Airlines JJ 65 345 6 7 2.67 0.58 0.09 P2P

Air Berlin AB 142 1123 6 4 2.01 0.45 0.06 P2P

Delta Air Lines DL 353 1925 5 2 2.05 0.30 0.04 Multi-hub

United Airlines UA 404 2164 8 3 2.28 0.00 0.07 Multi-hub

American Airlines AA 273 1088 4 2 2.36 0.01 0.08 Multi-hub

US Airways US 209 888 3 2 2.37 0.00 0.14 Multi-hub

Lufthansa LH 219 924 3 2 2.43 0.00 0.08 Multi-hub

Air France AF 193 708 3 1 2.00 0.15 0.04 Multi-hub

All Nippon Airways NH 81 351 4 2 2.06 0.40 0.07 Multi-hub

Air China CA 121 528 2 2 2.07 0.53 0.05 Multi-hub

British Airways BA 171 411 4 1 2.49 0.07 0.04 Multi-hub

Gol Transportes Aéreos G3 62 336 5 3 2.05 0.15 0.10 Multi-hub

Japan Airlines JL 72 231 6 1 2.00 0.07 0.07 Multi-hub

Air Canada AC 176 716 3 2 2.27 0.04 0.07 Multi-hub

Lion Mentari Airlines JT 42 139 5 2 2.11 0.30 0.09 Multi-hub

Scandinavian Airlines SK 95 383 3 2 2.14 0.10 0.08 Multi-hub

Korean Air KE 110 284 2 1 2.40 0.31 0.03 Multi-hub

Alaska Airlines AS 96 372 4 2 2.29 0.86 0.03 Multi-hub

Saudi Arabian Airlines SV 102 408 4 2 2.59 0.00 0.11 Multi-hub

China Southern Airlines CZ 134 988 2 1 1.61 0.00 0.10 Complex

China Eastern Airlines MU 126 806 4 1 1.63 0.01 0.08 Complex

Qantas QF 73 272 6 1 1.87 0.45 0.05 Complex

From these results, Figure 4 represents three exemplary networks for each of the
four groups, respectively (see Figure 4a–d). There is a stark organizational contrast between
those at the top of the table (e.g., Emirates) and those at the bottom (e.g., Ryanair).

• The first type of network is a One-hub network, with some added links in a few
cases. The networks included here have degree distributions with a convex shape of
distribution and power-law parameters that are generally greater than two. Overall,
there are 45 airlines in this group. Five clear examples are Emirates, Alitalia, Turkish
Airlines, KLM Royal Dutch Airlines, and Iberia Airlines.

• P2P networks have a very different configuration from Figure 4a. In these cases, the
distribution of nodes cuts off those with small degrees. In other words, the fitted curve
begins to the right of the origin. Their rank-size distributions tend to be concave. These
cases have a plausible power-law parameter applied to the relevant range. Many more
nodal pairs are directly connected. Overall, 33 airlines have these type of networks;
typical cases are Southwest, Ryanair, and easyJet

• The third type of network is best thought of as a Multi-hub connection pattern, rep-
resented by a convex-shaped distribution and a power-law parameter consistently
between two and three. This group includes the bulk of the networks including Delta,
American Airlines, Lufthansa, and others.

• Finally, in the Complex networks the power-law-fitted parameter is below the usual
range (two to three) and the diagram of the network shows that there is a large number
of interconnected nodes without having either a completely connected system or a
hub system. Three example cases are China Southern Airlines, China Eastern Airlines,
and Qantas.
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with NodeXL.

4.2. Structural and Operational Contrasts between the Four Network Types

Figure 5 represents the distinctive distributions of network density among the 284 carriers
classified using the four network types. The network density is a ratio of the number of
actual direct connections to the potential maximum; computed from the number of nodes
as [n(n − 1)]. Overall, One-hub carriers show the lowest density trend with the smallest
variation, as their average density (std. of densities) is 0.06 (0.04). This indicates the strong
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dependence of these carriers on a single hub to run their networks, using only 6% of the
potential connections. This is compared to other network types. Particularly, P2P carriers
show the highest density (on average) with the largest variation, which reflects the varying
connection levels among carriers of this type caused by their operational simplicity in
connecting cities. (This corresponds to the differential descriptive statistics of nodes and
edges between the One-hub and P2P carriers shown in Table 1). Multi-hub- and Complex-
type carriers show intermediate distributions between the distributions of the One-hub
and P2P carriers.
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Figure 5. Network density distributions of 284 air carriers using four network classes.

Figure 6 shows the operational contrast between the four types of carrier networks
through the shares of their fleet operations (upper) and of output generated by these opera-
tions, i.e., seat-nautical miles (lower) of air carriers in each network type and each range
of aircraft size (0–100, 100–200, 200–300, 300–400, greater than 400 seats) (The operational
statistics of the airlines, including flight counts and seat-nautical miles, are compiled based
on passenger flight schedules of categories G and J in the OAG data). The operations of
P2P carriers are highly concentrated on 100–200-seat aircraft such as the Airbus A320 and
Boeing B737 series; their share is 89.6%, while wide-body aircraft operations are about
3% (200–300-seat a/c, 2.63%; 300–400-seat a/c, 0.5%, and greater than 400-seat a/c, 0%,
respectively). This contrasts with the other types of carrier networks. Even though the
operational concentration on the 100–200-seat aircraft is similar to the P2P case, aircraft
utilization on the other network types are relatively distributed over the five aircraft size
ranges. Their shares of the 0–100-seat aircraft operations are obviously higher than the
P2P share; the shares of One-hub, Multi-hub, and Complex carrier networks are 26.1%,
41.0%, and 25.4%, respectively. Particularly, the Multi-hub type’s share is higher than
others, showing a similar level with its 100–200-seat aircraft operations. Generally, network
carriers utilize regional aircraft (less than 100 seats) to maintain their regional markets,
as well as to deliver transfer passengers to their hubs. Multi-hub carriers are likely to
cover broader regional markets based on their multiple hubs, so the utilization of small
aircraft is more frequent than other network types. Complex network carriers show a
similar pattern to the One-hub type in terms of the distribution of their fleet operations
according to aircraft sizes. But their operational share of mid-size aircraft (100–200-seat)
is larger than the One-hub case, which is connected to the smaller proportions of large
aircraft (greater than 200-seat) in their operations. As mentioned earlier, Complex type
carriers have a hybrid topology largely shaped by a single-hub-based network with denser
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connections than the One-hub case, so that mid-size aircraft are likely to be utilized for
extensive route markets.
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Figure 6. Proportions of aircraft operations (upper) and seat-nautical miles (lower) by aircraft
sizes (0–100, 100–200, 200–300, 300–400, greater than 400 seats) and network types (One-hub, P2P,
Multi-hub, Complex).

The share patterns of seat-nautical miles (the lower figure in Figure 6) are quite dif-
ferent from those of fleet operations. The concentration of P2P networks on 100–200-seat
a/c slightly decreases, while its share of the larger aircraft increases a little (200–300-seat
a/c, 9.9%; 300–400-seat, a/c 4.4%). On the other hand, the One-hub type shows remark-
able changes from its operation share patterns as its shares of 100–200-, 200–300-, and
300–400-seat a/c are almost evenly distributed at around 30%. Overall, the proportions of
less than 200-seat a/c operations across the four network types tend to be smaller while
large aircraft sizes (greater than 200-seat) show larger shares than their flight frequency
shares. Such a distributed trend is related to the airlines’ practice of aircraft utilization;
wide-body aircraft are usually employed in medium- and long-haul markets, so that the
supplied seats and flight distances in their operations weigh more for seat-nautical miles
than small aircraft operations. The share patterns of the One-hub and P2P networks are
clearly distinguished, and those of Multi-hub and Complex types are located among them.

Along with the comparison above, another useful way to contrast the types of net-
works, with significance for their resilience and exposure to downturns, is to plot the
proportions of their aircraft operations (the upper figure in Figure 7) and seat-nautical miles



Sustainability 2023, 15, 15111 13 of 17

(the lower figure in Figure 7) in each distance band (0–500, 500–1000, etc.). Clearly there is a
large active level in short ranges for the P2P type networks, and large proportions in longer
ranges for the One-hub systems. It also makes sense that the Multi-hub systems have more
short links (to their available hubs) and less extreme use of long distances than a single-hub
system. In terms of resilience and sustainability, COVID-19 essentially grounded large parts
of KLM and Lufthansa. This is consistent with our view that the major contrast between
airlines is between the One-hub systems with high reliance on a central hub (and long
connections to that hub—e.g., Lufthansa and Emirates) and P2P carriers such as Ryanair
and Southwest Airlines. Ryanair was especially flexible in rebounding after COVD-19 and
picking up portions of other failed operations (including Lufthansa’s low-cost affiliate).
While in normal circumstances we might simply say that these are two different ways to
organize the system, under extreme pressure from a loss of demand, the hub system is
particularly vulnerable as there is an almost complete collapse of the inter-regional traffic
needed to sustain the major central hub. P2P carriers, in contrast, have shorter routes, and
an apparent ability to rebound quickly as some of these routes come back online. In other
words, the P2P network’s solution does not rely on the recovery of the entire system to
make some parts workable.
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In sum, the four network types show distinctive characteristics in terms of operations,
as well as network topology. The One-hub networks show the simplest topology in which
connections are largely concentrated on a hub, but operations through the networks are
quite distributed across varying aircraft sizes and route distances. Even the distributed
patterns are strengthened in their seat-nautical mile proportions due to the large influence
of large aircraft and long-haul routes on the operational output. In contrast, the P2P
cases show disordered structures in which a dependency on a few core nodes is not clear,
while operations through the networks are concentrated on particular aircraft types (and
sizes) and distance ranges. The topological and operational features of the Multi-hub and
Complex networks are positioned between those two typical types. But it should be noted
that the Multi-hub networks have more feeder lines with low connectivity (as shown in
their larger cut-off value on average) maintained by small aircraft operations than the
Complex type.

5. Conclusions

There are many ways to detect hubs. Some recent research, for example, contrasts
nodal flow-based measures with the size-based functional definition of hubs by the FAA
(see [39]). Also, work has attempted to synthesize a merged network, which tends to have
a concave shape for its degree distribution, due to the amalgamation of places from unique
networks. Imagine airlines building their networks from existing cities. Each network is
layered on top of others. Networks are likely to connect to at least some higher degree
nodes that have a strong level of inter-hub connection. As the size of the number of data
points grows, it becomes increasingly unlikely that a new previously undiscovered node
can emerge with a high degree of connection [3]. These nodes have a consistent level of
connection with other non-hub nodes and there are also relatively small levels of point-
to-point contact between the non-hub nodes. There is a considerable drop in the number
of nodes attached to each sequentially smaller hub. This is essentially the preferential
argument used by Barabasi and Albert [40], and an added result is that an amalgamation of
many underlying large networks results in a concave-shaped degree of distribution, having
improved the point-to-point characteristics.

We can easily detect a single hub case, such as Emirates Airlines, because there is such
a concentrated level of betweenness at the core hub (DXB). Intermediate cases occur where
there is a clear level of break between the hubs and the non-hubs. Heterogeneous networks
such as British Airways and United Airlines have a lot of direct connections, as well as
long-haul connections between far-flung portions of their system. This creates the small-
world phenomenon of a small number of hops needed to connect even the most distant
pairs. And then there are clearly non-hub systems organized around more point-to-point
organization such as Southwest Airlines, Ryanair, and others.

We might also recall the numerical values of the power-law parameter suggested above:
values between two and three. Recognizing the need to include bimodal distributions,
it is interesting to re-examine what part of that distribution has a power-law parameter.
When a minimum cut-off is used, the upper degree nodes follow a linear power law. A
feature of this work is that it helps with the detection of the number of hubs and it adds
empirically based features to the discussion of power laws in terms of their relationship to
hub networks.

This paper focuses on developing a network classification methodology for individual
air carriers, based on utilizing measurements related to the levels of connectivity within
their distributions. Applying the scheme results in sorting 284 air carriers into four network
types, as One-hub, P2P (Point-to-Point), Multi-hub, and Complex networks. We confirm
the clear contrast between the resulting One-hub and P2P networks with respect to network
topology and carrier operation. Multi-hub and Complex networks are positioned between
these types. Particularly, the Complex networks display hybrid characteristics, mixing the
One-hub and P2P types. While no single network type is an obvious survivor under all cir-
cumstances, the system gains resilience from the multiplicity of network types. One strategy for
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airline partnerships would be to include components that have a strong regional presence
in disparate areas, linked by robust and survivable inter-hub connections. In the event of a
downturn, the most essential recovery would appear to be intense short- to medium-range
interactions (intra-European, intra-US, intra-Asia) followed by the reconnection of global
links (say, Singapore to NYC). Although we validate our classification scheme through
exploring the distinctive characteristics of the four network types, the Complex type should
be investigated in more detail in future, since it has mixed properties from the other net-
works. A time-series analysis could be a way to understand the type through tracing the
topological network changes of individual air carriers. Furthermore, actual passenger or
freight flow patterns can be utilized to further characterize the four network types. Flows
between two cities are likely to be composed of direct, one- and multiple-stop trips via a
few hubs. It is likely that a distinctive proportion of those pathway types will be shown
among airlines; exploring the differential percentage patterns between the network types
can be a base from which to understand the distinctive characteristics of the networks.

Finally, this paper has opened up an interesting puzzle in terms of sustainability. We
have demonstrated a trade-off between an airline network configuration and its efficiency,
and the resilience and sustainability of these cases co-vary as well. A very efficient hub
system, with perhaps some added direct side-connections, with economies of scale and
network effects, likely wins in terms of efficiency. But, as we saw in COVID-19, such
systems can be subject to catastrophic collapse (due to the interdependence of all their
flows). Thus, the hub system is vulnerable to failure in terms of resilience. In contrast, a
point-to-point system has separable components that can individually survive some types
of collapse, but as we know, this also requires many smaller (and possibly less efficient)
aircraft. When the system is highly tuned and the aircraft are modern and fuel-efficient, the
resilience coupled with the effective use of aircraft and minimization of passenger miles,
can possibly give the system an edge. As for sustainability, more research is needed to
reach definitive conclusions about the winners and losers.
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