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Abstract: In recent years, the ecological safety issues of red mud tailings ponds have been frequent,
with problems such as the seepage damage of anti-seepage materials at the bottom of tailings ponds,
failure of anti-seepage systems, and leakage of pollutants. In order to deeply analyze the influence of
red mud (RM) leachate on the microstructure of the modified red clay (RC) anti-seepage layer, this
article explores the influence characteristics of strong alkaline RM leachate on the microstructure
of a modified RC anti-seepage layer under actual working conditions through a combination of
permeability tests and microscopic characterization. The results showed that as the RM leachate
permeation time increased, varying changes occurred in the permeability coefficient of the modified
RC with different FA contents, among which the permeability coefficient of the modified RC with an
8% FA content showed a significant decreasing trend, reaching 5.98 × 10−11 m/s after stabilization.
After permeation, numerous small pores were generated in the modified clay; furthermore, the small
particles of the FA-modified clay were significantly reduced compared to pure clay. As the permeation
time increased, the 8% FA-modified RC showed a phenomenon of first increasing and then decreasing
in specific surface area, with a small change from 27.71 m2/g to 27.52 m2/g, indicating that this
sample had high stability and the specific surface area was not significantly affected by permeation.
This is mainly caused by the influence of gelling materials produced by the pozzolanic reaction and
activation effect upon FA addition. The soil structure became more compact at the microscopic level
with increasing FA content, resulting in particle aggregation, increased specific surface area, and
narrowed small-pore size distribution. After 60 days of permeation, the single-shoulder peak of the
8% FA-modified RC was still the lowest at about 0.30 dV/dr. Compared to other samples, the pore
size was smaller and less affected by the leachate. Overall, the microstructure of the 8% FA-modified
RC was less affected by the leachate. This study provides an explanatory basis for the macroscopic
mechanical phenomena by analyzing the influence of microstructure. It further provides a reference
for studying the selection of anti-seepage materials.

Keywords: modified red clay; red mud leachate; microstructure; adsorption characteristics; permeation
time

1. Introduction

Tailings are mining components with low useful content and are currently unusable for
industrial production purposes, thereby constituting a significant component of industrial
solid waste [1]. Recently, tailings-related safety issues have become an increasingly impor-
tant cause for concern, whereby the leakage of pollutants and destruction of anti-seepage
materials—which lead to the failure of the anti-seepage system—have become hot topics of
research regarding efforts to ensure the safety of the external ecological environment of
tailing ponds [2,3]. Red mud (RM) is an industrial solid waste consisting of very fine mud
particles produced in the process of bauxite production of alumina, which possesses high
alkalinity and a high salt content and contains heavy metals. Currently, the tailing pond
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storage method is primarily used for RM disposal [4]. By 2020, the cumulative stock of RM
in the world had exceeded 2.7 billion, which not only occupies a large amount of land and
wastes resources, but also may cause serious environmental pollution and safety hazards [5].
According to the 2021 Central Inspection Report [6], an aluminum company located in
southwestern China experienced a phenomenon of RM permeation and leakage testing
in a RM reservoir in 2013, which had a significant impact on the ecological environment.
However, highly alkaline RM leachate will have a salinization effect on the foundation clay
layer of the RM tailing pond, which can change the structure and chemical composition of
the clay layer, thereby affecting its strength as well as the safety and stability of the tailing
pond [7,8]. Given that most RM tailing ponds currently rely on clay anti-seepage layer
materials, it is necessary to characterize the effect of RM leachate on the microstructure
of the modified clay anti-seepage layer to ensure the safe operation of RM tailing ponds,
which can provide theoretical support for the improvement of clay anti-seepage layers.

As clay, which is the main component of a compacted clay liner (CCL) system, has a
large specific surface area, a high cation exchange capacity, and a very strong hydrophilicity,
it can cause some pollutants present in the leachate to be retained in the anti-seepage layer.
For example, suspended solids and metal ions can adhere to the pore space of the clay
through the sedimentation effect [9,10], thus playing a dual role as both a chemical and a
hydraulic barrier [11]. However, in practical engineering applications, clay properties are
often changed by introducing different additives to enhance their anti-seepage properties.
Sophia and Swaminathan [12] studied the electrolysis and stabilization of sludge by doping
FA and cement. They found that doping with these two substances resulted in a substantial
reduction in the leaching of chromium ions. In turn, Paramasivam et al. [13] mixed FA and
sludge into clay of different densities to make 30 cm high soil columns by molds, which were
then soaked with heavy metal-ion solutions. Their results showed that the clay of medium
density was able to indirectly influence the leaching and downward transport of various
elements, thus demonstrating a higher capacity to block heavy metals (except for lead).
Similarly, Jeyaseelan and Qing [14] and Zhang et al. [15] used sludge ash and alkaline tailing
materials to create modified soil using a certain blending ratio for ecological restoration.
Their results showed that the soil samples blended with sludge, and ash had a positive effect
on the reduction of their cadmium and lead contents. Furthermore, Metelková et al. [16]
altered the pore size and, hence, the permeability coefficient of clay by adding CaO, and
the pore size of the clay continued to decrease over the 360-day maintenance period with a
CaO content of 4–8%, whereas it did not change at a 1% CaO content.

When leachate is transported in the clay anti-seepage system, the interaction between
the leachate and the geotechnical medium leads to changes in the microstructure of the
material, such as porosity and media properties, which directly affect the permeability of
the material to the leachate [17–20]. Thus, for example, in a study of waste leachate-induced
structural changes in clay, Oztoprak et al. [21] found that leachate effectively separated
illite from clay by cation exchange, leading to structural disintegration, the formation of
flocculated particle arrangements, and a reduction in clay strength. Additionally, through
column tests, Guo et al. [22] found that when leachate flow rate was low, the leachate and
clay mainly underwent a chemical reaction whereby some alkaline pollutants in the clay
were dissolved, consequently reducing the extent of soil particle cementation, clay strength,
and clay ability to resist deformation. In order to further understand the mechanism of
clay structural changes under leachate action, many researchers have conducted micro-
characterization and adsorption tests to study the micro-mechanisms at play. As a case in
point, Ural et al. [23] showed that unexplained clay macroscopic physical or mechanical
behavior can be elucidated using scanning electron microscopy (SEM) to examine the
microstructure of clay particles and additives. Further, Zhang et al. [24] demonstrated the
law of pore structure changes after the adsorption of the heavy metal Cd(II) by modified clay
through an adsorption test. The results showed that the ideal maximum adsorption amount
of Cd(II) by modified clay increased markedly, and the incorporation of an appropriate
amount of sludge ash had a positive effect on the improvement of the specific surface areas.
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Consistently, Zhao et al. [25] conducted microstructural and mechanical tests on compacted
clay contaminated by waste leachate and showed that leachate contamination led to a
decrease in the montmorillonite content of compacted clay, which disrupted the aggregate
structure and caused an increase in the relative porosity of the smaller pores.

In summary, many researchers have studied the influence of leachate on the microstruc-
ture of the clay anti-seepage layer using experimental and characterization methods. How-
ever, most of them have focused on the waste leachate, whereas few have studied the strong
alkaline RM leachate. Therefore, to further analyze the influence of highly alkaline RM
leachate on the microstructure of a modified clay anti-seepage layer with different fly ash
(FA) contents, we combined a permeability test with microscopic characterization under
actual permeation conditions. The objective of this study is to analyze the effect of RM
leachate on the microstructural changes of FA-modified clay through permeation in order
to obtain the least affected modified clay. This study could provide an explanatory basis for
the macroscopic mechanical phenomena by analyzing the influence of microstructure and
further provide a reference for studying the selection of anti-seepage materials.

2. Materials and Methods
2.1. RC and FA Properties

The clay used in this study is a type of red clay (RC) found around a RM tailing pond
in southwest China. A soil sample of 1 m below the ground surface was collected, loaded
into high-density HDPE sampling barrels, sealed, and transported back to the laboratory
for relevant tests. FA was collected from a power plant in Chengdu, China. The specific
testing methods and results description of RC are detailed in our previous research [26].
The properties of RC and FA are listed in Table 1.

Table 1. Properties of RC and FA.

Physical Properties of RC

Liquid
Limit (%)

Plastic
Limit (%)

Plasticity
Index (%)

Initial Moisture
Content (%)

Optimum
Moisture

Content (%)

Maximum
Dry Density

(g/cm3)

Specific
Gravity (Gs)

Compression
Index (Cc)

Swelling
Index (Cs)

46.1 29.8 16.3 13.55 24 1.64 2.71 0.05 0.024

Chemical composition (%)

Constituent SiO2 Al2O3 Fe2O3 CaO Na2O MgO K2O Others
RC 55.96 26.16 6.37 0.06 0.12 0.66 1.0 9.66
FA 49.40 28.87 5.8 3.49 0.90 0.78 2.43 8.32

2.2. Leachate Properties

The RM leachate used in the test was collected from the drainage pipe of a RM tailing
pond in southwest China. Various parameters, including pH, electric conductivity (EC), and
oxidation-reduction potential (ORP), of the leachate samples were measured immediately
after sampling. A portable multifunctional (pH-ORP-EC-TDS-DO) water quality detector
(Model SD150D, Beijing Starwood Technology Co., LTD., Beijing, China) was used to test
the parameters of the leachate. The leachate sample was sealed in an HDPE sample bottle
and brought back to the laboratory for testing. Please refer to our previous research for
the specific testing method and result description of the leachate [26]. Hydrochemical
parameters and elemental composition of the RM leachate are summarized in Table 2.
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Table 2. Hydrochemical parameters and elemental composition of RM leachate.

pH EC@25
◦C/mS-cm−1

ORP
/mV

Ionic
Strength

/mM

Elemental Composition (mg·L−1)

Al Ca Na Mg K Si Cl− F− NO2 SO42− Cr Cr
(VI)

12.6 51.1 −110.0 484.3 745.5 57.1 10650 10.5 81.8 89.9 6490.5 121.8 483.4 7453.3 5.9 1.76

2.3. Sample Preparation and Permeability Test

For the purposes of this experimental work, five types of modified RC samples were
designed with FA contents of 0% (pure RC), 2%, 4%, 6%, and 8%. RC samples were passed
through a 5 mm sieve and mixed with FA in the specified proportion, after which the test
samples were compacted at optimum moisture content and 95% of their maximum dry
weight. The permeability test was conducted using a flexible wall infiltrometer. Sample
preparation and test setup are shown in Figure 1.
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Figure 1. Sample preparation and permeability testing device.

In the permeation process, the designed fixed effective perimeter pressure was 24.0 kPa,
and the inflow-head RM leachate was 160 cm to simulate the actual permeability of the
bottom of the RM tailing pond.

2.4. Characterization by SEM

In order to visually compare the changes in the microscopic pore structure of RC before
and after FA modification, SEM was used to analyze the morphologies of the representative
0%, 4%, and 8% FA-modified RC samples, for which purpose these were air-dried prior
to the preparation of the clay cross-sections through scissor cutting. The samples were
produced into a block with length, width, and thickness all less than 1 cm and a mass
of less than 200 g. Samples were then fixed on the stage with conductive adhesive and
scanned by a SEM instrument, FEI Inspect F50, USA. The 100 µm scale images were used for
comparison of the modified RC with different FA contents, with 10.00 kV HV, 1000× mag,
9.9 mm WD, SE mode, ETD det. The 10 µm scale images were used for comparison of
the modified RC before and after the permeability test, with 10.00 kV HV, 10,000× mag,
10.0 mm WD, SE mode, ETD det.

In order to observe the electron microscope scanning images of the modified RC before
and after permeation more intuitively, digital image processing technology was used for
processing [27]. Firstly, the image is contrast-enhanced to improve its clarity and visual
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effect, aiming to transform the image into a state that is easier to process and analyze. Then,
the image is binarized using two color components black and white to represent the image,
resulting in a pixel value of 0 (all black) and a pixel value of 255 (all-white image). After
denoising, a smooth binary image is obtained.

2.5. BET Pore Analysis

The principle underlying the gas adsorption method to determine the specific surface
area of a material is based on the adsorption characteristics of gases on solid surfaces.
Specifically, the surface of the measured sample particle (adsorbent) has a reversible phys-
ical adsorption effect on the gas molecule (adsorbate) at ultra-low temperatures under
any particular pressure. Further, there is a certain equilibrium adsorption amount corre-
sponding to any given pressure [27]. Hence, by determining this equilibrium adsorption
amount, the specific surface area of the sample can be equivalently calculated using a
theoretical model.

In this work, the BET pore analyzer (Micromeritics ASAP 2460, Norcross, GA, USA)
was used to determine the surface area of the modified RC. The experimental setup param-
eters include 77.350 K analysis bath temp, 10 s equilibration interval, none low pressure
dose, no automatic degas, and 1.000 g/cm3 sample density.

The BET theoretical [28] calculations are based on the multilayer adsorption equation
derived from the classical statistical theory by Brunauer, Emmett, and Teller to obtain the
monolayer adsorption amount (Vm, Formula (1)) and calculate the specific surface area:

P
V(P0 − P)

=
1

VmC
+

(C − 1)
VmC

× P
P0

(1)

where V is the total volume of adsorbed gas at equilibrium pressure = P; Vm is the volume
of gas required to cover the catalyst surface with the first full layer; P is pressure of the
adsorbed gas at equilibrium at the adsorption temperature; P0 is the saturated vapor
pressure; and C is the absorption-related constant.

3. Results and Discussion
3.1. Permeability Characteristics of Modified RC under RM Leachate
3.1.1. Permeability Behavior of Modified RC

The value of the permeability coefficient of the RC anti-seepage layer is an important
indicator of the anti-seepage performance of the clay liner, which will change under the
long-term corrosion of RM leachate [29]. The variation in the value of the permeability
coefficients of the different FA-modified RC corroded by RM leachate is shown in Figure 2.
In the early stage of the permeability test, the value of the permeability coefficient of the
compacted modified RC increased with increasing FA content, while at the later stage of
the test, it varied with FA content. In particular, the permeability coefficient for the 8% FA-
modified RC stabilized at 5.98 × 10−11 m/s, which is smaller than the corresponding values
for the 4% or 6% FA-modified RC, showing a relatively downward trend. It indicates that
the 8% FA-modified RC is significantly affected by permeability, but its anti-seepage ability
is enhanced. However, pure RC with a 0% FA content showed the smallest permeability
coefficient, with a value of 9.87 × 10−12 m/s.
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Figure 2. Permeability coefficient of modified RC with different FA contents after RM leachate
corrosion.

3.1.2. Cause Analysis

The incorporation of FA into clay induces a short-term hydrolysis reaction and a long-
term pozzolanic reaction [30]. In the early stage of the permeability test, the hydrolysis
reaction mainly occurred between FA and the RC, whereby the CaO and MgO contained in
the FA became rapidly hydrolyzed to produce a large number of free Ca2+ and Mg2+ cations.
The RC surface is negatively charged; hence, the electrostatic attraction between cations
became stronger as their valence increased, causing the concentration of the high-valence
cations to rise, the diffusion layer to become increasingly thinner, and the internal structure
of the RC to become more compact and stable. In turn, in the later stages of the permeability
test, FA activity was enhanced due to the alkaline environment induced by RM leachate
permeation [31]. As permeation time increased, FA reacted with the active minerals in the
soil, including SiO2 and Al2O3, producing calcium silicate hydrates (CSH) and calcium
aluminate hydrates (CAH). The crystals formed from the pozzolanic reaction and CAH
acted together on the soil particles and the recycled fine aggregate particles to strengthen
the overall structure of the soil through continual interaction, thus resulting in a stronger
and more water-stable soil. This effect can become more pronounced with time [32]. In
addition, the slow pozzolanic reaction of FA causes the pore size within the clay to become
progressively smaller, whereas a compacted modified RC with a high FA content has a
lower permeability coefficient because more pores are involved in the bonding with more
FA, and less permeation of the RM leachate occurs [33].

3.2. Effects of RM Leachate on Modified RC Micro Particles
3.2.1. Comparative Analysis of SEM Results

Images from SEM observations of the modified RC with different FA contents are
shown in Figure 3. Compared to pure clay, the 4% and 8% FA-modified RC showed a
more compact structure, better connectivity, and a smoother surface, indicating a high
level of reinforcement of the clay pore structure by FA. Meanwhile, in the RC with 4%
and 8% FA contents, it was evident that granular material was tightly bound in the clay,
particularly in the case of the 8% FA-modified RC. The microscopic morphology of FA
showed the presence of a large number of glass beads, which were sufficiently filled in the
pore structure of the clay after maintenance [34].
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To compare the microscopic pore structure changes of the modified RC anti-seepage
layer after RM leachate permeation, representative pure clay, 4%, and 8% FA-modified
RC samples were examined using SEM before and after 60 days of permeation. The SEM
images at a 10 µm scale are shown in Figure 4. As can be seen, the compacted modified RC
particles were transformed from large lumps before permeation into many small particles,
with their overall state changing from smooth and compact to rough and loose. Further,
various small pores were generated in the modified RC after permeation. Compared to
pure clay, the small clay particles of the FA-modified RC were significantly reduced, which
was consistent with results reported by Zhao et al. [25].
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3.2.2. Quantitative Analysis of Particle Changes

To facilitate the identification of particles and perform numerical statistical analyses,
the contrast enhancement diagram, binarization diagram, and identification diagram of
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compacted FA-modified RC before and after 60 days’ permeation under RM leachate are
shown in Figure 5.
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Based on the recognition image, the changes in the size and quantity of clay particles
in the scanning electron microscope image were calculated. The changes in the number,
area, and average maximum radius of the particles before and after the permeation of RM
leachate and under different FA contents are shown in Table 3.

Table 3. Electron microscope scanning image data obtained through digital processing.

Unit: Pixels
0 Day-Permeation 60 Days-Permeation

0% 4% 8% 0% 4% 8%

Image area 146,000 146,000 146,000 146,000 146,000 146,000
Number of particles 1127 928 1034 1542 1464 1372

Particle area 69,648 58,556 64,831 69,852 72,468 63,249
Maximum area of particles 10,959 12,697 15,212 6689 9837 7043

Average particle area 61.8 63.1 62.7 45.3 49.5 46.1
Maximum perimeter of particles 2675 2907 3379 1842 2441 2062
Average perimeter of particles 19.3 22.5 23.4 13.8 14.1 15.3

Maximum particle radius 199.7 180.2 247.6 151.4 184.1 161.1
Average maximum particle radius 3.1 3.5 3.8 2.5 2.7 2.6

Digitizing the micro electron microscope images reflected the changes in the micro
pore particles of compacted FA-modified RC before and after the permeation of RM leachate.
After the permeation of RM leachate, the overall number of modified RC particles signifi-
cantly increased. Among them, pure RC particles with 0% FA content were the most, while
the number of particles in 4% and 8% FA-modified RC was relatively smaller. The overall
particle area did not change much before and after permeation, while the maximum and
average particle areas of the particles significantly decreased after the permeation of RM
leachate. The maximum perimeter and average circumference of the modified RC particles
also decreased after the permeation, while the maximum radius and average maximum
radius both decreased to varying degrees. After permeation, the original pore structure of
the soil was destroyed, leading to the loss of soil particles, resulting in a loose pore structure,
smaller particles, and more particulate matter [35,36]. However, with the addition of FA,
the soil structure became more compact, and the degree of particle aggregation was higher,
reducing the impact of RM leachate on the pore particles of the RC [37].

3.3. Effects of RM Leachate on Specific Surface Area of Modified RC
3.3.1. Comparative Analysis of Specific Surface Area

Figure 6 shows the comparison of surface area among different modified RCs. The
lateral comparison of specific surface area showed that the 4% FA-modified RC sample had
the largest specific surface area at the early stage of permeation, followed by those of pure
clay and 8% FA-modified RC, which had the smallest specific surface area. Furthermore, in
the intermediate and final stages of permeation, a larger FA content resulted in a higher
specific surface area of the modified RC. FA is the product of pulverized coal combustion,
with volcanic ash as the main chemical component and SiO2 and Al2O3 as the main active
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mineral components [38]. The activity of FA can be enhanced in alkaline environments,
and incorporating FA and lime into RC can rapidly induce a short-term reactive effect
and a long-term pozzolanic reaction [39]. Meanwhile, the SEM image showed that FA
contained more than 70% of glass microbeads with a complete shape, smooth surface, and
compact texture. However, after a period during which the low 4% FA-modified RC was
kept in the initial non-permeation stage, it seemingly reacted with alkaline substances such
as CaO in a humid environment through the activity effect, thereby generating gelling
substances such as CSH and CAH and increasing the specific surface area of soil particles.
In contrast, the large 8% FA-modified RC showed a large number of glass microbeads
with a smooth surface and complete particle shape that led to an incomplete activation
effect and pozzolanic reaction, which in turn resulted in a reduced specific surface area
compared to the initial clay. After a series of pozzolanic reactions and activation effects in
the intermediate and late stages of permeation, the RC samples with a higher FA content
produced more gelling materials, leading to a higher specific surface area [40].
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Figure 6. Comparison of surface area among different modified RCs.

3.3.2. Cause Analysis

As the permeation time increased, the specific surface area of the 8% FA-modified
RC first increased and then decreased, increasing from 27.71 m2/g before permeation to
29.17 m2/g and then decreasing to 27.52 m2/g after 60 days. All other samples showed
a decreasing trend in specific surface area. The 4% FA-modified RC decreased from
31.55 m2/g to 27.52 after 60 days of penetration. RM leachate is a highly alkaline and highly
concentrated industrial wastewater with a large number of free alkaline anions, which
can corrode soil structure and reduce soil strength, resulting in a decrease in soil specific
surface area [41,42]. Therefore, the modified RCs all showed varying degrees of reduction
in specific surface area with increasing days of permeation. As there was a large amount
of FA that did not completely react in the 8% FA-modified RC, it reacted more completely
in the alkaline and humid environment. The increase in specific surface area through the
production of gelling substances can overcome the reduction in specific surface area caused
by RM leachate-induced corrosion, resulting in an increase in specific surface area in the 8%
FA-modified RC in the medium-term. However, as time increased, the corrosion caused
by RM leachate to the structure became more severe, such that the specific surface area
eventually decreased [43].
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3.4. Effects of RM Leachate on Modified RC Pore Structure
3.4.1. Adsorption Characteristics of Modified RC

To investigate the change of pore structure of the compacted modified RC affected by
RM leachate and explain the effect of RM leachate on the modified RC anti-seepage layer
at a microscopic scale, the adsorption capacity is evaluated by comparing the isothermal
adsorption curves of modified RC under varied conditions. Furthermore, based on the type
of the adsorption isothermal curves and the major hysteresis loops, the overall morphology
of the pore structure of modified RC can be roughly determined.

The adsorption curves of different FA-modified RCs are shown together in Figure 7.
At 60 days of penetration, the adsorption capacity of the sample with a 0% FA addition was
77.62 cm3/g, while the sample with a 4% FA addition was 71.35 cm3/g. The adsorption
capacity of the sample with an 8% FA addition was the lowest, which was at 64.78 cm3/g.
As the FA content increased, the adsorption of the modified RC gradually decreased,
presumably owing to the many glass microbeads with a smooth surface contained in the FA.
Although some of these beads can gelatinize with the clay to form a stable structure, much
of the FA is not involved in such interaction, as these glass beads reduce the adsorption
capacity of the modified RC [44,45].
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Figure 7. Adsorption curves of modified RC with varying FA contents.

Figure 8 shows the adsorption curves of the modified RC with the same FA content
as a function of permeation time. In this case, the maximum adsorption capacity of all
modified RCs all decreased with increasing permeation time. This was attributed to the
clay particles becoming loose after leachate corrosion, which further damaged the clay pore
structure and weakened the adsorption capacity, thereby resulting in the reduction of the
maximum adsorption capacity.
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Figure 8. Adsorption curves of modified RC with the same FA content at different permeation times.
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In summary, the type of isotherm curve of the modified RC with different FA contents
did not change with increasing content or corrosion, and the types were all classified as type
IV isotherms. The approximate hysteresis loop types of the RC with the same FA content
were also unchanged and belonged to the H3 type of isotherm, indicating that neither
the corrosion of the RM leachate nor FA modification had any effect on the isothermal
adsorption curves or the hysteresis loop type of the RC.

3.4.2. Pore Size Distribution of Modified RC

The BET pore analyzer can determine the pore distribution of an object and reveal any
changes in soil pore size distribution with the permeation and corrosion of RM leachate
through exploring the pore size-distribution law of RC. According to the IUPAC classifica-
tion, porous substances can be defined as macroporous when the pore size is larger than
50 nm, mesoporous when the pore size ranges between 2 and 50 nm, and microporous
when the pore size is less than 2 nm.

Figure 9 shows the variation in pore size in all modified RC types as a function of
FA contents under the same permeation time. The pore size of the modified RC parti-
cles was dominated by micropores and mesopores 1–2 and 2–50 nm in size, respectively.
Furthermore, the pore size distribution showed a single-shouldered peak, approximately
0.25 dV/dr, with the 2–8 nm pore size accounting for the dominant proportion. Before
permeation, this single-shouldered peak was highest for pure RC and lowest for the 8% FA-
modified RC; specifically, the pore size distribution decreased sequentially in 0%, 4%, and
8% FA-modified RC for pore size intervals greater than 8 nm. After 28 days of permeation,
the pore size distribution remained as a single-shouldered peak with no large variation
in height and a pore size distribution of 2–8 nm. However, after 60 days of permeation,
the signal-shouldered peaks of different FA-modified RCs progressively increased, with
the overall pore size distribution consistent with what they were before permeation. As a
result, the pore size distribution of the modified RC was inversely proportional to the FA
content. Due to a certain period of incubation before permeation, the clay was combined
with and reacted with FA to produce CSH and CAH, which filled the voids between the
soil particles, resulting in a change in pore size, whereby the pore-size distribution of the
modified clay was slightly lower than that of pure clay [40,41]. A considerable number of
alkaline ions entered the soil during the permeation process of RM leachate, generating an
alkaline environment. However, it had a negligible impact on the pozzolanic reaction of
FA. As such, although the overall pore-size distribution produced minor changes, it still
decreased sequentially with 0%, 4%, and 8% FA-modified RC.
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Figure 9. Pore size distribution of modified RC with different FA contents under the same perme-
ation time.

The variation in pore size distribution with permeation time for the modified RC with
the same FA content is shown in Figure 10. Under the corrosion of RM leachate, the single-
shouldered peak became higher, and the pore size increased with permeation time for all
modified RCs with the same FA content. After 60 days of permeation, the single-shoulder
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peak of the modified RC with 8% FA content was still the lowest at about 0.30 dV/dr, and
the pore size was relatively small compared to other samples. The high amount of NaOH,
NaHCO3, NaAl(OH)4 and other free bases contained in RM leachate formed many free
alkaline anions when dissolved in the liquid phase, destroying the original pore structure
of the soil and causing the loss of soil particles [17]. As a result, the pore size distribution
increased to varying degrees, and the peak pore size of the concentrated distribution of
the single-shouldered peak became larger. The produced CSH and CAH from the slow
pozzolanic reaction of the FA-modified RC reduced the damage of RM leachate to the soil
structure to a certain extent [46]. Therefore, the pore size distribution pattern indicated that
as permeation time increased, the single-shouldered peak of pure clay increased more than
the peaks for the FA-modified RC.
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Figure 10. Pore size distribution of modified RC with the same FA content under different perme-
ation times.

4. Conclusions

In this study, we performed the permeability test on FA-modified RC samples using
a flexible wall permeameter. The changes in the particle surface of FA-modified RC were
analyzed before and after the test using SEM technology. The gas adsorption method
was used to determine the specific surface area of the FA-modified RC. After analyzing
the adsorption changes in the modified RC caused by the leachate, we arrived at the
following conclusions:

(1) In the early stage of RM leachate permeation, the permeability coefficient of the
modified RC gradually increased with increasing FA content. Further, as permeation
time increased, the permeability coefficient of compacted modified RC varied with
the content of FA. The permeability coefficient of modified RC with 8% FA content
showed a significant decreasing trend, reaching 5.98 × 10−11 m/s after stabilization,
being significantly affected by permeation but with enhanced anti-seepage ability.

(2) The permeation of RM leachate led to the destruction of the original pore structure of
the clay soil at the microscopic level. Specifically, the particle block became smaller, the
amount of the particle matter increased, and the specific surface area decreased. The
modified RC sample with an 8% FA content showed a phenomenon of first increasing
and then decreasing in specific surface area, overall decreasing from 27.71 m2/g
before permeation to 27.52 m2/g, with little change. This indicates that the specific
surface area of this sample was not significantly affected by penetration, exhibiting
stronger stability.

(3) An increased FA content makes the soil structure more compact at the microscopic
level, presenting particle aggregation, increased specific surface, a small pore-size
distribution, and a decreased height of the single-shouldered peak. After 60 days of
permeation, the single-shouldered peak of the modified RC with an 8% FA content
was still the lowest at about 0.30 dV/dr. Compared to other samples, the pore size
was smaller and less affected by the leachate.
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Overall, the microstructure of modified RC with an 8% FA content is less affected by
leachate. In the following study, a further analysis will be conducted on the adsorption
capacity of the FA content sample for heavy metals, and its potential engineering application
will be evaluated based on its engineering mechanical properties.
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