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Abstract: Wastewater discharge into aquatic systems has become a severe threat to the ecosystem.
Herein, Direct Red 28 (DR28) dye removal from an aqueous solution was executed with the application
of date fruit seed biochar (DFSB). Fourier transform infrared spectra (FTIR) and scanning electron
microscopy (SEM) were utilized for the identification of functional groups and characteristics of
the DFSB surface. A series of batch investigations were conducted to analyze pH, contact duration,
biochar amount, dye concentration, temperature, and agitation speed on DR28 dye elimination
from an aqueous medium by DFSB. The highest dye elimination, 97%, was recorded at a pH of 3
by DFSB at 250 mg/L DR28 dye concentration. The equilibrium data indicated the best fit with
the Langmuir isotherm with R2 = 0.99, showing 5.83 mg/g monolayer DR28 uptake potential. The
best correlation coefficient of the sorption procedure was observed with a pseudo-second-order
kinetic study. Investigations on thermodynamic variables disclosed favorable, impetuous exothermic
processes. The sorption process was spontaneous as well as exothermic, which was reflected by
analyses of thermodynamic parameters. DFSB showed a 33% DR28 dye adsorption ability for up to
five successive cycles. DFSB-treated DR28 dye solution increased seedling growth and biochemical
components of pigeon pea. The results of the present investigation revealed the significant capacity
of DFSB for DR28 dye elimination. Date fruit seed biochar can be applied as an environmentally
benign, sustainable adsorbent for DR28 dye removal from industrial effluent, as it is available at zero
cost and converts wastewater into reusable biomaterial. Thus, the application of DFSB can assist in
wastewater treatment, carbon sequestration, and waste management for a sustainable future.

Keywords: biochar; date fruit seed; direct red 28; wastewater; phytotoxicity

1. Introduction

Water is the most essential substance for the survival of all living beings. The expan-
sion of industrial and anthropogenic activities, urbanization, and overpopulation enhance
the discharge of industrial effluents into the environment. Dyes are toxic, colored, aromatic
organic contaminants that are consumed in various industries, like paint, paper, textile,
printing, cosmetics, and plastics [1–3]. The global dye market was around thirty-three
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billion dollars in 2019 and may increase to 49 billion dollars by the year 2027 [4]. Ap-
proximately seventy million tons of synthetic coloring materials are generated annually
for textile manufacturing units at the global level, and around 10–15% of dyestuff is not
fixed in fabric and is discharged into wastewater during processing [5]. Textile industries
generate employment opportunities and assist in the development of the national economy.
Textile industries consume two hundred liters of water in the production of one kilogram
of fabric and release large amounts of wastewater during the dyeing process [6]. However,
industries discharge a huge amount of untreated dye-contaminated wastewater into the
environment [7]. As per a World Bank report, 17–20% of total industrial pollution is due to
textile industries [8]. The composition of textile industry effluent is complex, containing
some amount of sulfur, which can be degraded to sulfide ions in the absence of oxygen
and may release H2S, which pollutes the environment [9]. The presence of dye in water at
a lower amount makes it aesthetically and environmentally objectionable [10]. The high
turbidity and dark color of dye-contaminated industrial effluent inhibits photosynthesis by
decreasing the transmission of sunlight through water and also reduces dissolved oxygen
level, resulting anoxic conditions with high BOD and COD [11]. The continuous release of
recalcitrant compounds in the ecosystem has negative impacts on aquatic flora and fauna
and serious consequences on human health, animals, and the plant ecosystem via the food
chain [12].

Many synthetic dyes and their intermediates, like aromatic amines, are toxic, muta-
genic, and carcinogenic [13]. Organically bound chlorine, a well-known carcinogen, is
present in >40% of dyes [4]. Dye-contaminated wastewater can induce asthma, respiratory
ailments, irritation of the skin, mental confusion, tuberculosis, heart disease, cancer, gene
mutations, etc. [14,15]. Vadivel et al. [16] reported that approximately USD 1 billion is
required to treat 640,000,000 m3 of dye-contaminated wastewater annually. Various meth-
ods, like flocculation, membrane filtration, reverse osmosis, coagulation, precipitation, ion
exchange, nanofiltration, photocatalytic degradation, ozonation, and Fenton methods, have
been applied for wastewater treatment [17–19]. Adsorption has been used for dye removal
due to its high efficiency, simple design, flexibility, wide accessibility, safe handling, good
stability, reusability, cost-effectiveness, and sludge-free cleaning operation [20]. Several
commercial adsorbents, like zeolite, graphene, chitosan, silica gel, resin, and activated
carbon, have been utilized for the treatment of effluents [21].

The agriculture sector produces waste biomass in huge amounts, which can play a
pivotal role in the circular economy [22]. Improper disposal of crop residues and burning
lead to the generation of greenhouse gases, such as carbon dioxide, nitrous oxide, and
methane; deplete soil nutrients and microbial populations; and pose serious threats to the
environment and the health of human beings [23]. Biochar, an amorphous carbonaceous
material showing high-stability tunable chemistry in multiple intricate environments, is
produced by the thermochemical transformation of waste biomass at high temperatures
under limited oxygen conditions and can be regenerated for multiple cycles [24]. The
application of agricultural waste enhances environmental protection, carbon neutrality,
and the recycling of natural resources and is available at zero cost [3,25]. In recent years,
many studies have been conducted on the application of agro-waste biomass, like rice,
coconut and barley husk, orange peel, sugarcane bagasse, groundnut, walnut and almond
shells, and banana and pineapple peels, in industrial effluent treatment and dye removal
due to their renewable texture, wide availability, high adsorption capacity, recyclability,
and economic feasibility [15,26,27]. Biochar has been considered a supreme adsorbent due
to its exceptional textural features, like its large surface area, porosity, chemical stability,
high mechanical strength, enriched surface functional groups, and regenerative ability
for pollutant removal [28–30]. Biochar materials are sustainable and better than conven-
tional and commercially available carbon substances, and they can be used for sensing,
electrocatalysis, and energy storage [31].

Direct red 28, an anionic diazo dye, has two azo chromophores and acidic auxochromes
connected to the structure of benzene [32]. It forms benzidine, a carcinogen, after the split-
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ting of the azo group. Direct red 28 can cause skin and eye irritation, adverse impacts
on respiratory and reproductive organs, and cancer etc. [33,34]. It shows cytotoxic, car-
cinogenic, and mutagenic effects and chromosomal errors in mammalian cells [35]. Direct
red 28 inhibited the growth and chlorophyll content of Lemna minor [32]. Date palm
(Phoenix dactlifera L.; Family: Arecaceae) magic trees are widely cultivated around the
globe. Date fruits are rich in sugar, amino acids, protein, and lipids and contain miner-
als, vitamins, fiber, and antioxidants [36,37]. Date fruits contain minerals like potassium,
calcium, magnesium, phosphorus iron, selenium, and zinc [38]. Many bioactive compo-
nents, like carotenoids, phenolic acid, flavonoids, tocopherol, and sterols are also present
in date fruits and function as nutraceuticals [37]. These bioactive compounds provide
protection against inflammation, oxidative stress, and neurodegenerative disorders, such
as Alzheimer’s disease. Date seeds are an enormously produced agricultural waste that
comprise around 11–18% of the date fruit’s weight [39]. Pigeon pea (Cajanus cajan L. Millsp.;
family: Fabaceae), also known as red gram, congo, or gungo pea, is widely grown in
different parts of the world [40,41]. The seeds of Cajanus cajan are a rich source of protein,
minerals, and fatty acids and are used for the treatment of diabetes and hepatitis due to
the presence of bioactive compounds. The leaves of pigeon pea have antibacterial, anti-
inflammatory, anticancer, antioxidant, and neuroprotective properties [41]. To the best
of our knowledge, this is the first investigation to examine the effects of date fruit seed
biochar on DR28 dye sorption and the further impact of treated DR28 dye solution on
the growth and biochemical attributes of pigeon pea. The major objectives of this study
were to synthesize biochar from date fruit seeds and characterize it, explore the sorption
performance of DR28 using DFSB, and examine the sorption results for the applicability
of various isotherm, kinetic, and thermodynamic variables. We also tested the reusability
and feasibility of DFSB and assessed the reutilization of treated contaminated water on the
growth, development, and biochemical processes of pigeon pea.

2. Materials and Methods
2.1. Date Fruit Seed Biochar Production

Date fruits were purchased from a local grocery store in Noida, Uttar Pradesh, India.
Date seeds were cleansed with distilled water for dust removal and placed in the shade
for up to ten days to decrease the water amount. The pyrolysis reactor was utilized for
the production of biochar; nitrogen gas was given to the reactor to create an inactive
atmosphere, and temperature was controlled. The seeds were ground and placed in the
reactor for 4 h at 500 ◦C. The DFSB was crushed and cleansed with slightly warm deionized
water and placed in an electric oven at 65 ◦C for 2 h to inhibit microbial activity [42].
Proximate examination was conducted to assess moisture, fixed carbon, ash, and volatile
material in the DFSB under thermochemical modifications.

2.2. Materials and Preparation of Reagents

Direct Red 28, also known as Congo red, was procured from Merck, Mumbai. Seeds of
pigeon pea (Cajanus cajan L. Millsp variety Prabhat) were procured from the seed agency of
Noida. Different concentrations of Direct Red 28 dye solution were prepared with distilled
water. Analytical-grade chemicals were used without purification. DR28 dye solution
absorbance was taken with a spectrophotometer (Shimadzu 1800, Kyoto, Japan). Table 1
shows the dye characteristics.

2.3. Batch Experiments

A batch study was conducted to analyze the feasibility of using DFSB for the removal
of DR28 dye. The impact of different attributes, like pH (3–11), particle size (0–500 µm),
contact time (60–360 min), doses of biochar (2–4.5 g), DR28 concentration (150–400 mg/L),
temperature (30–55 ◦C), and agitation speed (50–300 rpm), were applied for DR28 dye
removal from an aqueous medium with DFSB. One hundred milliliters of DR28 dye
concentrations (150, 200, 250, 300, 350, and 400 mg/L) was kept in six different flasks, and
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DFSB in amounts of 2, 2.5, 3, 3.5, 4 and 4.5 g were added, respectively. No DFSB was added
to the DR28 dye solution in the control flasks. The DR28 dye concentration before and after
DFSB addition was analyzed by UV–Vis spectrophotometer (λmax = 497 nm), and sorption
efficiency was estimated by the following formula:

Removal of DR28 dye = (C0 − Ct)/C0 × 100 (1)

C0 and Ct = initial and final concentration of DR28 (mg/L), respectively.

Table 1. Properties of Direct Red 28.

Stuff Congo Red 4B, Cosmos Red, Direct Red Y

C.I. Number 11313
Color Red-Brown
Type
Melting point

Anionic dye
>360 ◦C

Solubility Water-soluble and less soluble in organic solvents

IUPAC name disodium;4-amino-3-[[4-[4-[(1-amino-4-sulfonatonaphthalen-2-
yl)diazenyl]phenyl]phenyl]diazenyl]naphthalene-1-sulfonate

Formula C32H22N6Na2O6S2
Molecular weight
Application

696.7 g mol−1

Used in textile and printing industry

Structure
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2.4. Point Zero of Charge

Rivera-Utrilla et al.’s [43] procedure was used for the estimation of point zero of charge.
A pH range of 3–11 for the NaCl solution (0.01 M) was maintained with 0.10 M hydrogen
chloride and sodium hydroxide. DFSB (1 g) was incorporated in each solution and kept for
24 h at room temperature, and then pHfinal was measured. The pHPZC was estimated
with the help of a graphical plot with the following formula:

pHfinal − pHinitial = f (pHinitial)

2.5. Characterization of Date Fruit Seed Biochar

The KBr pellet procedure was used for the identification of binding sites present on
DFSB before and after DR28 dye adsorption with Fourier-transform infrared spectroscopy
(Perkin Elmer 2000, Waltham, MA, USA). The DFSB surface was detected with SEM (Quanta
FEG 650, Thermo Fisher, Beverly, CA, USA).

2.6. Adsorption Isotherm

For the determination of equilibrium adsorption, different isotherm models were
applied. Direct Red 28 (250 mg/L) solution was taken with different DFSB amounts for the
estimation of the isotherm feasibility by analyzing their uptake potential.

2.6.1. Langmuir Isotherm

This isotherm reflects that the energy of sorption was consistent on DR28 layer at
DFSB surface at constant temperature [44]. It can be written as:

Ce

qe
=

1
qmKL

+
Ce

qm
(2)
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where qe = sorption of DR28 at equilibrium (mg g−1), qm = maximum DR28 sorption
(mg g−1), Ce = DR28 concentration at equilibrium (mg L−1), and KL = Langmuir constant
related to the binding of DR28 on DFSB.

2.6.2. Freundlich Isotherm

It explains the dispensation of DR28 dye between DFSB and the solution at equilibrium.
This reflects variation in active site energy augmentation for sorption and the decrease in
sorption heat (Ng et al. [45]). It is described as:

ln qe = ln KF +

(
1
n

)
ln Ce (3)

where KF = adsorption capacity and n = intensity, respectively. The adsorption procedure
can be described as follows: n < 1 reflects chemisorption, n > 1 indicates physisorption, and
n = 1 is linear adsorption.

2.6.3. Temkin Isotherm

It describes that the molecules’ sorption heat in a layer decreases with dispersal due to
the interactivity between DR28 and DFSB, and sorption reflects the constant dissemination
of energies for binding to its maximum level.

The equation is given below as per the procedure of Temkin and Pyzhev [46]:

qe = RT/bT ln (AT) + RT/bT ln (Ce) (4)

where AT = Temkin isotherm constant (L g−1), bT = Temkin constant for sorption heat
(J mol−1), R = gas constant (J/mol·K), and T = temperature.

2.7. Kinetics of Sorption Phenomenon

Modeling for sorption was conducted to assess the time for equilibrium and the rate
for the adsorption process. Different models were applied for rate constant determination
in the uptake procedure.

Lagergren’s [47] method explained the pseudo-first-order mechanism as:

ln (qe − qt) = ln qe − k1t (5)

where qe and qt = DR28 dye sorption at equilibrium and time and k1 = pseudo-first-order
adsorption rate constant (min−1).

This is explained by the following equation of Ho and Mckay [48]:

t/qt = 1/k2 qe
2 + t/qe (6)

where qe = DR28 sorption on DFSB at equilibrium and k2 = the adsorption rate constant for
pseudo-second-order (g/mg.min).

Molecules of DR28 dye were transported to the surface of DFSB from the dye solution
and penetrated from the biochar surface to the subsequent phase; this is a moderate step in
kinetics that determines rate. The intraparticle diffusion model of Weber and Morris [49]
explains the association between qt and t1/2, as given below:

qt = kdiff t1/2+ C (7)

where kdiff = intraparticle diffusion rate constant (mg/g min0.5), qt = sorption capacity in
time (mg g−1), and C = thickness of the boundary layer.

2.8. Thermodynamics Parameters

The modifications in enthalpy, entropy, and free energy were determined for DR28
adsorption by DFSB. Different variables were assessed with the given equations:

∆G0 = −RT ln Kd (8)
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Kd =
qe

Ce
(9)

∆G0 = ∆H0 − T ∆S0 (10)

Modifications of ∆G, ∆S, and ∆H were assessed with the rearrangement of equations
and the application of the curve-fitting process for the sorption mechanism.

2.9. Estimation of Reusability Capacity

Date fruit seed biochar (3 g) was added to a solution of DR28 dye (250 mg/L) and
kept in a shaking incubator at 28 ± 2 ◦C at 200 rpm for up to 240 min. The optical
density of the supernatant was measured after centrifugation to assess dye uptake by
the biochar, and the DFSB-containing dye was separated. Samples without DFSB were
used as a control to compare with samples containing DFSB for the removal of DR28
dye. DFSB with Direct Red 28 dye was placed at 50 ◦C for 6 h to increase the DFSB
microstructure and dye uptake capacity. Date fruit seed biochar was rinsed with 1N
hydrochloric acid and sodium hydroxide and placed at 180 rpm for up to 50 min, and
the desorbing solution absorbance was measured [50]. The DFSB was separated, rinsed
properly using distilled water to discard the desorbing solution, and placed for eight hours
at 50 ◦C. DFSB viability was tested for 5 consecutive cycles. Desorption of DR28 was
analyzed with the following formula:

Desorption (%) = DR28 dye content desorbed/DR28 dye adsorbed × 100 (11)

2.10. Assessment of Phytotoxicity

The effect of Direct Red 28 dye before and after DFSB treatment on the seeds of pigeon
pea was assessed. Seeds of pigeon pea were cleaned with distilled water; then, 10% sodium
hypochlorite was used for five minutes for surface treatment to arrest microbial activity,
after that seeds were further rinsed with Milli-Q water. In the seed germination test, ten
pigeon pea seeds were placed in different test tubes in distilled water, DR28 dye (250 mg/L),
and DFSB-treated DR28 dye solution for five hours. Then, the seeds of pigeon pea were
shifted to autoclaved Petri dishes in a seed germinator at 87% humidity and 27 ± 2 ◦C for a
12 h photoperiod for two weeks. For the estimation of germination, seedling length, fresh
and dry weight, and vigor index, the ISTA [51] procedure was applied.

Germination (%) = Pigeon pea seeds germinated/pigeon pea seeds kept for germination × 100

Vigor index (VI) = Length of seedling × germination (%)

2.11. Analyses of Biochemical Constituents

Pigment components were analyzed as described by Lichtenthaler [52]. The contents
of sugar, proline, and protein were assessed in pigeon pea with the procedures of Hedge
and Hofreiter [53], Bates et al. [54], and Lowry et al. [55], respectively.

2.12. Statistical Analysis

All the treatments were organized with 3 replicates in a randomized block design.
ANOVA and SPSS were applied for the analyses of the results. The treatment mean was
estimated by DMRT at p < 0.05.

3. Results and Discussion

Date fruit seeds are widely accessible in huge amounts and can be an economical and
sustainable alternative to activated carbon for the treatment of dye-contaminated effluent.
Date fruit seed biochar (DFSB) prepared from date fruit seed waste acts as a catalyst, as it
interacts with DR28 dye molecules and catalyzes the reaction, and it has an inert nature
toward other reagents during the adsorption of DR28 dye from an aqueous solution.
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3.1. Proximate Analyses of Sorbent

Proximate assessment was conducted to analyze the moisture, volatile matter, ash,
and fixed carbon in DFSB. During pyrolysis, the breakage of bonds in molecules takes
place because of heat treatment with the release of gas and liquid leaving the material
with a high carbon content. Fixed carbon refers to a high quality of adsorbent due to
enhanced adsorption capacity and high surface area. The results revealed the highest
amount of volatile matter and fixed carbon, whereas a lower amount of ash was recorded
after proximate analysis (Table 2).

Table 2. Proximate analyses of DFSB.

S. No. DFSB Weight (%)

1. Volatile matter 66.55
2. Fixed carbon 25.20
3. Moisture 5.50
4. Ash 2.75

3.2. Characterization of Date Fruit Seed Biochar

The FTIR spectra of the DFSB from wavenumbers 500–4000 cm−1 are reflected in
Figure 1. The broadest band at 3413 cm−1 showed the availability of hydroxyl groups.
Because of the C-H stretching vibration of -CH3, CH2, and methoxy groups, the spectrum
was recorded at 2922 cm−1. The adsorption peak at 2847 cm−1 was associated with the
C-H alkane functional group with weak intensity. The presence of carboxyl or carbonyl
functional groups was related to the carboxylate anion 1642 cm−1 band of DFSB, which was
considered responsible for the chelation of dye molecules in DFSB. The bands at 1429 and
1086 cm−1 reflected C-H bending and C-O-C stretching, respectively (Figure 1). The peaks at
1321 and 1367 cm−1 were due to the presence of alkane, carbonyl, and hydroxyl functional
groups. The FTIR spectra reflected that -OH, C-O, and -COOH were the major functional
groups of DFSB, which showed a promising function in DR28 dye uptake. Moreover,
sorption at 778 cm−1 exhibited the C-Cl alkyl halide functional group on the surface of
the biochar. Thus, the adsorbent structure and adsorption capacity were influenced by the
availability of functional groups on DFSB [27].
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of the date fruit seed biochar before and after the sorption phenomenon was analyzed
at a 15.00 KX magnification resolution with a 200 nm DFSB particle size. Remarkable
alterations were observed in DFSB after the sorption of DR28 dye compared with biochar
without dye (Figure 2). Due to organic matter volatilization in pyrolysis, channels with
pores were clearly observed, as shown in Figure 2b [26]. A firmly bound surface was
observed prior to sorption, while after DR28 dye sorption, a porous and heterogeneous
structure was reflected due to chemical modifications of DFSB, as carboxyl, carbonyl, and
hydroxyl groups were generated after lignin oxidation (Figure 2a). DR28 containing SEM
images showed that active spaces were filled with dye molecules after DFSB interaction.
Honeycomb-like porous structures were formed due to multi-layered carbon positioning,
which exhibited aromatic moieties in DFSB with temperature enhancement (Figure 2b).
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3.3. Batch Experiments

The impact of different variables, like the pH, size of particles, contact period, dye
concentration, biochar amount, speed of agitation, and temperature, were analyzed for
DR28 dye elimination from the aqueous medium by DFSB. Additionally, the sorption
efficacy of the phenomenon was analyzed by different isotherms and kinetic modeling.
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3.3.1. Impact of pH

The pH of a solution is an important variable that affects dye solubility and the
charge on the surface, dye speciation, ionization degree, and dye sequestration onto the
adsorbent surface [56]. The pH affects the physicochemical properties of DFSB and changes
the speciation of dye in the solution [57]. The effect of pH (3–11) on DR28 sorption
(150–400 mg/L) on DFSB was examined at 25 ± 2 ◦C (Figure 1a). The highest DR28
sorption, 97%, was reported at a pH of 3, and pH values of 5, 7, 9, and 11 showed 89, 76,
58, and 42% DR28 dye elimination, respectively (Figure 3a). The electrostatic interplay
between the negatively charged DR28 dye and the positively charged DFSB promoted
DR28 dye attachment on DFSB. At a low pH, the concentration of H+ ions was enhanced,
which reduced the competition between hydroxyl ions and the dye and raised the DR28
dye sorption on the adsorbent surface [58]. The lower dye uptake at a high pH was due
to OH−, which competes for sorption spaces with other anions. The protonation of the
DFSB surface was reduced, and negative charge generation exhibited electrostatic repulsion
between the DR28 dye and DFSB with a rise in pH and decreased dye adsorption. The
interaction between the dye and the biochar converted into Van der Waals pressure, which
reflected less effect as compared to electrostatic attraction and ultimately reduced sorption.
Similar findings were observed by Dai et al. [59]. They utilized crab shell biochar for DR28
dye removal at an acidic pH. Nautiyal et al. [60] recorded an 85–76% reduction in DR28
dye elimination by the biochar of Spirulina platensis when the initial pH was increased.
Rehman et al. [61] reported 87% removal of DR28 dye at a pH of 3 with Raphanus sativus
peel as a sorbent. Yang et al. [62] reported a reduction in DR28 dye removal with an
increasing solution pH.

3.3.2. Particle Size

DR28 dye sorption was assessed with various sizes of DFSB particles: 0–170, 230–300,
and 320–500 µm. With a reduction in DFSB particle size, DR28 dye sorption was enhanced
due to the high surface area available on minute particles, which was proportional to the
sorption of DR28 dye (Figure 3a). The diffusion barrier to mass transport was higher for
large DFSB particles; the internal surface could not be utilized for sorption, and there was
less uptake of DR28 dye.

3.3.3. Contact Period

The adsorption of dye at various contact periods and the time to reach sorption
equilibrium are significant factors in the sorption process. Removal rates of DR28 dye
(250 mg/L) of 62, 75, 84, and 93% were observed at 60, 120, 180, and 240 min, respectively.
The DR28 dye adsorption was enhanced for up to 240 min; after this, a decrease was
recorded (Figure 3b). Various unoccupied sites were available initially; with increase in
time, DR28 dye attached to the available sites until these were filled, then dye uptake was
checked. After 240 min, the uptake of DR28 dye was not enhanced, and this was considered
the equilibrium time for the adsorption phenomenon (Figure 3b). The driving force of the
concentration gradient was higher between DFSB and DR28 and the sorption rate was fast
at the initial contact time. As time progressed, less uptake was recorded due to the absence
of empty sorption sites or the enhanced repulsive forces between the DR28 sorbed on DFSB
and the deprivation of concentration gradient pressure for the DR28 dye to combat mass
movement obstruction to bind with DFSB [63].

3.3.4. Dose of Adsorbent

The DR28 dye removal rate depends on the amount of sorbent [64]. Date fruit seed
biochar contains cellulose and lignin, which have active sites that bind with dye [65]. The
impact of adsorbent doses (0.5–4.5 g) on DR28 dye removal is presented in Figure 3c.
Direct Red 28 dye removal was enhanced from 69 to 94% with an increase in the DFSB
dose (Figure 3c). The highestDR28 dye removal, 94%, was recorded with 3 g DFSB. With
an increase in the sorbent amount, the surface area and number of active sites increased,
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which improved the sorption capacity of the biochar [14]. However, with an increase
in the biochar amount beyond the optimum level, the DR28 dye removal efficiency did
not show significant changes. This might be due to compaction of adsorbent particles,
formation of cluster between dye molecules and biochar, overlapping of binding sites
which covered porous structure and made binding sites unavailable for sorption and dye
removal efficiency was reduced [66].
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3.3.5. Concentration of Dye

The initial dye concentration in an aqueous medium acts as a driving force and reg-
ulates mass transfer resistance between the biochar and the dye. DR28 dye removal was
increased with an increase in dye concentration; however, with a higher DR28 dye amount,
the dye sorption rate was reduced (Figure 3d). The highest DR28 adsorption, 91%, was
recorded with a 250 mg/L dye concentration. An increase in the initial dye concentration
promotes the mass gradient between the dye solution and the biochar and creates driving
pressure for DR28 molecule transfer from the solution to the biochar surface [67]. The con-
centration gradient could not pull the DR28 dye via the transmission barrier between DR28
and DFSB with a lower dye concentration, and active sites were available for dye sorption
on DFSB; however, the findings were reversed with an increase in dye concentration. No
dye molecules could attach to DFSB at a higher concentration, as the sorbent had few active
sites that became saturated at the optimum concentration.

3.3.6. Agitation Speed

The removal of DR28 dye was enhanced with an increase in the speed of agitation,
as reported in Figure 3e. Agitation speed enhancement decreased the boundary sheet
barrier for DR28 dye movement from the solution to the DFSB [68]. With agitation speed
enhancement, the interactivity between DR28 dye and DFSB particles was increased due
to DFSB dispersion degree enhancement in the dye solution. The maximum agitation
speed required more energy; no increase in DR28 dye elimination was reported at 250 and
300 rpm, and hence 200 rpm was regarded as the optimal agitation speed and showed 93%
DR28 dye adsorption.

3.3.7. Temperature

Direct Red 28 dye adsorption on DFSB was observed at various temperatures, like
30, 35, 40, 45, 50, and 55 ◦C. Direct Red 28 exhibited 53, 62, and 77% sorption at 30, 35,
and 40 ◦C respectively, and the highest uptake of DR28 dye, 92%, was recorded at 45 ◦C
(Figure 3f). The removal of DR28 dye at a high temperature was due to a rise in the motion
of dye molecules with the increase in temperature and the presence of active sites. At 50
and 55 ◦C, DR28 dye adsorption was decreased, and the reflected sorption phenomenon
was kinetically maintained by an exothermic procedure. According to Ambaye et al. [69],
with rise in the reaction temperature, the biochar surface area increased however, oxygen-
carrying binding sites on the surface were reduced, Wu et al. [70] reported that after
increasing the temperature from 65 to 85 ◦C, the surface area, porosity, and volume of
pores in litchi peel biomass increased because the kinetic energy of the molecules increased
with the rise in temperature, which promoted the dispersal of molecules onto the sorbent.
Bao and Zhang [71] observed that an increase in temperature could show swelling in the
adsorbent’s internal structure and allow dye molecules to pierce the sorbent. These results
were similar to those observed by Saleh Bashanaini [72], in which malachite green removal
with shell seed biochar increased by up to 95% by increasing the temperature up to 50 ◦C.

3.3.8. Point of Zero Charge

At the point of zero charge, the net charge biochar surface became neutral in the
dye solution, and this is important for the description of the adsorption mechanism. A
graphical plot shows that pHpzc was 5.7 for date fruit seed biochar (Figure 4). The positive
charge on the DFSB surface was reflected when pH < pHpzc, while pH > pHPZC exhibited
a negative charge on the surface of DFSB and fetched positively charged molecules of the
dye. Therefore, the point of zero charge at 5.7 confirmed that DFSB can easily adsorb DR28
anionic dye, as the pH of the solution was less than that at the point of zero charge.



Sustainability 2023, 15, 15266 12 of 20

Sustainability 2023, 15, x FOR PEER REVIEW 13 of 22 
 

speed required more energy; no increase in DR28 dye elimination was reported at 250 
and 300 rpm, and hence 200 rpm was regarded as the optimal agitation speed and 
showed 93% DR28 dye adsorption. 

3.3.7. Temperature 
Direct Red 28 dye adsorption on DFSB was observed at various temperatures, like 

30, 35, 40, 45, 50, and 55 °C. Direct Red 28 exhibited 53, 62, and 77% sorption at 30, 35, and 
40 °C respectively, and the highest uptake of DR28 dye, 92%, was recorded at 45 °C 
(Figure 3f). The removal of DR28 dye at a high temperature was due to a rise in the mo-
tion of dye molecules with the increase in temperature and the presence of active sites. At 
50 and 55 °C, DR28 dye adsorption was decreased, and the reflected sorption phenome-
non was kinetically maintained by an exothermic procedure. According to Ambaye et al. 
[69], with rise in the reaction temperature, the biochar surface area increased however, 
oxygen-carrying binding sites on the surface were reduced, Wu et al. [70] reported that 
after increasing the temperature from 65 to 85 °C, the surface area, porosity, and volume 
of pores in litchi peel biomass increased because the kinetic energy of the molecules in-
creased with the rise in temperature, which promoted the dispersal of molecules onto the 
sorbent. Bao and Zhang [71] observed that an increase in temperature could show 
swelling in the adsorbent’s internal structure and allow dye molecules to pierce the 
sorbent. These results were similar to those observed by Saleh Bashanaini [72], in which 
malachite green removal with shell seed biochar increased by up to 95% by increasing the 
temperature up to 50 °C. 

3.3.8. Point of Zero Charge 
At the point of zero charge, the net charge biochar surface became neutral in the dye 

solution, and this is important for the description of the adsorption mechanism. A 
graphical plot shows that pHpzc was 5.7 for date fruit seed biochar (Figure 4). The posi-
tive charge on the DFSB surface was reflected when pH < pHpzc, while pH > pHPZC exhib-
ited a negative charge on the surface of DFSB and fetched positively charged molecules of 
the dye. Therefore, the point of zero charge at 5.7 confirmed that DFSB can easily adsorb 
DR28 anionic dye, as the pH of the solution was less than that at the point of zero charge. 

 
Figure 4. Graphical plot of point of zero charge of DFSB. Figure 4. Graphical plot of point of zero charge of DFSB.

3.3.9. Equilibrium Modeling

Adsorption isotherms are mathematical associations that elucidate the nature of the
interaction or competition between dyes and adsorbents, which assists in the understanding
of the adsorption process [73]. The relationship between equilibrium data, either theoretical
or practical, is needed for the elucidation of the extent of sorption. Langmuir, Freundlich,
and Temkin isotherms were applied to examine the feasibility of DFSB applied for the
sorption process. Equilibrium modeling explained the mechanism of sorption, the biochar
surface properties, the uptake capacity of biochar, and the feasibility of the adsorption
process (Table 3; Figure 5a–c). Direct Red 28 dye showed a homogenous monolayer covering
DFSB. The Langmuir isotherm is based on the presumption that the adsorbent structure is
homogeneous and all the active sites are similar. The sorption process cannot go beyond
the monolayer, and every active site may a carry single dye molecule. The Freundlich
isotherm deals with adsorption on heterogeneous surfaces, and adsorption increases with
a rise in the concentration of dye. It has integrated interactions between the dye and the
biochar surface.

Table 3. Isotherm constant for DR28 adsorption onto DFSB.

Isotherm Equation Variables Value

Langmuir Ce
qe

= 1
qmKL

+ Ce
qm

qm (mg g−1)
KL (l mg−1)

R2

5.83
0.0021
0.9926

Freundlich ln qe = ln KF +
(

1
n

)
ln Ce

n
KF (mg g−1)

R2

1.9120
1.0369
0.9147

Temkin qe = RT/bT In(AT) + RT/bT
In (Ce)

bT (J mole−1)
AT (L mole−1)

R2

4.0374
1.03552
0.9323

The Langmuir isotherm had the best fit in comparison with Freundlich and Temkin
and reflected a high value of R2 = 0.9926. It depicted a monolayer covering of DR28
on DFSB. The Langmuir constants showed the following parameters: qm= 5.83 mg g−1

and k = 0.0021 mg−1; the constants of Freundlich were Kf = 1.0369 and n = 1.9120, with
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R2= 0.9147, and the Temkin constants were bT = 4.0374 (J mole−1) and AT = 1.03552 (L mole−1)
with R2 = 0.9323.
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3.3.10. Kinetics of Adsorption

A kinetic study was applied to explain the sorption rate and adsorption process
mechanism. The dye uptake mechanism was studied with various models. These models
were used to determine the uptake of DR28 dye by DFSB to explain the reaction mecha-
nism and sorption capacity. The kinetic equations were applied to observe the sorption
process mechanism.

Pseudo-first-order, pseudo-second-order, and Weber–Morris intraparticle diffusion
models were used to explain the kinetics of the sorption process (Table 4 and Figure 6a–c).
Because of the low value of R2, the difference in the results of the experiments, and the
calculated equilibrium adsorption, the pseudo-first-order(R2 = 0.1569) and Weber-Morris
intraparticle diffusion (R2 = 0.769) models could not explain the sorption process kinetics.
The pseudo-second-order model had a higher value of R2 = 0.8685, reflected correlation
with the kinetics results, and described chemical interactions between the DR28 dye and
DFSB [74].

Table 4. Application of kinetic model for DR28 dye sorption on DFSB.

Model Equation Variables Value

Pseudo first order ln (qe − qt) = ln qe − k1t
1K1 (min−1) 0.0029
qe (mg g−1) 2.41042

R2 0.1569

Pseudo second order t
qt

= 1
k2qe

+ t
qe

K2 (g mg−1 min−1) 0.00144
qe (mg g−1) 6.7159

R2 0.8685

Weber–Morris
intraparticle diffusion qt = kdiff t1/2+ C

Kdiff
C
R2

0.0273
1.6855
0.769

3.3.11. Thermodynamic Analysis

The effect of sorption temperature on DR28 removal capacity was assessed by ther-
modynamic parameters. The ∆G◦, ∆H◦, and ∆S◦ were used to analyze the adsorption
phenomenon (Table 5). An adsorption study was conducted at various temperatures, i.e.,
30 to 55 ◦C (Table 5). The dye adsorption feature was recognized by ∆H◦ [75]. The DR28
dye sorption on DFSB was a spontaneous and viable process, and it was clearly observed
with a negative value of ∆G◦ [76]. The ∆G◦ value, reflecting the change in Gibbs free energy,
was negative across various temperatures. A positive value of ∆S◦ (90.752 J/K) showed an
increase in the adsorbate content in solid state. Furthermore, the positive entropy value
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showed more randomness at the interface between the solid and solution during the sorp-
tion process. Positive entropy of adsorption signifies the attraction of DFSB to DR28 dye.
The free energy was enhanced with an increase in the temperature of the sorption process,
showing that a rise in temperature increased DR28 dye sorption.
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Table 5. Thermodynamic variables for sorption of DR28 dye with DFSB.

S. No. Temperature
(◦C)

(∆G◦)
(kJ mol−1)

∆H◦

(kJ mol−1)
∆S◦

(J K−1)

1. 30 −5377.67

−31.889 90.752

2. 35 −4976.33
3. 40 −3822.26
4. 45 −1388.72
5. 50 −2361.86
6. 55 −4256.75

Entropy and enthalpy values were calculated by the plot between the natural log of kd
and 1/T, ∆H◦ (−31.889 kJ/mol) and reflected an exothermic behavior of phenomenon. ∆S◦

(90.752 J K−1) showed a positive value because of an increase in the DR28 concentration on
DFSB in comparison with the dye solution [10]. The ∆S◦ value was positive at the DR28
and DFSB interface and reflected an increase in the degree of randomness.

3.3.12. Regeneration Analysis

The reusability of an adsorbent is a significant marker to analyze practical applications
of the sorbent. The sorbent needs recyclability to achieve its maximum reutilization, in
addition to its high sorption capacity. Recycling sorbents can reduce expenditure in the
sorption process and energy consumption to provide sustainable products and restrict
secondary pollution. Acidic and alkaline media were applied to remove DR28 from DFSB,
as both positive and negative active sites were present in the dye solution. In the acidic
medium, the dye solution consisted of H+ that attached to the dye molecules with negative
functional groups and desorbed from the adsorbent surface, whereas in an alkaline medium,
dye molecules containing positive functional groups were removed. The regenerated DFSB
showed 87, 75, 58, 45, and 33% dye sorption capacity for five cycles, respectively (Figure 7).
However, there was a significant decrease in the sorption ability after the third cycle, which
might have been due to the blockage of adsorption sites present in the DFSB micropores.
Hence, used DFSB can be successfully used for DR28 dye removal.
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3.3.13. Evaluation of Phytotoxic Effects

The effect of Direct Red 28 dye on growth and physiological attributes of Cajanus cajan L.
Millsp. var. Prabhat was assessed before as well as after DFSB treatment. The study
was executed in different sets, i.e., the distilled water in the control, DR28 dye solution
(250 mg/L), and DFSB-treated DR28 dye solution were applied in the second and third
sets, respectively, for pigeon pea seed irrigation. The highest percentage of pigeon pea
seeds, 98%, germinated in the control, whereas 12% germination was recorded after the
use of DR28 dye solution (250 mg/L). Pigeon pea seeds reflected 83% germination with
DFSB-treated DR28 dye solution. After two weeks, the seedling length, vigor index, and
biochemical components were analyzed. The radicle and plumule length were 3.65 and
10.21 cm in the control and decreased to 0.87 and 2.75 with DR28 dye. The length and
vigor index of the seedlings exhibited the following trend: control (distilled water) >
DFSB-treated DR28 dye solution > DR28 dye solution (Table 6). Cajanus cajan seedlings
showed the highest pigment, sugar, and protein amount in the control. Direct Red 28 dye
solution showed 67, 71, and 79% reduction in total chlorophyll, sugar, and protein contents,
respectively, in pigeon pea as compared totheir control. The reduction in biochemical
components was because of the negative impact of DR28 on the physiological attributes of
pigeon pea plants (Table 7). However, the DFSB-treated DR28 dye solution enhanced the
growth parameters of pigeon pea more than the DR28 dye solution.

Table 6. Impact of DR28 dye on the growth of Cajanus cajan L. Millsp. var. Prabhat.

Treatment Germination
(%)

Radicle Length
(cm)

Plumule
Length

(cm)

Vigour
Index

Control 98 ± 0.56 a 3.65 ± 0.15 a 10.21 ± 0.71 a 13,582.8
DR28 dye solution

(250 mg/L) 12 ± 0.33 c 0.87 ± 0.01 c 2.75 ± 0.10 c 434.4

DFSB treated DR28
dye solution 83 ± 0.67 b 1.94 ± 0.03 b 8.10 ± 0. 34 b 8333.2

Data presented are means ± SD (n = 3). Different letters after the values indicate significant variation between
treatments at p < 0.05 significance level as per ANOVA.
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Table 7. Impact of DR28 dye on biochemical components of Cajanus cajan L. Millsp. var. Prabhat.

Treatment Chlorophyll
(mg g−1 FW)

Sugar
(mg g−1 DW)

Protein
(mg g−1 FW)

Control 2.89 ± 0.05 a 3.95 ± 0.09 a 24.12 ± 0.05 a

DR28 dye solution
(250 mg/L) 0.94 ± 0.02 c 1.15 ± 0.22 c 5.11 ± 0.38 c

DFSB treated DR28
dye solution 1.67 ± 0.06 b 2.42 ± 0.08 b 16.09 ± 0.43 b

Data presented are means ± SD (n = 3). Different letters after the values reflect significant variation between
treatments at p < 0.05 significance level as per ANOVA.

3.3.14. Performance of Date Fruit Seed Biochar

The DR28 dye adsorption ability of date fruit seed biochar was compared with that of
previous investigations, and sorption capacity (qmax) was used for comparison (Table 8).
Different materials reflected differences in DR28 dye uptake efficiency under different
operational conditions because of modifications to the surface area, porosity, and the
presence of binding sites. The present study clearly showed that the sorption capacity of
DFSB was better than that of other adsorbents; thus, DFSB can be used as a sustainable
substitute for the sorption of DR28 dye. Further studies are needed for the application of
date fruit seeds available at zero cost to enable its effective translation from the laboratory
scale to real industrial effluent treatment.

Table 8. Adsorption (qmax) of DR28 dye with various sorbents.

Adsorbent Material Experimental Conditions qmax (mg g−1) References

Activated charcoal
pH = 2,

exposure time = 0.67 h,
Dose = 1 g

0.93 Rehman et al. [61]

Raphanus sativus peel
pH = 3,

exposure time = 0.33 h,
Dose = 2 g

0.07 Rehman et al. [61]

Grewia asiatica leaves
pH = 7,

exposure time = 0.5 h,
Dose = 0.5 g

0.057 Rehman et al. [61]

Vermicompost-
derived
biochar

pH =7,
exposure time = 2 h,

Dose = 0.3 g
31 Yang et al. [62]

Cow dung biochar
pH = 7,

exposure time = 84 h,
Dose = 5 g

13 Khan et al. [77]

Rice husk biochar
pH = 7,

exposure time = 84 h,
Dose = 5 g

15.8 Khan et al. [77]

Pomegranate
pH = 7,

exposure time = 0.5 h,
Dose = 1 g

19.23 Ghaedi et al. [78]

Vaterite calcium
carbonate

pH = 7,
exposure time = 3 h,

Dose = 0.2 mg
17 Chong et al. [79]

Molybdenum
disulfide

nanopowder

pH = 3,
exposure time = 3 h,

Dose = 0.1 g
81 Alarifi et al. [80]
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Table 8. Cont.

Adsorbent Material Experimental Conditions qmax (mg g−1) References

Eichhornia crassipes
biomass

pH = 7,
exposure time = 0.75 h,

Dose = 0.125 g
14 Roy and

Mondal [81]

Rabbit manure
biochar

pH = 5,
exposure time = 3.5 h,

Dose = 0.15 g
28.4 Huang et al. [82]

Algal biochar
pH = 2,

exposure time = 0.17 h,
Dose = 0.2 g

51.3 Nautiyal et al. [60]

Date fruit seed
biochar

pH = 3,
exposure time = 4 h,

Dose = 3 g
5.83 This study

4. Conclusions

The current investigation revealed that DFSB removed DR28 dye and can act as a
sustainable alternative to other expensive methods. The appearance of different active sites
on DFSB might be used in the adsorption of DR28 dye, as observed by the FTIR spectra.
The sorption of DR28 dye followed the Langmuir rather than the Freundlich and Temkin
models. The Langmuir adsorption isotherm model best represented the experimental points
and reflected a maximum 5.83 mg/g adsorption capacity. The kinetics of sorption showed
that the sorption rate was explained with a pseudo-second-order model. The exothermic
nature of sorption was reflected by a negative value of ∆H0. The thermodynamic variables
showed that the sorption process was spontaneous and removed DR28 dye at a low
temperature. The regenerated DFSB indicated favorable results for five succeeding cycles
for the removal of DR28 dye. The DFSB-treated DR28 dye solution showed 83% pigeon
pea seed germination and enhanced seedling growth. Therefore, DFSB can be utilized as
a reliable, sustainable, cost-effective sorbent for DR28 dye elimination, and treated water
can be used for irrigation purposes. In this way, the present study fulfills the objectives
of the sustainable developmental goals for waste reduction and recycling to promote
sustainability. However, detailed investigations are needed for the life cycle assessment
of sorbents obtained after reutilization for up to five cycles, as they can be used in the
preparation of value-added products, such as construction materials. Therefore, using
biomass waste-based green adsorbents, we can promote the waste-to-wealth conversion
strategy for environmental sustainability and a low-carbon circular economy, moving
toward carbon neutrality.
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