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Abstract: Ultra-high-performance concrete (UHPC) is widely used in the field of large-span and ultra-
high-rise buildings due to its advantages such as ultra-high strength and durability.
However, the large amount of cementitious materials used results in the cost and carbon emis-
sion of UHPC being much higher than that of ordinary concrete, limiting the wide application of
UHPC. Therefore, optimizing the design of the UHPC mix proportion to meet the basic properties
of UHPC with low carbon and low cost at the same time will help to realize the wide application
of UHPC in various application scenarios. In this study, the basic properties of UHPC, including
the compressive strength, flexural strength, fluidity, and shrinkage properties, were predicted by
machine-learning algorithms. It is found that the XGBoost algorithm outperforms others in predict-
ing basic properties, with MAPE lower than 5% and R2 higher than 0.9 in four output properties.
To evaluate the comprehensive performance of UHPC, a further analysis was conducted to calculate
the cost- and carbon-emissions-per-unit volume for 50,000 UHPC random mixes. Combined with the
analytical hierarchy process (AHP) model, the comprehensive performance of UHPC, including basic
properties, cost-per-unit volume, and carbon-emissions-per-unit volume, was evaluated. This study
proposes an optimized UHPC mix proportion, based on low-cost or low-carbon emission, oriented to
comply with the excellent overall performance and obtain its corresponding various properties.

Keywords: ultra-high-performance concrete (UHPC); machine learning; analytic hierarchy process
(AHP); comprehensive properties; mix optimization

1. Introduction

Ultra-high-performance concrete (UHPC) is a novel cementitious composite material
that has a 28-day compressive strength value≥ 120 MPa, a tensile strength value≥ 5 MP, a
slump value ≥ 160 mm, and a modulus of elasticity ranging from 40 GPa to 60 GPa [1–4].
When compared to conventional concrete, UHPC exhibits superior workability and durability
properties, making it a popular choice in engineering and construction applications [5–7].
UHPC is widely regarded as one of the most promising construction materials for future
sustainable infrastructure projects [8]. The outstanding properties of UHPC are heavily
influenced by the incorporation of mineral admixtures, steel fibers, and superplasticizers.
Mineral admixtures typically employed in UHPC formulations include silica fume, fly ash,
and slag. Silica fume, for instance, can optimize the internal pore structure of UHPC and
significantly enhance the compactness of the system, resulting in improved compressive
strength and flexural resistance [9–11]. Fly ash contributes to improving the compatibility
and the flowability of UHPC, which reduces the consumption of high-priced superplasticiz-
ers [12–16]. Moreover, the addition of slag can decelerate the hydration process and refine
the microstructure of UHPC, ultimately resulting in the improved mechanical properties of
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the material [17–19]. Incorporating steel fibers into UHPC can inhibit the propagation and
expansion of cracks, thereby enhancing the material’s flexural and tensile properties [20–23].
Furthermore, the use of superplasticizers in UHPC formulations allows for the achievement
of high workability without compromising the material’s mechanical properties and durabil-
ity [24,25].

The synergistic relationship among the various constituents in UHPC creates a typical
multivariate nonlinear problem when predicting its properties, resulting in challenges in
establishing prediction models and low prediction accuracy. Cheng et al. [26] attempted to
apply the compact stacking model to the formulation of UHPC. Chen et al. [27] guided the
design of concrete as well as UHPC properties by a multi-scale analysis method. Ghafari
et al. [28] used the response surface methodology (RSM) statistical model to predict the
properties of the mixed steel fiber self-compacting properties of UHPC. While each of these
methods plays an essential role in optimizing the UHPC mix ratio, the closest packing
method cannot account for the chemical effects of the structural forming process, the
multiscale analysis method involves excessively high-resolution microscopic parameters,
and the RSM method has limited accuracy. To address the fluctuation of UHPC properties
caused by material properties, data-based machine-learning algorithms offer alternative
modeling tools with complex internal structures that can predict concrete properties with
greater accuracy [29]. Machine-learning algorithms have been widely used in concrete
properties prediction, including neural networks [30–33], tree-based methods [34–36],
and boosting-based methods [37,38]. In terms of mix ratio optimization, Lee et al. [39]
optimized the cost and compressive strength of high-performance concrete using a neural
network and a harmonic search algorithm. Cheng et al. [40] optimized the mix ratio of
high-property concrete using support vector regression and a genetic algorithm, which
found the minimum cost of the mix ratio at a specified compressive strength.

However, these optimization methods are designed to optimize a single objective,
while UHPC requires several properties to be considered simultaneously in practical engi-
neering applications. Therefore, it is necessary to evaluate the comprehensive properties
to formulate UHPC that better meet actual engineering requirements. In order to address
the multi-objective problem, the analytic hierarchy process (AHP) method is utilized as an
algorithm to evaluate the properties of UHPC. This approach offers both qualitative and
quantitative decision-making criteria for a limited number of multi-criteria decision prob-
lems, resulting in an optimized mix design [41]. El-Mikawi et al. [42] developed an AHP
model to choose optimal advanced materials for infrastructure maintenance and assess
their properties in comparison with traditional materials. Cuadrado et al. [43] developed
an AHP-based approach that allows for the simultaneous consideration of safety, social, en-
vironmental, economic, functional, and aesthetic factors in the calculation of sustainability
indices for industrial buildings. Gigliarelli et al. [44] proposed an AHP model that takes
into account a range of architectural, conservation, energy, environmental, and economic
considerations for assessing various energy retrofitting options in historical buildings.

The typical UHPC compositions use large amounts of cement and high-priced raw
materials to satisfy the ultra-high performance, resulting in elevated production costs
and a large amount of CO2 emissions (0.68–0.85 t) [45–49]. Achieving a balance between
the desired material properties, production costs, and carbon emissions is critical in opti-
mizing the design of the UHPC mix proportions. Meanwhile, the conventional method
of designing a UHPC mix often involves extensive trial-and-error testing, a process that
can be both laborious and costly. In this study, the prediction models established by
machine-learning algorithm models were compared to select the suitable model for UHPC
compressive strength prediction. The comprehensive performance of UHPC was analyzed
using AHP by combining the basic properties predicted by the prediction models with
the calculated cost and carbon emissions. Based on the results of the analysis, the optimal
UHPC mix proportions and the corresponding properties for low-cost- or low-carbon-
emission-oriented UHPC were derived. The optimization design for UHPC mixes with the
best comprehensive performance was achieved based on the specific performance oriented.
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2. Methodology
2.1. Overview

Figure 1 illustrates the process of predicting UHPC properties and optimizing mix design
through machine-learning algorithms and the analytic hierarchy process. The process consists of
four parts: (1) Collecting test data from the previous literature [50–94] and conducting statistical
analysis on the collected data, as described in Section 2.2. (2) Using the collected data to establish
a UHPC property prediction model through machine-learning algorithms and conducting feature
importance analysis on the factors that affect the UHPC properties, as described in Section 2.3.
(3) Generating a large number of random mixes, as described in Sections 3.1 and 3.2. Based on
the established UHPC property prediction model, the property prediction of random mixes and
calculations of unit volume cost and carbon emissions are completed. (4) Establishing a property
weight matrix through the analytic hierarchy process to obtain the comprehensive properties
calculation formula under different property orientations, as described in Sections 3.3 and 3.4. The
optimization design of the UHPC mix under different property orientations is then completed
based on the comprehensive property indicators of different mixes.
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Figure 1. Flow chart of UHPC property prediction and mix optimization design.

2.2. Data Description

Four datasets comprising a total of 592 experimental data points for UHPC compres-
sive strength, bending strength, fluidity, and shrinkage properties are selected to train the
machine-learning prediction models [50–94]. The input variables for the machine-learning
prediction models include the content ratio of silica fume, fly ash, and slag, as well as the
content ratio of fine aggregate and coarse aggregate, the water-to-binder ratio, and the
steel fiber and superplasticizer contents. The content ratio represents the mass ratio of
the material to the cement. In different mixtures, silica fume, fly ash, and slag are used
as supplementary cementitious materials (SCMs) in various combinations of proportions.
The statistical distributions in the datasets are shown in Table 1.
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Table 1. Statistical data of UHPC datasets.

Attribute Abbreviation Unit Min Max Mean Std

Dataset 1: UHPC compressive strength (363 samples)
Silica fume content ratio SF - 0 0.5 0.19 0.09

Fly ash content ratio FA - 0 1 0.10 0.14
Slag content ratio SG - 0 1 0.07 0.12

Fine aggregate content ratio S - 0 2.28 1.24 0.42
Coarse aggregate content ratio A - 0 3.42 0.27 0.72

Water-to-binder ratio w/b - 0.14 0.26 0.18 0.03
Steel fiber content F % 0 4 1 1

Superplasticizer content SP % 0.3 4 2.18 1
Compressive strength σ MPa 120.30 172.50 137.60 13.23

Dataset 2: UHPC flexural strength (72 samples)
Silica fume content ratio SF - 0 0.40 0.21 0.072

Fly ash content ratio FA - 0 0.50 0.26 0.203
Slag content ratio SG - 0 0.42 0.08 0.158

Fine aggregate content ratio S - 0.30 1.98 1.36 0.224
Coarse aggregate content ratio A - 0 0.59 0.01 0.086

Water-to-binder ratio w/b - 0.15 0.22 0.15 0.025
Steel fiber content F % 0 5 1.81 1.31

Superplasticizer content SP % 0.2 4 2.74 1.28
Flexural strength Fle MPa 12.64 33.56 21.35 8.387

Dataset 3: UHPC fluidity (94 samples)
Silica fume content ratio SF - 0 0.57 0.20 0.209

Fly ash content ratio FA - 0 0.70 0.25 0.158
Slag content ratio SG - 0 0.70 0.35 0.235

Fine aggregate content ratio S - 1 6.52 2.66 1.681
Coarse aggregate content ratio A - 0 9.12 2.31 3.883

Water-to-binder ratio w/b - 0.14 0.88 0.35 0.273
Steel fiber content F % 0 4 1.13 1.35

Superplasticizer content SP % 0.3 4 1.30 1.94
Fluidity Flu mm 500 855 662 105.541

Dataset 4: UHPC shrinkage (63 samples)
Silica fume content ratio SF - 0 1.37 0.21 0.540

Fly ash content ratio FA - 0 3.54 0.23 0.681
Slag content ratio SG - 0 1 0.1 0.164

Fine aggregate content ratio S - 1.01 5.32 1.54 0.889
Coarse aggregate content ratio A - 0 2.55 0.4 0.698

Water-to-binder ratio w/b - 0.14 0.3 0.2 0.058
Steel fiber content F % 0 5 1.03 1.363

Superplasticizer content SP % 0.3 3 1.75 0.932
Shrinkage Shr 10−6 336 1253 608 253.650

Figure 2 illustrates the relationship between UHPC compressive strength and its
components. The results demonstrate a positive correlation between compressive strength
and silica fume and steel fiber concentration, indicating an increase in strength with
increased concentration. Conversely, compressive strength decreases with the increased
content of fine aggregate, coarse aggregate, and water-to-binder ratio. However, there is
no clear correlation trend between the contents of fly ash, slag, and superplasticizer and
UHPC compressive strength.
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The Pearson method is adopted to calculate the correlation coefficient as follows:
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where ρ is the Pearson correlation coefficient, X and Y are features, X and Y are the mean
value of X and Y. Xi and Yi are the i-th observation of X and Y. E and σ represent the
expected value and standard deviation, respectively. The value range of ρ is between −1
and 1. When ρ is greater than 0, it means that there is a positive correlation between the
two features and vice versa. A larger absolute value indicates a stronger linear correlation
between the two features.

The correlation heatmap, as shown in Figure 3, demonstrates correlations between
the compressive strength of the content ratio of silica fume and the contents of the steel
fiber. Strong negative correlations exist between the compressive strength of UHPC and the
content ratio of fine aggregate, coarse aggregate, and the water-to-binder ratio. The content
ratio of Fly ash and slag and the contents of superplasticizers have poor correlations to
UHPC compressive strength.
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2.3. Machine-Learning Algorithms

In this study, the linear regression (LR), backpropagation neural networks (BPNN),
decision tree (DT), random forest (RF), gradient boosting regressor (GBR), and eXtreme
gradient boosting (XGBoost) algorithms are utilized to predict the compressive strength of
UHPC. The optimal algorithm is selected as the prediction algorithm for the compressive
strength, flexural strength, fluidity, and shrinkage properties of UHPC. Feature importance
analysis is carried out with the optimal algorithm. The software used for machine learning
(ML) is Python. Python 3.8, with the packages of Keras, Pandas and Numpy, was applied
to train and evaluate the ML models by developing problem-specified codes.

Figure 4 shows the general architecture of the regression-based machine-learning
model. The model takes in multiple features as inputs and produces outputs for predict-
ing UHPC’s compressive strength, flexural strength, fluidity, and shrinkage properties.
The model is trained using the following input features: silica fume content ratio, fly ash
content ratio, slag content ratio, fine aggregate content ratio, coarse aggregate content ratio,
water-to-binder ratio, steel fiber content, and superplasticizer content. The output parameters
for UHPC include compressive strength, flexural strength, fluidity, and shrinkage value.
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To adequately utilize the dataset, a 5-fold cross validation is adopted. In detail, the
whole dataset is randomly divided into the training set and the test set in the proportion of
80%/20%. The training set is split into 5 folds for parameter optimization, and each fold
is used for training and validation in one iteration. In the i-th iteration, Fold i is the test
set, and the rest are utilized to train the factor generators. In each iteration, the evaluation
Ei is calculated by the mean value of root mean square error (RMSE), mean absolute error
(MAE), mean absolute percentage error (MAPE), and coefficient of determination (R2).
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2.3.1. Linear Regression (LR)

Linear regression is a commonly used supervised learning algorithm in machine learn-
ing for forecasting. It is used to determine the linear relationship between the dependent
variable and the independent variable, and it is expressed as follows [95]:

Y = β0 + β1X1 + β2X2 + · · ·+ βnXn (2)

where: Y represents the dependent variable, Xn represents the independent variable, and
βn represents the regression coefficient.

The linear regression algorithm elucidates a linear association between a dependent
variable and one or more independent variables, hence, earning its designation as linear
regression. By virtue of its capacity to delineate this linear relationship, linear regression
discerns how the value of the dependent variable fluctuates in response to variations in
the independent variable. The linear regression model is characterized by a straight line of
slope, emblematic of the relationship between the variables.

2.3.2. Backpropagation Neural Networks (BPNN)

Neural networks are mathematical models that simulate the complex network of
neurons in the human brain. They are powerful tools for large-scale distributed parallel
information processing [96]. The backpropagation neural network (BPNN) is a widely
used artificial neural network consisting of an input layer, an output layer, and one or
more hidden layers. The topology of the BPNN is depicted in Figure 5. The training
process of the BPNN involves finding the optimal threshold and weight to minimize the
discrepancy between the predicted value and the actual value, which consists of two stages:
the forward propagation stage for the input signal and the backward propagation stage
for the error signal. Typically, the thresholds and weights are initially assigned randomly.
During training, the output generated by the network is compared with the actual output,
and the error is then propagated back from the output layer to the input layer to adjust the
thresholds and weights [31,97,98]. This cycle is repeated, and the thresholds and weights
are continuously adjusted, resulting in an improvement in the prediction accuracy of the
BPNN [99].
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2.3.3. Decision Tree (DT)

The decision tree algorithm is a widely used machine-learning method that can achieve
satisfactory results in both the classification and regression research. The objective of a
decision tree is to create partitions in the predictor in order to predict the target variable
based on the partitions between the input variables. It recursively constructs a binary
decision tree, which contains three parts: internal nodes, leaf nodes, and directed edges.
The selection of branch points for each branch is the key to decision tree construction.

The steps to implement a decision tree are as follows:
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(1) Initialize the root node, define the model input training dataset D and the model
output of the fitted decision tree.

(2) Starting from the root node of the tree, traverse the sample features, scan the segmenta-
tion points for a certain feature, and select the segmentation point s and segmentation
variable j that minimize the following formula.

min
j, s

min
c1

∑
xj∈R1(j,s)

(yi − c1)
2 +

min
c2

∑
xj∈R2(j,s)

(yi − c2)
2

 (3)

where cm is the average value of the output yi corresponding to all input instances xi in
region Rm.

(3) Use the selected value pair (j, s) to divide the area and determine the corresponding
output value:

R1(j, s) =
{

x
∣∣∣x(j) ≤ s

}
, R2(j, s) =

{
x
∣∣∣x(j) ≤ s

}
(4)

ˆcm =
1

Nm
∑

xi∈Rm(j,s)
yi, x ∈ Rm, m = 1, 2 (5)

(4) Continue to call steps 2 and 3 until the stop condition is met.
(5) Divide the input space M into regions R1, R2, · · · Rm to generate a decision tree:

f (x) =
M

∑
m=1

ˆcm I(x ∈ Rm) (6)

The advantage of using a decision tree algorithm is that it is capable of handling both
numerical and categorical data, which makes it relatively straightforward compared to
other models. However, it is important to avoid overfitting the data. One of the drawbacks
of decision trees is that they tend to be unstable, and even minor changes to the dataset can
lead to entirely different sets of partitions [100,101].

2.3.4. Random Forest (RF)

Random forest (RF) is an efficient machine-learning method proposed in 2001 for
classification, regression, and feature selection tasks [102]. The algorithm works by creating
multiple decision trees using a technique called bagging, which involves sampling many
similar datasets from the same source dataset [103]. The random forest algorithm introduces
two random processes to improve the performance: first, it randomly selects samples from
the training set and replaces them to form a self-service training set; second, it randomly
selects feature attributes as candidate segmentation attributes during the decision tree
building process. The introduction of two random processes in the random forest algorithm
enhances its robustness to outliers and noisy data, resulting in a more stable model that
overcomes the problem of overfitting. Due to its ability to handle multiple features, the
random forest algorithm does not require feature selection during the modeling process,
making it a suitable method for addressing such problems.

2.3.5. Gradient Boosting Regressor (GBR)

Gradient boosting regression tree (GBR) is an ensemble learning method first proposed
by Friedman that employs multiple weak learners to form a powerful model [104], as shown
in Figure 6. GBR, which uses a regression tree model as a weak learner, connects multiple
regression trees together to form a strong ensemble learner, with the cumulative result of
all trees being the final result. The fundamental concept of gradient boosting is to link
multiple regression trees where each tree can only predict a small part of the data, and
adding more trees can improve the overall performance. Gradient boosting is a sequential
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process where predictors are added to the ensemble to compensate for the errors of previous
predictors. At each iteration, a new predictor is trained to predict the residuals produced
by the previous predictor [100,105]. The final strong learner is the combination of all the
trees. The prediction function F is an additive model in the form of the addition of several
weak learners:

F(x; ω) =
T

∑
t=0

αtht(x; ωt) =
T

∑
t=0

ft(x; ωt) (7)

where x is the input sample, ht is the t-th regression tree, ω is the parameter of the regression
tree, and α represents the weight of each tree in the prediction function.
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2.3.6. eXtreme Gradient Boosting (XGBoost)

The extreme gradient boosting tree (XGBoost) was developed by Chen and Guestrin
on the basis of the traditional gradient boosting tree [106]. The XGBoost algorithm is an
optimized version of the gradient boosting algorithm that integrates multiple base learners
to become a powerful learner. XGBoost incrementally adds decision trees to the ensemble
and fits the residual between the previous tree’s prediction and the actual value to form
a new model. The newly formed model is then used as the basis for the next iteration of
model learning. This iterative process results in the improved prediction accuracy of the
model. Its prediction function is

ŷi = ∑K
k=1 fk(xi), fk ∈ F (8)

where ŷi is the i-th prediction value of the model; fk(xi) is the i-th decision tree model
corresponding to the input feature xi; K is the total number of decision trees; F is the set of
all decision tree model elements.

Furthermore, the main parameters in these models are shown in the following Table 2.
The choice of optimization technique depends on various factors including the specific
problem, the nature of the data, the model architecture, and the available computational
resources. It is common practice to experiment with different optimization methods to
find the one that works best for a particular machine-learning task. In this research, we
used stochastic gradient descent (SGD), which updates the parameters after processing
each individual training example. It is computationally more efficient but can be noisy.
Momentum optimization introduces a momentum term that helps accelerate the update of
parameters, especially in the presence of noisy gradients. Root mean square propagation
(RMSprop) addresses the diminishing learning rates of Adagrad by using an exponentially
weighted moving average of squared gradients. Adaptive moment estimation (Adam) com-
bines aspects of both momentum optimization and RMSprop. It maintains an exponentially
decaying average of past gradients and squared gradients.
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Table 2. Optimal hyperparameter combinations of the machine-learning algorithms.

Method Hyperparameter Description Value

BPNN

learning_rate Step size of neural network weight update 0.001
Activation function Functions running on neurons sigmoid

batch_size Number of samples per training 50
Number of Hidden Neurons Number of hidden layer neurons 12

Max lterations Maximum number of iterations for training 200

DT

max_depth the maximum depth of the tree 30

min_samples_leaf the minimum number of samples required to be
at a leaf node 4

min_samples_split Minimum number of samples for nodes 4
max_features Maximum number of features 8

RF

n_estimators Number of decision trees in the forest 35
max_depth the maximum depth of the tree 25

min_samples_leaf the minimum number of samples required to be
at a leaf node 4

min_samples_split Minimum number of samples for nodes 4
max_features Maximum number of features 8

GBR
n_estimators Number of weak learners 4
max_depth The maximum depth of the tree 20

learning_rate Step size when iterating decision trees 0.003

XGBoost

n_estimators Number of weak learners 4
learning_rate Step size when iterating decision trees 0.001

gamma Minimum objective function reduction required
for further branching at leaf nodes of a tree 0

max_depth The maximum depth of the tree 20

3. Model Evaluation
3.1. Model Performance Evaluation Metrics

In order to evaluate the performance of the prediction model of the machine-learning
algorithm, this paper considers four indicators, namely: root mean square error (RMSE),
mean absolute error (MAE), mean absolute percentage error (MAPE), and coefficient of
determination (R2), which are defined as follows:

RMSE =

√
1
n ∑n

i=1(yi − ŷi)
2 (9)

MAE =
1
n ∑n

i=1|yi − ŷi| (10)

MAPE =
1
n ∑n

i=1

∣∣∣∣yi − ŷi
yi

∣∣∣∣ (11)

R2 = 1− ∑n
i=1(yi − ŷi)

2

∑n
i=1(yi − yi)

2 (12)

where yi represents the actual value, ŷi represents the predicted value, yi represents the
average value of the actual value, and n represents the number of test data samples. RMSE
reflects the deviation between the predicted value and the tested value, MAE reflects the
actual situation of the predicted error, MAPE reflects the ratio of the predicted error to the
actual value, and R2 shows the degree of linear correlation between the predicted value
and the tested value, RMSE. The smaller the MAE and MAPE and the closer R2 is to 1, the
better the performance of the prediction model.
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3.2. UHPC Compressive Strength Prediction Results

Table 3 presents the performance results of the UHPC compressive strength prediction
models established by LR, BPNN, DT, RF, GBR, and XGBoost. The results show that the
compressive strength of UHPC is accurately predicted by DT, RF, GBR, and XGBoost, with
XGBoost showing the best performance. In contrast, BPNN has relatively poor performance,
and LR exhibits the worst performance among all the models.

Table 3. Performance of ML algorithms for UHPC compressive strength prediction.

Model
Performance Index

RMSE (Mpa) MAE (Mpa) MAPE (%) R2

LR 10.46 8.60 9.21 0.881
BPNN 10.13 8.83 6.09 0.913

DT 6.34 4.39 3.72 0.968
RF 5.21 3.91 3.54 0.978

GBR 4.98 4.23 3.84 0.975
XGBoost 4.83 3.49 2.81 0.981

Figure 7 shows the relationship between the actual and predicted values of UHPC
compressive strength for different machine-learning algorithms. It is evident that DT,
RF, GBR, and XGBoost algorithms provide close-to-center-line predictions that are tightly
clustered around the center line, indicating a small deviation between the predicted and
actual values and accurate prediction of the compressive strength of UHPC. However,
LR and BPNN exhibit a large gap with the center line for most of the points in Figure 7,
suggesting a relatively large deviation between the predicted and actual values.
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Tree-based machine-learning models and boosting techniques have demonstrated a
strong performance in predicting UHPC compressive strength, which benefits from their
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ability to capture the complex nonlinear relationships between mix ratio factors and final
performance by forming nodes and leaves that gradually improve with weak learners.
In contrast, LR performed poorly due to the nonlinear and complex nature of the rela-
tionship, while BPNN was prone to get stuck in local extreme values, leading to reduced
model performance.

3.3. Prediction of Flexural Strength, Fluidity, and Shrinkage Properties of UHPC

Comparing the prediction results of different machine-learning algorithms for the
compressive strength of UHPC, it was determined that the XGBoost algorithm achieves the
best performance in predicting the compressive strength of UHPC. Therefore, the XGBoost
algorithm is also utilized to predict the flexural strength, fluidity, and shrinkage of UHPC.
Table 4 provides a summary of the performance metrics of the XGBoost algorithm for the
prediction of flexural strength, fluidity, and shrinkage properties. The results demonstrate
that the algorithm achieved a MAPE lower than 5% and an R2 higher than 0.9, indicating a
high level of accuracy and strong prediction performance.

Table 4. Performance of XGBoost for flexural strength, fluidity, and shrinkage prediction.

Performance RMSE MAE MAPE (%) R2

Flexural strength 0.92 0.91 4.37 0.959
Fluidity 23.78 18.25 3.22 0.937

Shrinkage 22.52 19.63 3.92 0.982

Figure 8 shows the performance of the XGBoost algorithm applied to predict the
flexural strength, fluidity, and shrinkage properties of UHPC, displaying the relationship
between the actual and predicted values. The results indicate that most of the predicted
values are close to the center line, suggesting that the deviation between the predicted and
actual values is small, which demonstrates the effectiveness of the XGBoost algorithm in
predicting these properties of UHPC.
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3.4. Feature Importance Analysis

This study employs the XGBoost algorithm to assess the significance of input features
in predicting UHPC compressive strength, flexural strength, fluidity, and shrinkage prop-
erties. The feature importance is calculated based on the gain of the structure score, with
the feature selected as the segmentation point. The feature importance is calculated as
the sum of its occurrences in all trees. This implies that the more frequently an attribute
is utilized to construct a decision tree in the model, the higher its importance. As shown
in Figure 9, the water-to-binder ratio is found to be the most influential feature affecting
the compressive strength of UHPC. Moreover, the content of steel fiber is identified as the
most significant factor affecting the flexural strength of UHPC, while the water-to-binder
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ratio and the contents of superplasticizers are also observed to have a considerable effect
on UHPC’s flexural strength. Additionally, it was found that the water-to-binder ratio,
contents of superplasticizers, and the content ratio of fly ash had significant effects on
the fluidity of UHPC. Furthermore, the contents of superplasticizers were found to have
the most significant effect on the shrinkage of UHPC, while the content ratio of coarse
aggregate has a relatively more important effect on UHPC shrinkage.
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4. Optimization of UHPC Mix

Based on the prediction results, this study conducted further optimization of the
UHPC mix. To achieve the optimal design of the UHPC mix, the first step is to set the
constraint range of factors for the UHPC mix [107]. The following factors are chosen for
the design of UHPC, including silica fume content ratio, fly ash content ratio, slag content
ratio, fine aggregate content ratio, coarse aggregate content ratio, water-to-binder ratio,
steel fiber content, and superplasticizer content, as shown in Table 5.

Table 5. Compatibility factor constraint range.

Input Variables Range Constraints

Silica fume content ratio (0∼0.5)
Fly ash content ratio (0∼0.5)

Slag content ratio (0∼0.5)
Fine aggregate content ratio (0∼1.5)

Coarse aggregate content ratio (0∼1.5)
Water-to-binder ratio (0.12∼0.26)

Steel fiber content (0%∼5%)
Superplasticizer content (0.3%∼4%)

The established UHPC property prediction model is then fed with 50,000 randomly
generated UHPC mixes, which output the predicted UHPC properties. Next, the material
price and carbon dioxide equivalent factor are introduced to calculate the unit volume cost
and carbon emissions for each mix. These factors are then combined using the hierarchical
analysis method to consider compressive strength, flexural strength, fluidity, shrinkage, unit
volume cost, and carbon emissions in the comprehensive evaluation of UHPC properties.
The optimized design of UHPC mixes is then achieved under different property orientations
according to the comprehensive properties ranking.



Sustainability 2023, 15, 15338 14 of 25

4.1. Calculation of Unit Volume Cost and Carbon Emissions

The formula for the volume of concrete is as follows [108]:

Vm =
mC
ρC

+
mSF
ρSF

+
mFA
ρFA

+
mSG
ρSG

+
mS
ρS

+
mA
ρA

+
mW
ρW

+
mF
ρF

+
mSP
ρSP

= 1m3 (13)

where mC, mSF, mFA, mSG, mS, mA, mW , mF, mSP represent the weight of cement, silica
fume, fly ash, slag, fine aggregate, coarse aggregate, water, steel fiber and superplasticizer
content in 1 m3 of UHPC, respectively; ρC, ρSF, ρFA, ρSG, ρS, ρA, ρW , ρF, ρSP are the densities
of cement, silica fume, fly ash, slag, fine aggregate, coarse aggregate, water, steel fiber, and
superplasticizer, respectively.

The cost of UHPC is:

Cost =
n

∑
i=1

Pi ×mi (14)

where i is the number of the ingredient types; mi is the mass of i-th ingredient; Pi is the cost
of 1 kg of the i-th ingredient.

Equation (15) [109] is used to calculate the carbon emissions of UHPC:

CO2 =
n

∑
i=1

CO2−eqi ×mi (15)

where CO2−eqi is the carbon dioxide equivalent of the i-th ingredient. The density and unit
price and carbon dioxide equivalent of UHPC raw materials are shown in Table 6 [110–119].
Carbon emissions from raw materials are considered only at the production stage and not
from other processes.

Table 6. UHPC raw material density and unit price and carbon dioxide equivalent.

Component Density (kg/m3) Cost (yuan/kg) CO2-eq (kg/kg)

Cement [114,119] 3150 0.7 0.832
Silica fume [115,116] 2500 1.7 0.0003

Fly ash [118,119] 2500 0.35 0.009
Slag [117,118] 2800 1.335 0.019

Fine aggregate [110] 2650 0.45 0.0025
Coarse aggregate [110] 2500 0.2 0.0022

Water [114,119] 1000 0.00345 0.0003
Steel fiber [111,112,114] 7800 11 2.75

Superplasticizer [113,119] 1350 25 0.72
Note: 1 dollar = 7.2749 yuan, based on the 16 September 2023 exchange rate.

4.2. Multi Properties Prediction and Analysis for Random Data

The UHPC properties prediction model is applied to the randomly generated
50,000 UHPC mixes. After screening, 28,871 eligible combinations were obtained, and the
resulting predictions are shown in Figure 10, which displays the distribution of the predicted
properties. The compressive strength of UHPC ranges from 77.5 MPa to 165.3 MPa with a
majority of the values clustering around 135 MPa. The flexural strength varies from 5.92 MPa
to 33.76 MPa, with the majority of the values clustering around 29 MPa. The fluidity degree
ranges from 466 mm to 830 mm with the majority of the values clustering around 625 mm. The
shrinkage ranges from 243 × 10−6 to 1148 × 10−6 with the majority of the values clustering
around 450 × 10−6 and 700 × 10−6.
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By calculation, the cost-per-unit volume for 28,871 UHPC random mixes ranges from
1048 yuan/m3 to 7586 yuan/m3, with the majority of values clustering in the range of
3000 yuan/m3 to 6500 yuan/m3. The carbon-emissions-per-unit volume ranges from 353 kg/m3

to 2295 kg/m3, with the majority of values clustering in the range of 1000 kg/m3 to 1500 kg/m3.
The calculation results for cost and carbon emission for UHPC random mixes are shown
in Figure 11.
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4.3. Comprehensive Property Analysis by AHP Method

In practical engineering applications, engineers need to consider multiple properties of
UHPC simultaneously. However, different properties of UHPC may have varying degrees
of influence under different working conditions, and some of them may even conflict with
each other. Hence, to evaluate the comprehensive properties of different mixes, it is essential
to assign reasonable weights to different properties of UHPC. Among the various multi-
criteria evaluation methods, the analytic hierarchy process (AHP) proposed by Saaty [120]
is one of the most extensively used methods. Over the years, AHP has demonstrated its
potential to resolve intricate decisions and acquire alternative prioritization, thus, making
it an equally significant technique to explore for the optimization of UHPC mixes [121].

4.3.1. AHP Model and Parameters

AHP is a method that can help decision-makers evaluate both quantitative and quali-
tative criteria [41]. It decomposes the original decision problem into a hierarchical structure
with a one-way hierarchical relationship. At the top level of the hierarchy is the main
objective of the decision problem, while the lower levels contain the criteria and sub-criteria
that contribute to achieving that objective, and the alternatives to be evaluated are located
at the bottom level [121,122].

In this study, the assessment system for UHPC comprehensive properties was structured
into three layers: the objective layer, the criterion layer, and the solution layer. The objective of
the assessment was the comprehensive properties of UHPC, which constituted the objective
layer. The criterion layer consisted of six UHPC property factors that were considered
for assessment, including compressive strength, flexural strength, fluidity, shrinkage, and
cost- and carbon-emissions-per-unit volume. The solution layer included 28,871 alternative
UHPC mixes. Based on the hierarchical structure, the AHP model for comprehensive UHPC
properties assessment was developed, as illustrated in Figure 12.
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The relative importance between the six UHPC property factors in the criterion layer
was determined using pairwise comparisons, which were converted into numerical val-
ues based on Saaty’s AHP model evaluation basic scale table [120], as listed in Table 7.
The expert scoring method was employed to perform two-by-two comparisons of the fac-
tors, establishing a judgment matrix A, as seen in Equation (16), that indicates the relative
importance of factor i to factor j. [120–122].

A =


a11 a12 . . . a1n
a21 a22 . . . a2n
...

...
...

...
an1 an2 . . . ann

 (16)

where aij > 0; aji =
1

aij
; aii = 1; i, j = 1, 2, 3, · · · , n.
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Table 7. AHP model judgment scale and meaning.

Importance Definition

1 Equal importance
3 Moderate dominance
5 Strong dominance
7 Demonstrated dominance
9 Extreme dominance

2, 4, 6, 8 Intermediate values

In order to optimize the UHPC mix under different working conditions, this study has
constructed judgment matrices that are oriented towards specific properties of UHPC, namely,
cost- and carbon-emissions-per-unit volume. The corresponding eigenvectors were derived
and normalized based on these matrices, and the weights for each property were obtained
through the arithmetic averaging method, as listed in Tables 8 and 9. These weights indicate
the relative importance of each property in determining the overall UHPC performance.
The consistency of the judgment matrices was verified through the calculation of the con-
sistency ratio (CR), which is less than 0.1, indicating that the matrices meet the consistency
requirement [120].

Table 8. Weighting matrix under unit volume cost orientation.

Criterion Layer σ Fle Flu Shr Cost CO2 Weight

σ 1 1 2 2 1/2 3 0.188
Fle 1 1 2 2 1/2 3 0.188
Flu 1/2 1/2 1 1 1/4 2 0.099
Shr 1/2 1/2 1 1 1/4 2 0.099

Cost 2 2 4 4 1 5 0.366
CO2 1/3 1/3 1/2 1/2 1/5 1 0.059

Table 9. Weighting matrix under unit volume carbon emissions orientation.

Criterion Layer σ Fle Flu Shr Cost CO2 Weight

σ 1 1 2 2 3 1/2 0.188
Fle 1 1 2 2 3 1/2 0.188
Flu 1/2 1/2 1 1 2 1/4 0.099
Shr 1/2 1/2 1 1 2 1/4 0.099

Cost 1/3 1/3 1/2 1/2 1 1/5 0.059
CO2 2 2 4 4 5 1 0.366

4.3.2. Comprehensive Property Evaluation

The UHPC mixes were compared by quantitatively calculating the relative growth rate of
each property in comparison to the benchmark group, which was the group with the lowest
compressive strength in the predicted results. The comprehensive properties of each UHPC mix
were compared by applying the property weights obtained from AHP. The benchmark group and
the corresponding properties are presented in Tables 10 and 11, respectively.

Table 10. Base group mixture.

MIX C SF FA SG S A w/b F SP

M0 1 0.01 0.19 0.15 0.99 0.26 0.24 5.00% 0.63%
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Table 11. Corresponding properties of the base group mixture.

MIX σ (MPa) Fle (MPa) Flu (mm) Shr (10−6) Cost
(yuan/m3)

CO2
(kg/m3)

M0 120 22.37 655 765 5596 1711

The calculation of the comprehensive properties of UHPC involves using a formula
that takes into account the relative growth rate of each UHPC mix with respect to the
benchmark group and the corresponding weights obtained from the AHP method. The
positive sign in the formula indicates that a UHPC mix has better properties than the
benchmark group, while the negative sign indicates that its properties are inferior. The
formulas are as follows:

Rσ =
σi − σ0

σ0
× 100% (17)

RFle =
Flei − Fle0

Fle0
× 100% (18)

RFlu =
Flui − Flu0

Flu0
× 100% (19)

RShr =
Shri − Shr0

Shr0
× 100% (20)

RCost =
Ci − C0

C0
× 100% (21)

RCO2 =
CO2 i − CO20

CO20

× 100% (22)

The cost-per-unit volume oriented comprehensive property calculation formula is

Rcom = 0.188Rσ + 0.188RFle + 0.099RFlu − 0.099RShr − 0.366RCost − 0.059RCO2 (23)

The carbon-emissions-per-unit volume oriented comprehensive property calculation
formula is

Rcom = 0.188Rσ + 0.188RFle + 0.099RFlu − 0.099RShr − 0.059RCost − 0.366RCO2 (24)

where Rσ is the growth rate of the compressive strength; RFle is the growth rate of the
flexural strength; RFlu is the growth rate of the fluidity; RShr is the growth rate of the
shrinkage; RCost is the growth rate of the cost-per-unit volume; RCO2 is the growth rate of
the carbon-emissions-per-unit volume; and RCom is the growth rate of the comprehensive
properties. RCom presents the weighted average of Rσ, RFle, RFlu, RShr, RCost, RCO2 ; the
larger the value of RCom, the better the mixture.

4.4. Optimization Design of UHPC Mix

The 28,871 UHPC random mixes were ranked in descending order according to their
overall properties, with higher rankings indicating better overall properties. The top
10 mixes and comprehensive properties in terms of cost-per-unit volume and carbon-
emission-per-unit volume orientation are presented in Tables A1–A4. AHP was employed
to determine the optimal mix of UHPC under various property orientations based on
its comprehensive properties. Figure 13 displays the top 10 UHPC mix designs obtained
through the analytic hierarchy process for cost and carbon emission orientation, the best mix
is marked in the red circle. The final mix design scheme for each orientation is denoted by
the red circle. The selected final mix solutions under different property orientations suggest
that the comprehensive properties of this mix are superior to all other alternative mix
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schemes. Under the orientation of cost-per-unit volume, the corresponding compressive
strength of the final mix is 138.6 MPa, flexural strength is 29.03 MPa, fluidity is 621 mm,
shrinkage value is 357 × 10−6, unit volume cost is 2832 yuan/m3, and carbon-emissions-
per-unit volume is 876 kg/m3. Under the orientation of unit volume cost, the compressive
strength corresponding to the final mix is 140.4 MPa, flexural strength is 27.18 MPa, fluidity
is 603 mm, shrinkage value is 272 × 10−6, unit volume cost is 3360 yuan/m3, and carbon-
emissions-per-unit volume is 701 kg/m3.
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5. Conclusions

This paper investigates the optimal design method of UHPC mix proportion under
different property orientations based on the combination of machine-learning algorithm
and AHP. The main conclusions are as follows:

(1) Through comparison, the compressive strength of UHPC can be well-predicted
by machine-learning algorithms using DT, RF, GBR, and XGBoost. XGBoost has the best
performance, showing the lowest MAE (3.49 MPa) and MAPE (2.81%) and the closest R2

value to 1 (0.981), while LR and BPNN have relatively poor performance.
(2) The results show that the XGBoost algorithm can also be used to predict flexural

strength, fluidity, and shrinkage properties. The MAPE of the algorithm applied to the
above properties is less than 5% and the R2 is higher than 0.9, indicating that the algorithm
has high accuracy and strong prediction performance for many basic properties of UHPC.

(3) For different properties, the influencing factors have different levels of importance.
For instance: the most important feature affecting the compressive strength of UHPC is the
water-to-binder ratio; the most important feature affecting the flexural strength of UHPC is
the steel fiber admixture.

(4) Prediction on the basic performance of 50,000 randomly generated UHPC mixtures
was conducted using the XGBoost algorithm, and the carbon-emissions- and cost-per-unit
volume were calculated correspondingly. Combined with AHP to evaluate the comprehen-
sive performance of UHPC mix proportions, the optimized design of UHPC mix, oriented
to the lowest cost or lowest carbon emission, is completed, and its corresponding properties
are obtained.

(5) Targeting different engineering needs in the future, the design method of the UHPC
mixture proposed in this paper can be optimized by combining with other machine-learning
algorithms to improve the prediction accuracy of the model and, ultimately, formulate
UHPC that are environmentally friendly and fulfill the need for functional customization.
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Appendix A

Table A1. Cost-per-unit volume oriented comprehensive properties of the top 10 mixture.

MIX C SF FA SG S A w/b F SP

M1 1 0.2 0.49 0.01 0.2 1.5 0.14 1.50% 1.86%
M2 1 0.08 0.44 0.1 0.52 1.37 0.13 1.50% 1.90%
M3 1 0.15 0.21 0.04 1.4 1.47 0.16 1.50% 1.72%
M4 1 0.23 0.23 0.02 0.42 1.25 0.13 1.50% 1.83%
M5 1 0.29 0.26 0.37 0.6 1.44 0.14 1.50% 1.91%
M6 1 0 0.41 0 0.37 1.35 0.13 1.50% 1.97%
M7 1 0.17 0.23 0.32 0.41 1.48 0.17 1.50% 1.63%
M8 1 0.16 0.42 0.45 0.41 1.41 0.2 1.50% 2.21%
M9 1 0.33 0.47 0.4 1.42 1.38 0.17 1.50% 1.84%

M10 1 0.16 0.4 0.3 1.42 1.43 0.13 1.50% 2.40%

Table A2. Cost-per-unit volume oriented comprehensive properties of the top 10 mixture correspond-
ing properties.

MIX
σ Fle Flu Shr Cost CO2 RCom

(MPa) (MPa) (mm) (10−6) (yuan/m3) (kg/m3) (%)

M1 138.6 29.03 621 357 2832 876 34.14%
M2 129.3 28.20 728 329 2824 875 34.01%
M3 149.5 24.15 667 343 2688 783 33.90%
M4 151.6 27.95 604 424 2940 934 33.24%
M5 140.9 27.78 630 281 3100 808 33.06%
M6 124.7 29.02 618 329 2712 942 32.83%
M7 133.5 27.25 695 359 2885 837 32.72%
M8 130.9 26.75 688 278 3032 786 32.04%
M9 139.9 25.63 606 281 2972 703 31.92%

M10 143.5 25.46 667 355 3011 749 31.90%



Sustainability 2023, 15, 15338 21 of 25

Table A3. Carbon-emissions-per-unit volume oriented comprehensive properties of the top 10
mixture.

MIX C SF FA SG S A w/b F SP

M1 1 0.48 0.5 0.45 1.34 1.38 0.15 1.50% 2.90%
M2 1 0.45 0.35 0.37 1.32 1.48 0.13 1.50% 3.09%
M3 1 0.33 0.47 0.4 1.42 1.38 0.17 1.50% 1.84%
M4 1 0.29 0.26 0.37 0.6 1.44 0.14 1.50% 1.91%
M5 1 0.16 0.41 0.46 1.29 1.5 0.12 1.50% 3.85%
M6 1 0.21 0.41 0.48 1.5 1.37 0.16 1.50% 2.47%
M7 1 0.35 0.36 0.25 1.32 1.28 0.17 1.50% 2.68%
M8 1 0.16 0.4 0.3 1.42 1.43 0.13 1.50% 2.40%
M9 1 0.25 0.42 0.29 1.44 1.49 0.14 2.00% 2.57%

M10 1 0.29 0.27 0.47 1.4 0.71 0.15 1.50% 2.39%

Table A4. Carbon-emissions-per-unit volume oriented comprehensive properties of the top 10
mixture corresponding properties.

MIX
σ Fle Flu Shr Cost CO2 RCom

(MPa) (MPa) (mm) (10−6) (yuan/m3) (kg/m3) (%)

M1 140.4 27.18 603 272 3360 701 36.79%
M2 145.7 26.92 623 323 3376 725 36.50%
M3 139.9 25.63 606 281 2972 703 35.68%
M4 140.9 27.78 630 281 3100 808 35.65%
M5 132.1 27.52 662 270 3430 748 35.60%
M6 138.2 25.68 625 270 3097 715 35.50%
M7 147.6 27.18 622 430 3149 742 35.49%
M8 143.5 25.46 667 355 3011 749 35.07%
M9 145.5 28.41 620 362 3486 834 34.72%

M10 151.0 25.80 613 339 3351 789 34.69%
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