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Abstract: The rapid proliferation of electric vehicle adoption has brought about significant changes
in energy consumption patterns, but improper disposal of retired batteries poses new challenges
to the environment. In order to promote the sustainable development of the industry using retired
batteries, this paper focuses on the research on retired battery appearance detection, sorting, and
regrouping technologies. Firstly, the standards for retired battery appearance detection are analyzed,
and a method of acquiring battery appearance features through two-stage image acquisition is
proposed. Machine vision is employed to achieve the appearance filtering of retired batteries,
overcoming the shortcomings of manual screening. For the filtered batteries, capacity, internal
resistance, and open-circuit voltage are determined as indicators. Analytic hierarchy process and Gray
relation analysis are employed for classification based on four application scenarios. Additionally,
an improved Gaussian mixture model clustering algorithm is proposed. In the recombination
process, the algorithm parameters are adaptively adjusted for each battery category. Experimental
results demonstrate that the accuracy of battery appearance filtering exceeds 97%, and the improved
algorithm effectively enhances the consistency among batteries. Compared to the baseline algorithm,
the performance consistency of regrouping batteries is increased by more than 5%.

Keywords: electric vehicle; retired battery; echelon utilization; appearance detection; sorting and
regrouping

1. Introduction

The rapid development of electric vehicles has provided humans with a clean and
efficient way to travel, and their market share is gradually increasing [1,2]. Along with the
booming development of electric vehicles, the production of power batteries has also shown
growth [3–5]. Lithium-ion batteries are widely used in electric vehicles due to their high
energy density and long cycle life [6]. With the operation of electric vehicles, lithium-ion
battery life will decay, and the inconsistency between the batteries will increase; in order
to ensure the safe operation of electric vehicles, the battery needs to be replaced [7], but
the retired batteries can be utilized for secondary use in circumstances where the battery
performance requirements are lower [8]. In the whole life cycle of the power battery, its
utilization mainly includes four stages [9], as shown in Figure 1. Firstly, the new battery
will be applied to electric vehicles and can be applied in other scenarios when its lifespan
decreases to a certain extent. Batteries with better performance can be applied in scenarios
such as low-speed electric bicycles, mobile power, etc. Batteries with poorer performance
are generally applied in places such as energy storage power stations. Batteries with
capacities lower than 30% or 20% [10] will be dismantled and recycled.

In order to ensure the safety of the echelon utilization of retired batteries, it is necessary
to carry out appearance detection of batteries before utilization, eliminating batteries with
bulging packs, liquid leakage, and case deformation [11]. At the same time, due to the
different degrees of aging of batteries, the internal indicators have a large difference. If not
sorted and regrouped, the inconsistency between batteries will lead to excessive aging of
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the batteries and the risk of thermal runaway. Therefore, appearance detection, sorting,
and regrouping of batteries are necessary for echelon utilization.
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Since the echelon utilization of retired batteries is still in its infancy, appearance
filtering standards are not perfect. The appearance filtering of retired batteries remains at
the stage of manual filtering [12], mainly through visual observation, eliminating bulging,
leaking, and deformed batteries, but manual observation depends on the professional
ability and quality of the staff. At the same time, leaking and bulging batteries also have
certain safety hazards, and the direct contact of manpower will have a certain degree
of risk. Zhou et al. [13] detected the location and status of retired batteries through
machine vision and proposed a combination of manual and robotic methods for the echelon
utilization of retired batteries. In the stage of the new battery leaving the factory, the
appearance detection of the battery is mainly realized by machine vision. Zhang et al. [14]
proposed a method based on machine vision to realize the scratch detection of the battery
appearance, which overcomes the disadvantages of manual detection. Machine vision
greatly improves the speed and accuracy of appearance detection. In the stage of filtering
the appearance of retired batteries, there are few studies that utilize machine vision for
filtering. On the one hand, due to the diverse appearance of retired batteries, it is necessary
to simultaneously detect features such as bulging, leakage, and deformation. On the other
hand, the construction of a retired batteries appearance dataset is also more difficult.

Sorting of retired batteries is intended to classify batteries with similar performance,
while the purpose of regrouping is to recombine similar batteries for secondary utiliza-
tion [15]. The consistency of retired batteries varies widely due to differences in bat-
tery usage environments, operating conditions, and even driving habits [16], and these
differences are mainly reflected in parameters such as capacity and internal resistance.
Jiang et al. [17] evaluated the consistency of retired batteries in terms of both capacity and
internal resistance and analyzed the correlation between them. Lai et al. [18] analyzed the
relationship between the charging curve and the available capacity, combined with the
scenario of echelon utilization of retired batteries, and proposed an improved K-means
algorithm for regrouping. Wang et al. [19] introduced a clustering methodology that com-
bines density-based spatial clustering of applications with noise (DBSCAN) with K-means,
resulting in improved accuracy in the regrouping process. In previous studies, numerous
researchers [20,21] have concentrated on assessing the influence of battery capacity and
internal resistance on echelon utilization. Nevertheless, during battery regrouping, dis-
parities in open-circuit voltage can result in internal charging between modules, thereby
compromising the safety of echelon utilization. Additionally, initial parameters, such as
the number of clusters in various clustering algorithms, wield significant influence on the
regrouping process. Current clustering methods, including K-means and Gaussian mixture
model (GMM), often necessitate manual selection of the cluster count [22], rendering them
unsuitable for the extensive clustering and regrouping requirements of retired batteries.
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Based on the above analysis, the limitations of the existing technology of echelon use
mainly include:

(1) The appearance filtering of retired batteries has an important impact on their safe
application, but the existing program mainly carries out manual observation filtering,
the filtering accuracy is not guaranteed, and the manual filtering also has safety risks.

(2) A large number of studies have taken battery capacity and internal resistance as
sorting indicators, ignoring the influence of open-circuit voltage on the echelon uti-
lization of the battery, while the binary evaluation indicators make it difficult to
comprehensively assess the state of the battery.

(3) Existing regrouping algorithms are mainly aimed at evaluating the advantages and
disadvantages of a certain batch of batteries, without taking into account the actual
scenario of echelon utilization, and at the same time, the algorithm parameters are
often chosen artificially in regrouping.

In order to fill these research gaps, this paper delves into research on technology for
the detection, sorting, and regrouping of retired batteries. The main structure of the article
is shown in Figure 2, which mainly contains the following contributions:

(1) The paper examines the criteria for screening the appearance of retired batteries
and introduces a method for capturing appearance features through dual-image
acquisition. Subsequently, retired battery appearance screening is achieved using the
machine learning method.

(2) Retired batteries are sorted according to different application scenarios through the
analytic hierarchy process (AHP) and Gray relation analysis (GRA), laying the foun-
dation for subsequent high-precision battery regrouping.

(3) A hybrid DBSCAN-GMM algorithm is proposed, which can adaptively adjust the
number of clustering clusters and related parameters. This algorithm aims to minimize
disparities among batteries within the same group, ultimately enhancing regroup-
ing accuracy.
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2. Construction of Retired Battery Appearance Dataset

In this section, the appearance filtering criteria of retired batteries are analyzed, and
a method for acquiring the appearance characteristics of retired batteries by two image
acquisitions is proposed.
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2.1. Criteria for Appearance Filtering of Retired Batteries

The retired battery analyzed in this paper is a square 20 Ah lithium iron phosphate
power battery, a battery widely used by electric vehicles, and its main performance param-
eters are shown in Table 1.

Table 1. Main parameters of the battery.

Items Parameters

Type LiFePO4
Rated capacity 20 Ah

Nominal voltage 3.2 V
Cutoff voltage 2.5~3.65 V

Mass 654 g
Size 148 × 27 × 98 mm

During the electric vehicle usage phase, various operating conditions lead to defects
like bulging, liquid leakage, and deformation in the batteries. Therefore, in the echelon
utilization of retired batteries, the first step for disassembled single batteries is appearance
filtering. Only the batteries meeting the appearance filtering standards are permitted to
proceed to the echelon utilization stage [23]. Generally speaking, the appearance filtering
of single batteries is mainly from the lugs as well as the case to check the appearance status
of the battery. The desirable condition of the lugs and the case are illustrated in Figure 3a,d.
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(1) Single battery lugs are stained and broken in appearance, as shown in Figure 3b,c.
This is mainly due to improper operation of the battery in the electric vehicle use
and battery pack disassembly stage, and this type of retired battery is not suitable for
echelon utilization.

(2) The cases of single batteries are bulging and deformed as shown in Figure 3e,f.
This is mainly due to the battery production stage process that is poor or in the
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electric vehicle application stage of over-charging, over-discharging. Consequently,
batteries of this nature should be deemed unfit for use and should undergo scrapping
and dismantling.

2.2. Image Acquisition Platform Construction for Retired Batteries

The retired battery image acquisition platform is mainly composed of industrial
cameras, lenses, and light sources.

2.2.1. Image Acquisition Platform Program Design

In the process of image acquisition, due to the diversity of appearance defects in
retired batteries, it is not possible to capture all features in a single acquisition. However,
collecting data too frequently decreases the system efficiency. To strike a balance between
sampling accuracy and efficiency, this paper proposes a method of detecting the appearance
features of retired batteries by two image acquisitions, and the main process is shown in
Figure 4. Firstly, the battery is loaded through the machine with the lugs facing upwards,
and the industrial camera captures the battery lug features. Followed by battery flipping,
the industrial camera captures the lower battery features.
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In the first image acquisition, the main focus is on the features of the two lugs of
the square battery, and the stains and damages to the lugs are recognized. In the second
shooting, the lower part of the battery is selected for the purpose of acquiring features such
as bulging and deformation of the battery case in one shot. Because the deformation and
bulging of the battery cannot be fully captured from a single side view, employing multiple
side views would complicate the system. However, the lower part of the battery is relatively
flat, without lugs, pressured relief holes, or other features that might obstruct the view of
the battery case’s bulging and deformation. This approach allows for the comprehensive
capture of all appearance characteristics of square batteries, ensuring accurate identification
while enhancing system efficiency.

2.2.2. Selection of Industrial Cameras, Lenses, and Light Sources

In image acquisition, the camera is used to collect the characteristics of retired batter-
ies, and the camera performance directly affects the quality of the image. To enhance the
precision of appearance filtering while ensuring the system’s reliability, an OSG130-210UM
industrial camera was selected in this study. In the image acquisition system, an industrial
camera is paired with a lens to facilitate image acquisition. The lens modulates light, trans-
mitting the target imaging information to the camera’s image sensor. Considering factors
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such as focal length, aperture, and depth of field, this paper opted for the VM04018MPIR
lens. Light sources are another important part of the image acquisition platform. Although
the choice of the light source should not only take into account the final image of the imag-
ing conditions, ensuring that the characteristics of the retired batteries can be completely
presented, this paper chose a JS-RL-90-60 white ring light source. The main parameters of
the industrial camera, lens, and light source are shown in Table 2.

Table 2. Basic Parameters of Camera, Lens, and Light Source.

Names Items Parameters

Camera

Model OSG130-210UM
Sensor type PYTHON 1300

Pixel size 4.8 um × 4.8 um
Resolving power 1280 × 1024

Frame rate 210 FPS

Lens
Model VM04018MPIR

Focal length 4–18 mm
Aperture F1.6-C

Light source
Model JS-RL-90-60

Voltage/power 24 V/8.6 W
Luminous angle 60◦

2.3. Construction and Enhancement of Retired Battery Dataset

On the image acquisition platform, image acquisition of retired batteries acquired
from factories is carried out to obtain the original images of retired batteries, and the
acquired lugs and case images are classified as defective or good, respectively. The images
acquired are often interfered with by the complex external environment, and it is necessary
to pre-process the images in order to improve the image quality. The original image has a
resolution of 1280 × 1024. After removing the background and cropping in a way that the
target subject occupies the majority of the image, all the images are uniformly resized to
224 × 224.

The image data augmentation primarily involves random flipping, random mirroring,
and proportional scaling. The augmented lug dataset comprises a total of 800 images,
consisting of 500 good and 300 defective images. Similarly, the case dataset comprises
500 images, with 300 good and 200 defective images.

3. Machine Learning-Based Appearance Filtering of Retired Batteries

This section provides an overview of the architectures of ResNet and the convolutional
block attention module (CBAM), analyzes the results of CBAM-ResNet50 for appear-
ance filtering of retired batteries, and compares and analyzes them with VGG16 [24] and
AlexNet [25].

3.1. CBAM-ResNet50 Network Model Structure

With the development of convolutional neural networks, it has been found that the
depth of the network model is critical to its own performance. Theoretically, the more layers
the network model has, the better its performance, but experiments have demonstrated that
as the neural network structure continues to deepen, the order of magnitude of the gradient
changes dramatically after a number of layers of iterative operations, which may lead to
gradient explosion and gradient vanishing problems [26]. To address this phenomenon,
He et al. [27] introduced the concept of residual block, as shown in Figure 5. x is the
input to the residual structure, F(x) is the output of the first residual block before the
function activation of the second layer, w1 and w2 denote the weights of the first and second
residual block, and H(x) is the final output of the second residual block. The residual
block solves the problem of gradient explosion and gradient vanishing in neural network
training through shortcut connection, of which ResNet50 is one of the ResNet series models,
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and thanks to its excellent performance, ResNet50 is widely used in tasks such as image
classification and target detection.
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A single convolutional neural network has a limited ability to distinguish appearance
defects of similar retired batteries, and the addition of a convolutional block attention
module is a common approach to improve the accuracy of detection. CBAM is a lightweight,
generalized attention mechanism for enhancing convolutional neural networks [28], as
shown in Figure 6, which strengthens useful feature channels and spatial locations by
learning the importance weights of the channels and spatial locations. Embedding the
CBAM into a convolutional neural network improves the performance and generalization
of the network.
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3.2. Experimental Configuration and Evaluation Metrics

This experiment is based on the Pytorch environment of Python under the Windows
10 system, and the graphics processing unit hardware used is a GeForce GTX 1050 Ti. In this
experiment, accuracy, precision, recall, and F1 score are selected as the evaluation indexes
of the CBAM-ResNet50 model for the appearance filtering results of retired batteries, and
the specific formulas are as follows:

Accuracy =
TP + TN

TP + FP + TN + FN
(1)

Precision =
TP

TP + FP
(2)

Recall =
TP

TP + FN
(3)
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F1 =
2× Precision× Recall

Precision + Recall
(4)

where TP, FP, TN, FN are the recognition results of the neural network, where TP is True
Positive, indicating the number of positive batteries predicted to be positive, FP is False
Positive, indicating the number of negative batteries predicted to be positive, TN is True
Negative, indicating the number of negative batteries predicted to be negative, and FN is
False Negative, indicating the number of positive batteries predicted to be negative.

3.3. Results and Analysis of Appearance Filtering Experiments

In order to verify the effectiveness of CBAM-ResNet50 on appearance filtering of
retired batteries, VGG16 and AlexNet were constructed for comparison, and the model
parameters’ batch size was set to 48, epoch to 100, and learning rate to 0.0001, with Adam
optimizer and cross-entropy loss function. Table 3 shows the results of several methods of
retired battery lug and case detection.

Table 3. Results of the different methods of appearance detection.

Names Methods Accuracy Precision Recall F1

Lug

CBAM-
ResNet50 97.5% 96.6% 98.3% 97.4%

ResNet50 96.4% 95% 98.3% 96.6%
VGG16 92.5% 90.2% 94.8% 92.4%
AlexNet 90.8% 91.2% 89.6% 90.4%

Case

CBAM-
ResNet50 98.3% 98.3% 98.3% 98.3%

ResNet50 97.5% 96.6% 98.3% 97.4%
VGG16 93.3% 93.1% 93.1% 93.1%
AlexNet 90.8% 91.2% 89.7% 90.4%

In retired battery lug detection, due to the insertion of CBAM, the accuracy, precision,
recall, and F1 score of the CBAM-ResNet50 model reached more than 96%, which was
significantly improved compared to ResNet50. In case detection, the F1 score of the CBAM-
ResNet50 model reaches 98.3%, which is significantly better than the other models due
to the obvious shape characteristics of the case. The experimental results show that the
CBAM-ResNet50 model has good accuracy in the appearance filtering of retired batteries,
demonstrates high application value, and provides a good foundation for the next step of
sorting and regrouping retired batteries.

4. Sorting Retired Batteries based on AHP and GRA

This section mainly introduces the indicators of retired batteries, selects capacity,
internal resistance, and open-circuit voltage as the basis of sorting, and completes the
sorting of retired batteries through AHP and GRA.

4.1. Selection of Evaluation Indicators of Retired Battery Performance

Due to different manufacturing processes and operating conditions, the internal
parameters of retired batteries show inconsistency [29], and the impact of this inconsistency
on echelon utilization is mainly reflected in the following three aspects:

(1) Inconsistency of capacity parameters: inconsistent capacity of single batteries used in
groups; when the lower capacity of one battery is fully charged, the others are still
charging. It results in over-charging or over-discharging, which reduces the life of the
battery pack.

(2) Inconsistency of the internal resistance of the battery: the internal resistance of the
battery leads to a large thermal loss, which deteriorates the battery’s performance in
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use. After the batteries are used in groups, it leads to a decline in the overall battery
pack performance and causes safety problems.

(3) Inconsistency of open-circuit voltage: the inconsistency of battery voltage leads to
the charging of single batteries in the battery pack, and batteries with higher voltage
charge batteries with lower voltage, which accelerates the degradation of the battery
performance and depletion of the energy of the whole battery pack.

In order to improve the consistency of the batteries after regrouping, three indicators,
namely, capacity, internal resistance, and open-circuit voltage, are chosen to evaluate, sort,
and regroup the single batteries.

4.2. Analytic Hierarchy Process

AHP [30] is a multi-criteria decision-making method that combines qualitative and
quantitative analysis. In this paper, the target layer is determined to be the performance of
retired batteries, the guidelines layer is the battery performance, which contains security,
energy conversion efficiency, and degradation rate, and the program layer is the battery
indicator, which contains capacity, internal resistance, and open-circuit voltage, and the
hierarchical analysis structure is shown in Figure 7.

Sustainability 2023, 15, x FOR PEER REVIEW 9 of 19 
 

Due to different manufacturing processes and operating conditions, the internal pa-
rameters of retired batteries show inconsistency [29], and the impact of this inconsistency 
on echelon utilization is mainly reflected in the following three aspects: 
(1) Inconsistency of capacity parameters: inconsistent capacity of single batteries used in 

groups; when the lower capacity of one battery is fully charged, the others are still 
charging. It results in over-charging or over-discharging, which reduces the life of 
the battery pack. 

(2) Inconsistency of the internal resistance of the battery: the internal resistance of the 
battery leads to a large thermal loss, which deteriorates the batteryʹs performance in 
use. After the batteries are used in groups, it leads to a decline in the overall battery 
pack performance and causes safety problems. 

(3) Inconsistency of open-circuit voltage: the inconsistency of battery voltage leads to the 
charging of single batteries in the battery pack, and batteries with higher voltage 
charge batteries with lower voltage, which accelerates the degradation of the battery 
performance and depletion of the energy of the whole battery pack. 
In order to improve the consistency of the batteries after regrouping, three indicators, 

namely, capacity, internal resistance, and open-circuit voltage, are chosen to evaluate, 
sort, and regroup the single batteries. 

4.2. Analytic Hierarchy Process 
AHP [30] is a multi-criteria decision-making method that combines qualitative and 

quantitative analysis. In this paper, the target layer is determined to be the performance 
of retired batteries, the guidelines layer is the battery performance, which contains secu-
rity, energy conversion efficiency, and degradation rate, and the program layer is the bat-
tery indicator, which contains capacity, internal resistance, and open-circuit voltage, and 
the hierarchical analysis structure is shown in Figure 7. 

 
Figure 7. Hierarchical structure of performance evaluation of retired batteries. 

The AHP method constructs a judgment matrix by comparing the importance of two 
indicators with each other. Matrix A is the judgment matrix of the target layer and the 
guideline layer, where the element ija  in matrix A represents the importance of i to j, 
which needs to meet the conditions of Equation (5). Table 4 shows the criteria assignments 
for dividing the importance level. 

Figure 7. Hierarchical structure of performance evaluation of retired batteries.

The AHP method constructs a judgment matrix by comparing the importance of two
indicators with each other. Matrix A is the judgment matrix of the target layer and the
guideline layer, where the element aij in matrix A represents the importance of i to j, which
needs to meet the conditions of Equation (5). Table 4 shows the criteria assignments for
dividing the importance level. 

aij > 0
aij =

1
aij

A =
(
aij) n×n

(5)

Table 4. Distribution of importance among elements in a judgment matrix.

aij Assignment Meaning

1 i and j are equally important
3 i is slightly more important than j
5 i is important than j
7 i is much more important than j

Based on the degree of influence between performances, five experts discussed and
discussed the scores of each group of performances, and ultimately obtained the judgment
matrix A as follows:

A =

 1 3 3
1/3 1 1
1/3 1 1

 (6)
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By analogy, the judgment matrices for the guideline layer are as follows, and bij is the
degree of importance between indicators.

B1 =

1 1/5 1/3
5 1 3
3 1/3 1

, B2 =

 1 5 3
1/5 1 1/3
1/3 3 1

, B3 =

 1 3 5
1/3 1 3
1/5 1/3 1

 (7)

To ensure the reliability of the results, a consistency test of each judgment matrix
is required: {

CI = λmax−n
n−1

CR = CI
RI

(8)

where CI is the consistency index, CR is the consistency rate; λmax is the maximum eigen-
value of the judgment matrix; n is the order of the judgment matrix (the number of elements
of the program layer), and RI is the degree of freedom index, taking the value of 0.58. When
CR < 0.1, it is considered that the judgment matrix meets the consistency requirements.
Table 5 shows the calculation results of the judgment matrix; the consistency rate of each
judgment matrix is less than 0.1, which meets the consistency test standard.

Table 5. Calculation results of judgment matrix.

Matrix Eigenvector Maximum
Eigenvalue

Coherence
Index

Consistency
Rate

A
[
0.6 0.2 0.2

]
3 0 0

B1
[
0.1047 0.6370 0.2583

]
3.0385 0.0192 0.0331

B2
[
0.6370 0.1047 0.2583

]
3.0385 0.0192 0.0331

B3
[
0.6370 0.2583 0.1047

]
3.0385 0.0192 0.0331

After completing the construction and inspection of the judgment matrix, the weights
of the target layer and the program layer can be calculated by weighting each layer, as
shown in Table 6. The weights of battery capacity, internal resistance, and open-circuit
voltage for battery performance λr are 0.3176, 0.4548, and 0.2276, respectively.

Table 6. Weights of each performance indicator for retired batteries.

Indicators
Security B1

Energy Conversion
Efficiency B2

Degradation Rate B3 Total Weight λr

0.6 0.2 0.2

Capacity C1 0.1047 0.6370 0.6370 0.3176
Internal Resistance C2 0.6370 0.1047 0.2583 0.4548

Open-circuit Voltage C3 0.2583 0.2583 0.1047 0.2276

4.3. Gray Relation Analysis

GRA can quantitatively describe the degree of relative change between objects [31]; the
basic idea is to set a set of optimal performance indicators of retired batteries as a reference
sequence, with the measured value of the current battery performance as a comparative
sequence, calculate the correlation between the comparative sequence and the reference
sequence, and then classify the retired batteries according to the size of the correlation, and
the correlation calculation steps are as follows:

(1) Determine the optimal indicator values

Set the optimal values of capacity, internal resistance, and open-circuit voltage as
20 Ah, 1.5 mΩ, and 3.2 V, and form the optimal indicators set F∗ = [20, 1.5, 3.2].

(2) Dimensionless
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Since the capacity and open-circuit voltage are gradually decreasing while the internal
resistance is gradually increasing during the aging process of the battery, Equation (9) is
used for dimensionless quantization of the capacity and open-circuit voltage indicators,
and Equation (10) is used for dimensionless quantization of the internal resistance.

hs
r =

js
r − jmax

jrmax − jrmin
(1 ≤ r ≤ n, 1 ≤ s ≤ m) (9)

hs
r =

jrmax − js
r

jrmax − jrmin
(1 ≤ r ≤ n, 1 ≤ s ≤ m) (10)

where hs
r represents the dimensionless value of the r-th indicator for the s-th battery. jsr

is the raw value of the r-th indicator for the s-th battery. jrmin represents the minimum
value of performance for the r-th indicator in the original data, while jrmax represents the
maximum value of performance for the r-th indicator, n represents the dimension of the
indicator, value is 3, and m represents the number of batteries.

(3) Calculation of correlation coefficient and correlation degree

The correlation coefficient between each indicator of the target to be evaluated and its
corresponding optimal indicators is as follows:

ξs(r) =
min

s
min

r
|h∗r − hs

r|+ ρ max
s

max
r
|h∗r − hs

r|

|h∗r − hs
r|+ ρ max

s
max

r
|h∗r − hs

r|
(11)

where ξs(r) is the correlation coefficient between the r-th indicator of the s-th battery to be
evaluated and its optimal indicator, h∗r is the optimal indicator value from vector F∗, and ρ
takes the value of 0.5.

Therefore, the correlation coefficient between the s-th battery to be evaluated and the
optimal indicator set is noted with Rs and calculated as follows:

Rs =
n

∑
r=1

λr × ξs(r) (1 ≤ s ≤ m) (12)

where n is the number of evaluation indicators, value is 3; λr is the weight of the r-th
indicator, and the results are shown in Table 6. The larger the correlation Rs, the closer the
indicators of the battery are to the optimal indicators, indicating better performance.

The correlation coefficients of 335 retired batteries are calculated according to the set
of optimal indicators, and the results are shown in Table 7.

Table 7. Correlation coefficients of retired batteries.

Battery Number
Capacity

Correlation
Coefficient

Internal Resistance
Correlation
Coefficient

Voltage Correlation
Coefficient Rs

1 0.6943 0.7399 0.7647 0.7313
2 0.6107 0.5649 0.6500 0.5988
3 0.4937 0.4569 0.5200 0.4829

. . . . . . . . . . . . . . .

. . . . . . . . . . . . . . .
333 0.5561 0.5298 0.5652 0.5462
334 0.5204 0.4827 0.5416 0.5081
335 0.6491 0.6206 0.7027 0.6484

4.4. Sorting of Retired Batteries

Considering the actual application scenarios of retired batteries [9,10], the battery data
are categorized into four categories based on the different correlations between retired
batteries and new batteries, as shown in Table 8.
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Table 8. Classification levels of retired batteries based on the correlation degree.

Categories Correlation with Ideal
Batteries Application Scenario

A 100%–80% Tourist trams, shared electric vehicles
B 80%–60% Light electric bicycles, mobile power sources
C 60%–30% Energy storage systems
D ≤30% Scrapping, dismantling, and recycling

Based on the correlation of the batteries, 335 retired batteries were categorized accord-
ing to the criteria in Table 8, and the number of batteries belonging to categories A, B, C,
and D were 21, 219, 88, and 7, respectively.

5. Regrouping of Retired Batteries Based on DBSCAN-GMM

After AHP and GRA, retired batteries are classified into four categories, A, B, C, and
D. However, there are still large differences in each category, so the first three categories
need to be regrouped into different clusters. To enhance the consistency of batteries after
grouping, a clustering algorithm is utilized for batteries in Category A, Category B, and
Category C. This algorithm groups individual batteries with similar characteristics into
distinct clusters within each category, enabling subsequent series and parallel connections
within a battery module or pack.

5.1. DBSCAN Algorithm and Gaussian Mixture Model
5.1.1. DBSCAN Algorithm

The DBSCAN algorithm is mainly based on density [32] without determining the
number of clusters and recognizes outliers as noise. The main algorithm steps are as follows:

(1) Input battery feature vectors set, which contains n-dimensional vectors of m batteries,
and input the density threshold MinPts and the maximum radius Eps.

(2) Find the subset of Eps neighborhood of all batteries; if the number of batteries in the
subset is greater than or equal to MinPts, the battery is added to the core battery set;
if it is not satisfied, the battery is marked as a noise point.

(3) In the core battery collection, randomly select a battery, create a new set, add all
batteries in its neighborhood to the cluster, and repeat the check of all batteries in the
neighborhood of the battery in the cluster.

(4) Randomly select an unselected battery in the updated core battery set, repeat step (3)
until all batteries are selected, and output the segmentation results.

Although DBSCAN does not need to determine the number of clusters, it is less
effective when the density of data clusters is not uniform [33].

5.1.2. Gaussian Mixture Model

GMM is a probabilistic-based clustering method [34], which is computed by iterative
optimization using the expectation maximization (EM) algorithm [35]. The EM algorithm
is an iterative approach to solving a special maximum likelihood problem. It aims to
discover the maximum likelihood solution by introducing hidden variables and establishing
the distribution of these hidden variables as a posterior distribution, conditioned on the
observed variables.

In applying the GMM, it is assumed that the battery characteristic indicator x has n
features, which obey the Gaussian distribution of Equation (13):

x ∼
k
∑

i=1
δi p(x

∣∣µi, Tij)

k
∑

i=1
δi = 1, δi ≥ 0

(13)
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where k is the number of Gaussian models, which is the number of clusters determined by
the DBSCAN algorithm, δi represents the weight coefficient of the i-th mixed model, and
p(x
∣∣µi, Tij) is the probability density distribution function, which is expressed as:

p(x|µi, Tij) =
exp

[
−(1/2)(x− µi)

TT−1
ij (x− µi)

]
(2π)n/2∣∣Tij

∣∣1/2 (i = 1, 2, . . . , k) (14)

where parameter µi is the mean vector and Tij is the covariance matrix, and Equation (19)
gives its expression.

For the convenience of calculation, the hidden variable p
(
yj = i

)
= δi is introduced.

When Equation (15) is satisfied, battery xj belongs to the i-th Gaussian distribution.

maxp(yj = i), j = 1, 2, . . . , m (15)

Taking the logarithm of the maximum likelihood function for the dataset when the
hidden variables are known yields the log-likelihood function as shown in Equation (16):

LL(D) =
m

∏
j=1

ln[
k

∑
i=1

δi p(xj
∣∣µi, Tij) ] (16)

5.2. DBSCAN-GMM Algorithm

The GMM algorithm requires prior knowledge of the number of clusters, and it
introduces randomness during the selection of initial points. The algorithm’s iterative
process can become complex and uncertain, with the EM algorithm being sensitive to initial
parameters, potentially leading to local optima. In response to these challenges, this paper
introduces a novel approach called the DBSCAN-GMM algorithm. It begins by utilizing
the DBSCAN algorithm for initialization, followed by employing the EM algorithm for
Gaussian model clustering once the centroids and model parameters have been established.
The primary steps of this algorithm are illustrated in Figure 8, and its algorithmic procedure
is as follows:
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(1) Input battery feature vector date set X = {x1, x2, . . . , xm} and parameters Eps, MinPts.
(2) Based on the DBSCAN algorithm, the initial clustering cluster D = {D1, D2, . . . , Dl}

is obtained. By computing the mean vectors xi for cluster Di, the data vector closest to
xi is selected as the center of the i-th cluster, resulting in cluster centers {x1, x2, . . . , xl}.
The parameters’ set θ =

{
(µi, Tij, δi)

∣∣i ∈ [1, l]
}

of the GMM model is then initialized
with this information.

(3) Substitute the retired battery dataset X into the initialized model, and calculate the
1st to k-th Gaussian distribution probabilities for each battery in the dataset:

p(yi = i|xj) =
p(yj = i)p(xj

∣∣yj = 1)
k
∑

i=1
δi p(x

∣∣µi, Tij)

(17)

(4) The retired battery dataset X data points xj are weighted with the probabilities from
step (3) and the parameters of each Gaussian model are calculated and updated:

µi =

m
∑

j=1
xjδi p(xj

∣∣µi, Tij)

k
∑

i=1
δi p(xj

∣∣µi, Tij)

(18)

Tij =

m
∑

j=1
δi p(xj

∣∣∣µi, Tij)(xj − µi)
T(xj − µi)

k
∑

i=1
δi p(xj

∣∣µi, Tij)

(19)

δi =
1
m

m

∑
j=1

δi p(xj
∣∣µi, Tij) (20)

(5) Update the parameters of the GMM algorithm and then proceed to the next iteration,
given a sufficiently small threshold ε, and after several repeated iterations, when
the conditions of Equation (21) are satisfied, exit the loop iteration to obtain the
final converged model parameters, ∆LL(D) is the change rate of the log-likelihood
function, calculated using Equation (16).

∆LL(D) ≤ ε (21)

(6) For xj, select the largest p(yi = i
∣∣xj) , assign the batteries to their respective cluster Di,

and finally get l clusters, the division of clusters for D = {D1, D2, . . . , Dl}.

5.3. Evaluation Metrics and Clustering Results

Common clustering evaluation indexes include the silhouette index (SI), Davies–
Bouldin index (DBI), and Krzanowski–Lai index (KLI) [36]. In order to verify the effective-
ness and accuracy of the proposed algorithm, two indicators, SI and DBI, are chosen in this
paper.

SI describes the compactness within clusters and the separateness between clusters;
the larger SI is, the better the clustering effect, denoted as:

SI =
1
m

m

∑
t=1

e(t)− f (t)
max{ f (t), e(t)} (22)

where e(t) is the average distance from battery t to other batteries in the cluster, and f (t) is
the minimum value of the average distance from battery t to batteries in other clusters.
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DBI represents the correlation between clusters by describing the spacing between the
intra-cluster scatter of the batteries and the clustering centers, and the smaller the DBI, the
better the clustering results, which is expressed as:

DBI(l) =
1
l

l

∑
i=1

max
j=1∼l,j 6=i

(
Wi + Wj

Dij
) (23)

where l is the number of clusters, Wi denotes the average distance of all batteries in cluster
Di to its clustering center, Wj denotes the average distance of all battery points in cluster
Dj to its clustering center, and Dij is the distance in clusters Di and Dj.

The DBSCAN-GMM clustering algorithm was used to group similar batteries based
on the three indicators of battery capacity, internal resistance, and open-circuit voltage; 21
retired batteries in Category A were divided into 2 groups; 219 retired batteries in Category
B were divided into 5 groups; 88 retired batteries in Category C were divided into 5 groups,
and the results of the grouping are shown in Figure 9.
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Table 9 shows the clustering results of different algorithms. For Category A, the SI of
the proposed algorithm is 0.796, which is 34% and 28% higher than the two benchmark
algorithms, and the DBI is 0.247, which is 41% and 38% lower than the two benchmark
algorithms, respectively; in Category B and C batteries, the SI and DBI of the proposed
algorithm are also better than the two benchmark algorithms, which show a higher accuracy
and better clustering results.

Table 9. Comparison of clustering results of different algorithms.

Categories Algorithm SI DBI

A
DBSCAN 0.594 0.420

GMM 0.621 0.396
DBSCAN-GMM 0.796 0.247

B
DBSCAN 0.384 1.126

GMM 0.397 1.035
DBSCAN-GMM 0.421 0.881

C
DBSCAN 0.421 0.596

GMM 0.452 0.640
DBSCAN-GMM 0.501 0.556

In order to judge the consistency between the batteries after clustering by different
clustering algorithms, the maximum indicator difference of the batteries after clustering is
calculated separately for each category of batteries, as shown in Table 10. The maximum
capacity difference of the proposed algorithm is 1.89 Ah, the maximum internal resistance
difference is 0.2 mΩ, and the maximum open-circuit voltage difference is 0.04 V after
clustering of the batteries in Category A. Compared with the DBSCAN algorithm, the con-
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sistency of the capacity, the internal resistance, and the open-circuit voltage are improved
by 10.8%, 9%, and 33%, respectively, and the consistency of the proposed algorithm is in-
creased by 5.9%, 9%, and 20% compared to the GMM algorithm, respectively. The proposed
algorithm also improves the inter-battery consistency to a different extent compared to the
two benchmark algorithms grouped together in Category B and Category C.

Table 10. Maximum indicator difference of battery module after clustering by different clustering
algorithms.

Categories
DBSCAN-EM-GMM DBSCAN GMM

Capacity Resistance Voltage Capacity Resistance Voltage Capacity Resistance Voltage

A 1.89 Ah 0.2 mΩ 0.04 V 2.12 Ah 0.22 mΩ 0.06 2.01 Ah 0.22 mΩ 0.05 V
B 1.71 Ah 0.28 mΩ 0.06 V 1.85 Ah 0.3 mΩ 0.07 1.8 Ah 0.3 mΩ 0.07 V
C 1.58 Ah 0.22 mΩ 0.04 V 1.71 Ah 0.24 mΩ 0.05 1.66 Ah 0.23 mΩ 0.05 V

6. Conclusions

In this study, an investigation was undertaken to explore techniques for appearance
filtering, sorting, and regrouping of batteries in echelon utilization. The efficacy of the
proposed scheme was substantiated through rigorous experimental validation, culminating
in the following refined conclusions:

(1) This research encompasses the broad spectrum of appearance filtering, sorting, and
regrouping within the echelon utilization of retired batteries. By offering a solution
that spans individual monomers to integrated modules, the study holds substantial
practical value, underscoring its applicability across various domains.

(2) The adoption of the CBAM-ResNet50 algorithm for appearance detection proved to be
a pivotal advancement, surmounting the limitations of manual filtering. Notably, this
approach facilitates simultaneous defect detection through dual imaging of retired
batteries, addressing the imperative need for efficient appearance detection in large-
scale scenarios.

(3) Leveraging capacity, internal resistance, and open-circuit voltage as performance
benchmarks, this study undertook the nuanced classification of retired batteries
based on diverse application scenarios. The integration of AHP and GRA enabled a
comprehensive and systematic classification approach.

(4) The introduction of a novel hybrid clustering algorithm marked a significant break-
through. Initialized by DBSCAN for classified batteries, this algorithm dynamically
adjusts the number of clusters. Subsequently, it seamlessly integrates with the GMM,
thereby elevating both clustering accuracy and algorithmic adaptability.

The echelon utilization scheme constructed in this paper is from the battery monomer
level, and based on economic considerations, future research should focus on appearance
filtering and sorting for module-level batteries.
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