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Abstract: Infiltration models and impervious surface models have gained significant attention in
recent years as crucial tools in urban and environmental planning, to assess the extent of land-surface
changes and their impacts on hydrological processes. These models are important for understand-
ing the hydrological dynamics and ecological impacts of urbanization and for the improvement of
sustainable land-use planning and stormwater-management strategies. Due to the fact that many
authors partially or entirely overlook the significance of the infiltration process in geographic in-
formation system (GIS) analyses, there is currently no universally accepted method for creating an
infiltration model that is suitable for GIS multicriteria decision analysis (GIS-MCDA). This research
paper presents an innovative approach to modeling the infiltration-efficiency index (IEI) for GIS
analysis, with a focus on achieving high-quality results. The proposed methodology integrates very-
high-resolution (VHR) remote-sensing data, GIS-MCDA, and statistical methods. The methodology
was tested and demonstrated on a small sub-catchment in Metković, Croatia. The study developed a
VHR IEI model from six specific criteria that produced values between 0 and 0.71. The model revealed
that 14.89% of the research area is covered by impervious surfaces. This percentage is relatively
favorable when compared to urban areas globally. The majority of the research area (62.79%) has
good infiltration efficiency. These areas are predominantly characterized by agricultural land use,
encompassing orchards, tangerines, olive groves, vineyards, and a diverse range of low-lying and
high vegetation on flat terrain. The IEI model can provide input spatial data for high-resolution GIS
analysis of hydrological processes. This model will aid decision-makers in stormwater-management,
flood-risk assessment, land-use planning, and the design of green infrastructure. By utilizing the
information derived from this study, policymakers can make informed decisions to mitigate flooding
risks and promote sustainable urban development.

Keywords: imperviousness; infiltration; efficiency; GIS-MCDA; UAV; multispectral imagery; LiDAR;
very-high-resolution; Metković; Croatia

1. Introduction

Impervious surfaces (ISs), such as roads, parking lots, rooftops, and sidewalks, are
anthropogenic features that restrict the natural infiltration of rainwater into the ground,
leading to increased stormwater runoff and altered hydrological dynamics in urban ar-
eas [1,2]. With rapid urbanization leading to increased imperviousness, as well as climate-
change disruptions in the precipitation regime and its associated impacts [3,4], accurate
and high-resolution IS modeling is crucial for assessing the extent of ISs and evaluating
stormwater runoff and flooding risks [5,6]. Infiltration is another significant process in
hydrology and environmental science; it refers to the vertical movement of water from the
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surface into the subsurface soil or rock layers in pervious surfaces [7]. Understanding and
managing infiltration processes are vital for sustainable water-resource management and
ecosystem functioning.

Impervious-surface models, infiltration-capacity models, and infiltration-rate models
are important for understanding the hydrological dynamics and ecological impacts of
urbanization on the improvement of sustainable land-use planning and on stormwater-
management strategies [8,9].

Urban and environmental planners rely on different data sources to quantify and
map the spatial distribution of ISs, assess the ecological and hydrological impacts of
imperviousness, and make informed decisions related to stormwater management, land-use
planning, and green infrastructure design [10]. High-resolution IS models and infiltration
models provide detailed and accurate information on hydrologic processes within urban
areas [11], allowing for a better understanding of stormwater runoff, flood risks, and
water-quality impacts [1,12–16].

IS modeling has progressed significantly in recent years, with numerous studies explor-
ing different approaches and methods for accurately estimating and mapping ISs in urban
areas. Generally, methods of IS modeling can be divided into four main categories: (1) spec-
tral indices [17–19], (2) spectral-mixture analysis [20–22], (3) regression models [23,24], and
(4) machine-learning methods [25–27].

The methods and approaches employed in IS modeling are continuously advancing
and refining, as evidenced by the ever-growing body of scientific literature and the devel-
opment of novel techniques and technologies that are aimed at enhancing the accuracy,
resolution, and applicability of IS models.

Among the various imperviousness models available, the 10 m spatial resolution im-
perviousness density model provided by the European Union’s Earth observation program,
Copernicus, is widely recognized and commonly employed for urban and environmental
planning purposes [28–31]. This model utilizes satellite imagery and advanced remote-
sensing techniques to accurately capture and quantify ISs at a spatial resolution of 10 m [32].
This Copernicus “high-resolution” imperviousness density model shows the degree of
soil sealing. The imperviousness gradation (0–100%) for each pixel is calculated based
on the calibrated normalized difference vegetation index (NDVI) and semi-automated
classification. The term “soil sealing” is used because the transformation of natural surfaces
with paved roads, concrete surfaces, buildings, and other infrastructure occurs, thereby
creating impervious land cover. With that process, natural surfaces are separated from the
atmosphere by impermeable layers [32].

Infiltration is commonly modeled or computed using various approaches in hydro-
logical science, which vary with respect to the type of land-cover (LC) class [33–36]. One
widely used method is the natural resources conservation service (NRCS) method, which
uses curve numbers (CN) to estimate infiltration rates [37–39]. The CN values are assigned
on the basis of land use and soil group, enabling the estimations of runoff and infiltration
for different conditions [37]. Another approach is the Horton equation, which describes
infiltration as a decaying exponential function over time, taking into account parameters
such as initial infiltration rate and hydraulic conductivity [40]. Finally, the Green–Ampt
model is frequently employed, especially for intense rainfall events, as it incorporates soil
properties, initial moisture content, and hydraulic conductivity to estimate infiltration rates
and cumulative infiltration [41].

However, it is important to note that, while these infiltration models provide valuable
insights, they often neglect or only partially account for surface conditions that can signifi-
cantly impact infiltration rates [42]. Factors such as soil surface sealing, vegetation cover,
surface roughness, and antecedent moisture conditions are not always adequately consid-
ered [33,35,43–47]. Consequently, these models may not accurately capture the complex
interactions between surface characteristics and infiltration processes [34].

Given the rapid development of geospatial technologies (GSTs), there is a need for
integrated imperviousness and infiltration models that incorporate more detailed and
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precise information. By using higher-resolution data and advanced analysis techniques,
and by integrating infiltration models with imperviousness models, these models can
provide more accurate and comprehensive assessments of ISs and infiltration, thereby
enhancing their utility in sustainable urban and environmental planning and policymaking.

However, modeling ISs and infiltration using high-spatial-resolution data can be
affected by several challenges, including data availability, data accuracy, and processing
methods. Remote-sensing techniques, such as satellite imagery and light detection and
ranging (LiDAR), have been widely used, but the accuracy and resolution of these datasets
can vary [2,45,48–50]. Additionally, the complex spectral nature of urban areas, such
as varying building types (resulting in large shadows), surface materials, and land-use
patterns, pose challenges in developing accurate high-resolution models [2,45,48–50]. For
these reasons, it is necessary to manually correct the produced models [51,52].

Many authors engage in flood-susceptibility modeling, but to date, no one has utilized
infiltration as an input criterion for geographic information system (GIS) multicriteria
decision analysis (GIS-MCDA) [53–56]. This research paper aims to address this challenge
by proposing a new approach to high-quality infiltration modeling that integrates a cluster
of criteria, including both IS criteria and infiltration-capacity criteria into a single criterion
called the infiltration-efficiency index (IEI). This criterion is expressed as a nondimensional
index, which is more suitable for GIS analysis in comparison to physical models, such as the
NRCS-CN, Horton, or Green–Ampt methods. Most researchers investigating this topic have
concentrated their efforts on the examination of infiltration efficiency within urban drainage
systems [57–60]. However, similar studies are needed also for large-scale analysis where
the study area encompasses an entire city or catchment, rather than just focusing on specific
location points. The purpose of this study is to utilize various parameters to elucidate
disparities in infiltration efficiency within urban areas and to develop a model that provides
spatial input data to GIS spatial analyses. The proposed IEI is built upon CN numbers, but
also includes additional parameters that are not considered under the conventional NRCS
method, such as slope, vegetation health (NDVI), wetness, and temperature.

This approach integrates very-high-resolution (VHR) remote-sensing data, GIS-MCDA,
and statistical methods to determine land-surface impermeability and surface conditions
that are crucial for stormwater-runoff risk management. The research explores different data
sources, such as VHR multispectral imagery and LiDAR data. Furthermore, different land-
use and land-cover (LULC) classification methods and model-validation approaches are
examined to develop a robust and accurate infiltration model that includes imperviousness
criteria, which will be enhanced by the inclusion of various spatial criteria through the
GIS-MCDA process.

The results of this research will contribute to the advancement of VHR impervious-
surface and infiltration modeling and provide valuable insights for urban and environ-
mental planners to better understand the impacts of various spatial criteria on overall
infiltration efficiency and encourage sustainable urban planning practices.

2. Materials and Methods
2.1. Study Area

Metković is a Croatian city located in the southern part of the country (Figure 1A),
with a population of 15,235 inhabitants, according to the latest available census data [61].
The northwestern part of the city (1.64 km2), located on the right bank of the Neretva River
(Figure 1B), was selected as a study area, due to its unique geographical, climatological,
and ecological features. The selection of this specific area was driven by the complexity and
diversity of land use (including agriculture and urban areas). as well as by its susceptibility
to flooding. In the context of the Interreg Strategic Development of Flood Management
(STREAM) project, the authors undertook an extensive modeling effort aimed at pluvial-
flood analysis, which was conducted on a much wider area and across multiple scales.
Interestingly, this part of the city emerged as one of the most susceptible to pluvial flooding.
Consequently, it was strategically chosen as a micro-level research area, based primarily on
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the substantial volume of data and the requisite level of detail necessary for the study’s
objectives [62]. Due to the lowland nature of the area and its proximity to a major river,
the region exhibits swampy characteristics that have fostered significant biodiversity. To
facilitate economic development in the region, land-reclamation efforts were undertaken
in the second half of the 20th century [63]. The soil in this wider area is predominantly
alluvial, resulting from the accumulation of sediment and organic matter deposited by the
river [63,64]. The alluvial soil is fertile and supports a variety of crops, making the area an
essential agricultural region. Moreover, the area is intersected by irrigation channels, which
provide efficient means of water distribution for crop cultivation. These channels contribute
significantly to soil fertility and provide a sustainable source of water for agricultural
purposes [63].
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Apart from agricultural activities, the study area contains a residential zone and some
industrial facilities in its southern part. These objects represent the majority of ISs. In
many cases, people added substantial amounts of material to elevate their homes above
the surrounding terrain, creating basins that impede the outflow of water. These practices
can cause water accumulation and flooding in this particular area.

Metković exhibits a Mediterranean climate that is characterized by hot and dry sum-
mers, mild and wet winters, and a pronounced seasonal variation in precipitation. The
lowest monthly rainfall is in July and the highest monthly rainfall is in November. The
average annual precipitation varies between 1125 mm and 1215 mm, with a median of
1162 mm [65].

2.2. The Research Methodology

The research methodology consisted of the following steps: (1) very-high-resolution
data acquisition; (2) data processing; (3) creation of criteria; and (4) GIS-MCDA (Figure 2).
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2.3. Data Acquisition
2.3.1. UAV Multispectral Survey

The field research was conducted from 9 August 2022 to 13 August 2022. The first step
involved an unmanned aerial vehicle (UAV) survey of Metković, using a dual multispectral
camera system (MicaSense RedEdge-MX Dual MS) (Table 1). The sensor was integrated
into the Trinity F90+ UAV, which offers exceptional imaging and data collection capabilities
for recording vast and inaccessible areas [66]. The data were collected using the direct
georeferencing method, which involves the integration of global mobile satellite system
(GNSS) data and inertial measurement unit (IMU) data to accurately determine the position
and orientation of the sensor platform during data acquisition. The RTK GNSS Trimble
R12i was used to acquire checkpoints (CPs) and to establish a base point (BP).

Table 1. MicaSense RedEdge-MX Dual MS specifications [67].

Sensor type Multispectral (MS)

Spectral bands

coastal blue (444 nm), blue (475 nm), green (531 nm),
green (560 nm), red (650 nm), red (668 nm), red edge
(705 nm), red edge (717 nm), red edge (740 nm),
near-infrared (842 nm)

Ground sample distance 8 cm per pixel (per band) at 120 m

Before the UAV flight mission, CPs were collected to assess the accuracy of the UAV’s
direct georeferencing system. Additionally, the base point (BP) for the UAV’s iBase base sta-
tion was established (Figure 3A). The Croatian Terrestrial Reference System (HTRS96/TM)
official projection coordinate system was employed to measure each point accurately.
Subsequently, the planning of the UAV missions was conducted using the QBase 3D
v2.30.77 software, considering factors such as the terrain morphology, the desired level of
detail, and the relative flight time.
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Figure 3. (A) CPs and BP collecting; (B) MS sensor calibrating; (C) Trinity F90+ filed survey.

For the multispectral (MS) imaging mission, a front overlap of 75% and a side overlap
of 70% were chosen, considering the required level of detail. The UAVMS settings and
a flight altitude of 120 m resulted in a ground-sampling distance (GSD) of 8.33 cm/px.
Before takeoff, the UAV’s initial measurement unit (IMU) and compass were calibrated.
Furthermore, the radiometric calibration of the MS sensor was performed using a suit-
able reference calibration panel, CRP2 (Figure 3B). Following these procedures, the aerial
photogrammetry process commenced (Figure 3C). To account for potential variations in
atmospheric conditions, the radiometric calibration of the MS sensor was repeated after
each mission.

2.3.2. UAV LiDAR Survey

The subsequent UAV survey mission involved the utilization of the DJI Matrice M300
RTK and the DJI Zenmuse L1 LiDAR payload (Table 2). This particular model of UAV is
commonly employed by numerous authors in various studies that necessitate spatial data
acquisition with exceptionally high positional accuracy [68–70]. The used laser scanner, DJI
Zenmuse L1, incorporates a stabilized three-axis gimbal, an RGB sensor, and an IMU unit.
This combination enables the production of a true-color point cloud, using the RGB sensor.
The LiDAR Livox sensor within the DJI Zenmuse L1 has an average detection distance of
450 m with 80% reflectivity and 190 m with 10% reflectivity. It can achieve an effective
point rate of approximately 240,000 pts/s on a single return, and twice that on multiple
returns. Moreover, it can cover an area of approximately 2 km2 in a single flight [71].

Table 2. DJI Zenmuse L1 LiDAR specifications [71].

Sensor type LiDAR

System Accuracy (RMS 1σ) Horizontal: 10 cm from 50 m
Vertical: 5 cm from 50 m

Ranging Accuracy (RMS 1σ)2 3 cm from 100 m

Yaw Accuracy (RMS 1σ) Real-time: 0.3◦, post-processing: 0.15◦

Pitch/Roll Accuracy (RMS 1σ) Real-time: 0.05◦, post-processing: 0.025◦

The mission was scheduled to have a duration of one hour and eight minutes. With
a ground-sampling distance of 2.73 cm/pix, the point-cloud density for this mission was
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configured to be 141 points/m2. The flight altitude for the survey mission was set at 100 m,
with a flight speed of 10 m per second. The side overlap for the LiDAR sensor was set
to 20%, while for the visible (RGB) sensor, it was set to 37%. The forward overlap for
the RGB sensor was set at 70%. Furthermore, the data collection process employed the
direct georeferencing method. Before the flight, calibration of the devices was performed to
ensure accurate data acquisition and measurements (Figure 4A,B).
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2.4. Data Processing
2.4.1. UAVMS Data Processing

The images obtained from the UAVMS mission were primarily geocoded using the
UAV’s Flylog records and data from the base station. Subsequently, these images were
processed using Agisoft Metashape 1.5.11. This software is widely utilized, due to its
implementation of structure-from-motion (SfM) and 3D modeling algorithms that rely on
the overlap of 2D images.

Through a series of well-defined settings and steps, including photo orientation, the
derivation of a dense point cloud, deep filtering, and optimization of sensor locations, a
high-quality 3D model was generated. The resulting model was then exported as UAVMS.

2.4.2. LiDAR Data Processing

The point cloud acquired from the Zenmuse L1 was processed using the DJI Terra
3.6.0 software. A total of 19 GB of data was collected. First, a high-density decision-making
approach was selected to maximize the utilization of all acquired data and produce output
results with the highest level of accuracy. Second, the output coordinate system setting was
set to HTRS96/TM. To validate the acquired data, a total of 229 checkpoints (CPs) were
collected using the RTK GNSS Trimble R12i. Subsequently, the optimization of point-cloud
accuracy was performed, followed by the generation of a 3D point cloud. Initially, the
output file was in .pnts format, but it was transformed into .las format.

Using the Spatix 022.028 software, anthropogenic objects and vegetation were excluded
from the data. The data harmonization process involved five steps. The first step involved
grouping point clouds based on recorded profiles, referred to as dividing trajectories.
The second step, called match passes, aimed to reduce inconsistencies across profiles
and enhance the internal correctness of the point cloud. In the third step, points that
intersected in overlap areas were removed. The fourth step involved smoothing the points
and removing noise. The final step before obtaining the ground model or the digital terrain
model (DTM) involved data thinning, which entailed removing inactive points to reduce
the total data volume.
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2.5. Creation of Very-High-Resolution Models/Criteria

The first step in the process of generating the IEI model was the derivation of VHR
models/criteria for the GIS-MCDA.

Taking into account the collected data and the factors that affect the imperviousness
and infiltration capacity, a total of six criteria were selected and derived: CN, IS, NDVI,
slope, TWI, and aspect. Considering the homogeneity of the pedological base in the
research area, the inclusion of pedological criteria in the GIS-MCDA process was deemed
unnecessary, but it should be included in larger catchments. Furthermore, it should be noted
that geological factors have a significant impact on infiltration processes [72]. However,
due to the limited availability of detailed VHR spatial data, comprehensive geological
information was not available for this relatively small research area.

2.5.1. CN and IS

CN and IS models were generated from the LULC model. The derivation of the LULC
model was performed using a hybrid approach that combined geographic object-based
image analysis (GEOBIA) [73] with manual improvement techniques [74]. This approach
involved the following steps: (1) UAVMS image segmentation; (2) adding training samples;
(3) image classification using support vector machine (SVM) and maximum likelihood
classifier (MLC); (4) accuracy assessment; (5) improving LULC quality; and (6) adding CN
and IS values to LULC classes.

The first step (1) involved UAVMS image segmentation. This step is crucial in GEOBIA,
where adjacent pixels are grouped to create image objects that resemble actual geographic
objects in the real world [75,76]. Segmentation, performed using an ArcMap 10.4.1.-based
procedure based on the mean shift technique, is essential for generating the LULC model.
The segment mean shift tool groups pixels with similar spectral, spatial, and geometrical
features to identify distinct characteristics or segments in the images. The characteristics of
the image segment are influenced by spectral detail, spatial detail, and minimum segment
size [77]. Through an iterative process (n = 25), the parameter values were tested to find the
optimal combination. The selection of the optimal parameter values was based on a visual
assessment of the UAVMS segmented model. The input datasets and parameters pertinent
to the segmentation process are delineated in Table 3.

Table 3. Input datasets and parameters of the segmentation process.

Input Raster UAVMS

Spatial resolution 0.079 m

Source MicaSense RedEdge-MX Dual MS

Date of acquisition 10 August 2022

Spectral detail 19

Spatial detail 15

Minimum segment size in pixels 20

Band indices 10, 5, 3

In the second step (2), training samples were added. It is often observed that an
increased number of high-quality training samples leads to improved overall accuracy
when training the classification model [78]. Ye et al. [79] recommended a minimum of
50 samples per class. The sample locations were generated using a probabilistic method
of systematic sampling. The select segment tool within the training sample manager in
ArcMap 10.4.1. was utilized to add the samples (Figure 5). During the addition process, the
optimal number of classes representing the study object, as well as the number of other
classes within the observed area, was carefully considered and optimized.
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In the third step (3), the classification of the segmented UAVMS was carried out
using SVM and MLC algorithms. Both of these classification algorithms are integrated
within ArcMap 10.4.1. and have been widely utilized by numerous authors [80–83] for
the extraction of LULC information. The input parameters utilized for SVM and MLC
classifications encompass distinct segment attributes. The color attribute characterizes the
average chromaticity color of each segment, providing insight into its color composition.
Meanwhile, the mean attribute represents the average digital number (DN) derived from
the pixel image, thereby conveying information about the segment’s brightness level.
Additionally, the STD attribute corresponds to the standard deviation of pixel values within
the segment, furnishing details about the variability of pixel intensities. The count attribute
signifies the count of pixels composing the segment, reflecting its spatial extent within
the image. Moreover, the attributes of compactness and rectangularity quantify geometric
properties of the segments. Compactness delineates the circularity or compactness of the
segment, with values ranging from 0 to 1, where 1 indicates a perfect circle. Conversely,
rectangularity gauges the extent to which the segment approximates a rectangle, with values
also ranging from 0 to 1, where 1 indicates a perfect rectangle. These attributes are computed
on a per-segment basis and serve as crucial features for the classification algorithms [84].
Employing these attributes as input parameters enables SVM and MLC classifications to
discriminate and categorize segments with enhanced precision and accuracy. Furthermore,
the generated DTM was incorporated as an additional input raster. Tables 4 and 5 present
comprehensive expositions of the input datasets and parameters pertaining to the SVM
and MLC classification processes.

Table 4. Input datasets and parameters of the SVM classification process.

Input Raster Segmented UAVMS

Spatial resolution 0.079 m

Source MicaSense RedEdge-MX Dual MS

Date of acquisition 10 August 2022

Additional input raster DTM

Spatial resolution 0.5 m

Source DJI Zenmuse L1 LiDAR

Date of acquisition 11 August 2022

Max number of samples per class 500

Segment attributes Color; mean; STD; count; compactness;
rectangularity
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Table 5. Input datasets and parameters of the MLC classification process.

Input Raster Segmented UAVMS

Spatial resolution 0.079 m

Source MicaSense RedEdge-MX Dual MS

Date of acquisition 10 August 2022

Additional input raster DTM

Spatial resolution 0.5 m

Source DJI Zenmuse L1 LiDAR

Date of acquisition 11 August 2022

Segment attributes Color; mean; STD; count; compactness; rectangularity

The fourth step (4) of the GEOBIA process involved determining the most accurate
classification algorithm. Accuracy assessment was conducted using overall accuracy (OA),
and the kappa coefficient (KC). OA is the ratio of the total number of accurately classified
pixels to the total number of pixels in the error matrix [85,86]. The KC measures the
correlation between the classified data and the reference data, utilizing the major diagonal
of the confusion matrix, as well as the sums of the matrix’s columns and rows [87,88].

OA =
m

∑
i=1

Pii (1)

KC =
N∑r

i=1 Pii − ∑r
i=1(pi+ × p+i)

N2 − ∑r
i=1(pi+ × p+i)

(2)

where pii is the major diagonal element for class I, pi+1 is the total number of observations
in column i (bottom margin), pi+ is the total number of observations in row i (right margin),
and m is the number of rows, columns in the error matrix. OA values can range from 0 to 1,
with higher values indicating greater accuracy. To assess accuracy, layers of consistently
distributed points were generated for the 19 classes in the study area, using the Create
Accuracy Assessment Points tool within ArcMap 10.4.1 and a stratified random sampling
strategy. These points were strategically placed within the classes, resulting in 1568 point
samples. This sampling strategy ensured highly accurate outcomes [89,90]. Each point
was assigned a land-cover-type attribute taken from the official vector layer, with cadastral
information provided by the city.

In the fifth step (5), the quality of the created LULC was improved. When utiliz-
ing very-high-resolution geospatial technologies in urban environments and classifying
numerous classes, misclassification becomes a significant concern [91–93]. The selection
of appropriate remotely sensed datasets and a suitable classification algorithm are the
two key factors for achieving an accurate LULC model [94]. However, the complexity of
heterogeneous areas poses a considerable challenge for machine-learning algorithms [95].
Consequently, in regions of the study area where classification accuracy was not satisfactory,
manual interventions were employed to enhance the accuracy of the LULC model [51,52,96].
This approach, which combines machine-learning classification algorithms with manual in-
terventions, is commonly referred to as a hybrid approach [97–99]. Manual improvements
of selected classes were performed using geometrically referenced data, such as the digital
orthophoto (DOP) with a spatial resolution of 3 cm. Additionally, cadastral information was
integrated with the DOP, contributing to more precise corrections of misclassified classes.

The final step (6) was adding CN and IS values to LULC classes. The infiltration
capacity was described by the CN number, according to the NRCS methodology [37],
and corresponding values were added to each LULC class. According to the Croatian
pedological map [100] and previous investigations [63,64] the soil in this area can be
characterized as alluvial (fluvisol), with good drainage capacity. Therefore, it has been
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assigned to the hydrological soil group B. Table 6 shows the selected values of the CN for
all 19 LULC classes of the hydrological soil group B in the study area. All CN values were
selected from the relevant literature [37,38]. Higher CN numbers corresponded to a lower
infiltration capacity, and vice versa. The IS model was a Boolean mask, where false value
(0) denotes impervious LULC classes, such as asphalt, buildings, greenhouses, and water,
while true (1) denotes pervious LULC classes, such as orchard, vineyard, olive grove, low
vegetated, and high vegetation.

Table 6. LULC classes and corresponding CN and IS values for the hydrological soil group B [37,38].

LULC CN IS LULC CN IS LULC CN IS

Agricultural road 80 1 High vegetation 62 1 Orchard 52 1

Arable land 69 1 Junk yard 69 1 Railway 80 1

Asphalt 98 0 Lawn 69 1 Reed 81 1

Buildings 90 0 Low vegetation 65 1 Tangerines 52 1

Embankment 80 1 Macadam 80 1 Vineyard 52 1

Greenhouse 90 0 Olive grove 52 1 Water 100 0

Homestead 85 1

2.5.2. Normalized Difference Vegetation Index (NDVI)

One of the most commonly used vegetation indices in remote sensing is the normalized
difference vegetation index (NDVI) [101–103]. Many authors have chosen the NDVI as
a parameter for modeling impervious surfaces [104–108]. The NDVI has a significant
role in impervious-surface modeling, as it quantifies the difference between the infrared
component of the electromagnetic spectrum, which is highly reflected by vegetation, and
the visible portion of the red spectrum, which is extensively absorbed by vegetation [109].

NDVI =
NIR − R
NIR + R

(3)

The multispectral bands from the sensor were combined to generate the NDVI, which
can be derived using various tools in ArcMap 10.4.1. One of these tools is the Raster
Calculator, which allows the creation and execution of different commands and variables
to convert existing raster layers into new raster models that represent vegetation indices.
Through the tool’s dialogue box, users can select appropriate options and incorporate
numerical values and mathematical operators to construct the required equations. Table 7
displays the input datasets and parameters used in the process of generating the NDVI.

Table 7. Input datasets and parameters employed in the generation of the NDVI criterion.

Input Raster UAVMS

Spatial resolution 0.079 m

Source MicaSense RedEdge-MX Dual MS

Date of acquisition 10 August 2022

Spectral bands NIR, R

2.5.3. Slope

The significance of slope, as a crucial factor for infiltration modeling [110] and im-
perviousness modeling [111,112], is emphasized in numerous studies. The variations in
infiltration within the same land-cover class, but with different slope angles, highlight
the influence of slope on the infiltration process [5,35,113]. Slope angle directly affects
infiltration, runoff frequency, and velocity. Flat terrain is more susceptible to flooding, as
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runoff is slower and larger amounts of water accumulate after precipitation events, while
steep terrain experiences less risk of flooding, due to higher runoff velocity [35,114]. To
calculate the slope angles, the created DTM was processed using the spatial analyst tool
in ArcMap 10.4.1. Table 8 exhibits the input datasets and parameters employed in the
generation of the slope criterion. The established value of the Z factor, which is utilized to
adjust measurement units in cases of non-alignment, was set to 1, as the x, y, and z values
are all expressed in meters.

Table 8. Input datasets and parameters employed in the generation of the slope criterion.

Input Raster DTM

Spatial resolution 0.5 m

Source DJI Zenmuse L1 LiDAR

Date of acquisition 11 August 2022

Output measurement Degree

Z factor 1

2.5.4. Topographic Wetness Index (TWI)

The topographic wetness index (TWI) is a hydrological metric used to assess the
potential wetness of a specific terrain, indicating its propensity to retain water [115,116]. By
utilizing the TWI, it becomes possible to identify and analyze various waterlogged regions,
such as swamps, sinkholes, ravines, and river valleys, which exhibit high values of this
index. Conversely, drier areas, such as steep slopes and higher elevations, exhibit low
values of the TWI. In this research, the TWI was computed using the topographic wetness
index tool available in the Saga GIS 7.8.2. extension for ArcMap 10.4.1. The calculation of
the TWI required input data, such as slope and catchment area size. The input datasets and
the parameters employed in the generation of the TWI criterion are shown in Table 9. In
the process of generating the TWI, the standard method was employed, and conversion
was not selected, as the area was already specified as a specific catchment area.

Table 9. Input datasets and parameters employed in the generation of the TWI criterion.

Input Raster Slope

Spatial resolution 0.5 m

Source DJI Zenmuse L1 LiDAR

Date of acquisition 11 August 2022

Catchment area Study area raster layer

Spatial resolution 0.5 m

Source MicaSense RedEdge-MX Dual MS

Date of acquisition 10 August 2022

Area conversion No conversion

Method Standard

2.5.5. Slope Orientation (Aspect)

The aspect also has a role in modeling infiltration. Some studies [117,118] established
a correlation between infiltration capacity and daily temperature variations, which are
higher on south-oriented slopes. This implies that on slopes oriented toward the north, the
soil tends to be wetter, resulting in lower permeability.

To create the slope-orientation model, the aspect tool was utilized. This tool, available
within ArcMap 10.4.1., visualizes the direction of the steepest value change from each cell to
its neighboring cells. The measurement is presented in degrees, clockwise, completing a full
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circle from 0 degrees (representing north) to 360 degrees (again, representing a northward
direction). The input datasets and the parameters of the slope-orientation extraction process
are shown in Table 10.

Table 10. Input datasets and parameters of the slope orientation extraction process.

Input Raster Slope

Spatial resolution 0.5 m

Source DJI Zenmuse L1 LiDAR

Date of acquisition 11 August 2022

2.6. GIS-MCDA

Multicriteria GIS decision analysis (GIS-MCDA) allows decision-makers to incorpo-
rate geographical information and spatial relationships into the decision-making process.
It enables the evaluation and comparison of multiple criteria associated with different
locations or spatial units [119]. This approach is particularly useful in situations where
decision-making involves selecting a location or prioritizing actions in a geographic context.

The methodological framework of the GIS-MCDA consists of three main steps: value
scaling (or standardization), criterion weighting, and aggregation of standard criteria and
weight coefficients (Wi) [119].

In the first step (1), created criteria were standardized. The process of standardization
was performed using the fuzzy logic approach in ArcMap 10.4.1. software. The fuzzy mem-
bership tool was utilized to standardize the raster criteria, based on a chosen fuzzification
algorithm. The standardization was performed on a scale ranging from 0 to 1, where a value
of 1 indicated maximum membership strength, gradually decreasing toward 0. The linear
method was specifically employed, assigning higher values to impervious classes [120].
LULC classes with CN values greater than 0.9 (asphalt, buildings, greenhouses, and water)
were extracted as a Boolean criterion (IS model) that is not affected by other used criteria,
considering that they are impervious and/or related to very low infiltration. The second
step (2) involved the utilization of the analytic hierarchy process (AHP) to calculate the
required Wi (Table 11). Numerous methods for calculating weight coefficients (CWC) are
available, such as the best–worst method (BWM), the simple multi-attribute rating tech-
nique (SMART), the full-consistency method (FUCOM), the swing method, the trade-off
method, the point-allocation method, the direct-rating method, and the AHP [121,122].
Each of the existing CWC methods comes with its own set of advantages and disadvantages,
depending on the research goals and objectives [121]. Among these methods, the AHP is
commonly utilized [123–126]

Table 11. The AHP preference matrix and assigned Wi for the five created criteria.

CN NDVI SLOPE TWI ASPECT Wi

CN 1 3 4 6 8 50.37

NDVI 0.333 1 2 4 6 24.26

SLOPE 0.25 0.5 1 2 4 13.8

TWI 0.167 0.25 0.5 1 2 7.31

ASPECT 0.125 0.167 0.25 0.5 1 4.27

The LULC criterion was reclassified, based on the CN values of each class, and was
considered the most crucial factor in infiltration mapping, receiving the highest assigned
Wi. The NDVI criterion held the next level of importance, as it effectively distinguished
between permeable and impervious surfaces. Furthermore, the criteria of slope and the
TWI were assigned relatively lower Wi, while the aspect received the lowest Wi, due to the
lowest influence on infiltration.



Sustainability 2023, 15, 15563 14 of 28

The determination of Wi in the AHP involved an iterative process (n = 25), wherein
various preference strengths were tested between criteria. Careful attention wa given to
ensured that the resulting consistency ratio (CR) did not exceed the threshold of 0.1 [127].
During each iteration, preference judgments were reevaluated, adjusting the preference
strengths within the matrix. The Wi was then recalculated, based on these revised judg-
ments. This iterative cycle continued until a satisfactory level of CR was achieved, ensuring
that the preference judgments aligned more accurately with the decision-makers’ intentions.

In the final step, the GIS-MCDA model of IEI was created, based on the aggregation of
standardized criteria and their Wi.

3. Results and Discussion
3.1. Acquired VHR Data

A total of 34,330 MS images were acquired. Considering that the MicaSense RedEdge-
MX Dual Camera sensor captures the area simultaneously with 10 independent spectral
bands at each location, the photos were gathered from 3433 different locations.

The LiDAR survey resulted in the acquisition of 19 GB of data. Each file contained a
specific type of information that was essential in data processing. For example, the .imu
file recorded the original x, y, and z displacement data during the survey, while the .rtk
file recorded the status of the main GNSS and its characteristics. The photos were in .jpg
format and were primarily used to colorize the dense point clouds.

3.2. Derived VHR Models
3.2.1. UAVMS

The MS model, with a spatial resolution of 7.98 cm, consisted of 10 different spectral
bands (Figure 6A,B). These bands were modified individually to achieve the optimal
spectral band arrangement for the observed area. The accuracy of the MS was assessed,
based on the nine collected CPs, yielding a root mean square error (RMSE) of 0.0336 m.
This indicated a high level of accuracy and agreement between the observed data and the
reference data. The MS model was utilized to create the VHR LULC and NDVI models.
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3.2.2. DSM and DTM

After processing LiDAR data in DJI Terra, a digital surface model (DSM) was generated
(Figure 7A). Subsequently, a very-high-resolution (VHR) DTM was created (Figure 7B),
using Spatix software. The accuracy of the LiDAR model was evaluated using 229 CPs,
resulting in an RMSE value of 0.0387 m. This indicated a high level of accuracy and
agreement between the LiDAR-derived model and the reference data. Despite the potential
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for a higher spatial resolution in the DTM, the processing complexity necessitated exporting
the model at a spatial resolution of 0.5 m. The resulting model was utilized to derive various
criteria, including the slope, the TWI, and the aspect.
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3.2.3. LULC, CN, and IS

By visually interpreting the generated models, a model with a spectral detail value of
19, a spatial detail value of 15, and a minimum segment size of 20 was selected (Figure 8A).
These values were consistent with those used in previous research employing the GEO-
BIA approach [90,128–130]. A total of 6489 samples was added across 19 classes on the
segmented model to generate an SVM model (Figure 8B) and an MLC (Figure 8C) model.
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Among the two classification algorithms used in the GEOBIA process, the SVM
algorithm demonstrated higher accuracy, with an OA measure of 0.6687 and a KC accuracy
measure of 0.3512, while the MLC algorithm resulted in an OA measure of 0.6152 and
a KC accuracy measure of 0.2926 (Table 12). The calculated low-accuracy values can
be attributed to the presence of a significant number of classes that exhibited similar
spectral values [131–133]. This similarity posed challenges in accurately distinguishing and
classifying these classes, resulting in reduced accuracy measures. The overlapping spectral
characteristics made it difficult for the classification algorithms to accurately assign pixels
to their respective classes, leading to misclassifications and reduced overall accuracy.

Table 12. GEOBIA accuracy assessment measures results.

OA KC

SVM 0.6687 0.3512

MLC 0.6152 0.2926

The SVM classification model was generated using a cell size of 0.079 m, and it em-
ployed an unsigned integer (8-bit) pixel type and depth. With pyramids set at level 7
and a resampling technique of nearest neighbor, the model achieved better accuracy than
that of the MLC model, by effectively discerning spatial patterns and spectral character-
istics within the segmented UAVMS data. The chosen parameters ensured optimal OA in
classifying LULC.

VHR data, like the data collected for this research (<8 cm), posed a challenge due to
their high level of detail, which made classification intricate when creating an LULC model.
In essence, there was a multitude of potential classes, such as the diverse types of roof tiles,
some of which may be covered in moss and other debris. In addition, there were other
intricate details captured by the VHR multispectral camera, including vehicles on roads.
Due to these complexities, it was logical to expect that classification algorithms may not
have achieved a high level of accuracy. Therefore, manual corrections were often employed,
allowing for interventions in areas with significant errors, thereby enhancing the quality
of the LULC model [51,52]. After the manual intervention, the classified SVM model was
significantly improved (KC = 0.9524), particularly in regions of the study area where the
accuracy was not satisfactory. The generated LULC model (Figure 9) exhibited a high level
of accuracy in distinguishing impervious surfaces within the study area. Among the various
LULC classes, the most dominant were low-vegetation areas, covering 47.54 hectares, and
arable-land areas, covering 25.42 hectares. The impervious classes, including asphalt,
buildings, greenhouses, and water, collectively covered 24.41 hectares within the study
area. Those classes were singled out as a special (Boolean) criterion (IS model), as their
permeability was not influenced by any other created criteria. In the final step, attributes
related to infiltration capacity were added to different classes, resulting in the generation of
a very-high-quality CN model. To ensure the harmonization of input data for subsequent
analyses, the spatial resolution of the generated model was reduced to 0.5 m.
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3.2.4. The NDVI

After applying the Raster Calculator tool, the NDVI model for the research area
was generated (Figure 10A). The NDVI model exhibited a range of values from −1 to
1, where higher values indicated the presence of healthy vegetation and lower values
indicated the presence of unhealthy vegetation. As impervious surfaces lack vegetation,
they exhibit low NDVI values, enabling the differentiation of impervious areas from
vegetated areas. This makes NDVI a valuable criterion for identifying and mapping
impervious surfaces [104–108]. In the northern part of the research area, the index values
were notably high, primarily due to the presence of irrigated and fertile soil encompassing
orchards, tangerine groves, olive groves, vineyards, and other types of high and low
vegetation. Additionally, this region is characterized by the occurrence of reeds, which are
indicative of the swampy nature of the area. Lower values were observed in the southern
and eastern regions of the study area, and were primarily attributed to the presence of
anthropogenic structures and objects. The spatial resolution of the NDVI model was also
reduced to 0.5 m to align with the data for GIS-MCDA.
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3.2.5. Slope

The research area exhibits predominantly flat terrain with minor slopes (Figure 10B).
However, notable slopes were observed in specific regions, such as embankments, water
channels, and populated areas that were elevated above the surrounding terrain by filling
materials. Sugianto et al. [114] indicated that the highest susceptibility to flooding occurs
in areas with a slope ranging from 0% to 5.5%, due to the accumulation of runoff water.
Conversely, steeper areas, with slopes exceeding 30%, have lower flood risk, as surface
runoff in such slopes tends to be much faster.

3.2.6. The TWI

The TWI criterion serves as a useful indicator for discerning areas that are prone to
water accumulation within the topographic basin. Regions exhibiting a lower propensity
for water accumulation also display reduced water infiltration. Within the research area, the
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TWI values were influenced by the relief’s morphological characteristics. Elevated sections,
such as the embankment located along the northern part of the study area, exhibited lower
TWI values, signifying minimal or negligible water accumulation (Figure 10C). Conversely,
lower-lying portions of the relief demonstrated higher TWI values, indicating a greater
potential for significant water accumulation. Based on the TWI analysis, two distinct areas
of water accumulation were identified within the study area. The first area encompasses the
swampy region and water channels, while the second area corresponds to the Neretva River.

3.2.7. Aspect Model

The created aspect model represented the slope orientation in the study area (Figure 10D).
Braga et al. [118] emphasized the significance of soil temperature as a key factor influencing
hydraulic conductivity and, consequently, the infiltration rate. They highlighted that tem-
perature plays a crucial role, with higher temperatures during warmer periods impacting
the infiltration rate by up to 56%. It is postulated that in the case of more northerly oriented
slopes, the colder temperatures contributed to increased soil moisture, thereby influencing
reduced permeability.

3.3. GIS-MCDA

After generating the criteria models, the fuzzy membership tool and the linear mem-
bership method were employed to scale the values from 0 to 1, where higher values
represented a higher IEI. The 19 classes extracted from the LULC model were reclassified
based on the CN value, thereby forming the CN criterion. The values were rescaled from
the original 0–100 scale to the 0–1 scale, where higher values indicated higher infiltration
efficiency, receiving the maximum membership value (Figure 11A). Similarly, the NDVI
values were transformed to the 0–1 scale, where lower values represented increased imper-
viousness and, therefore, lower infiltration efficiency (Figure 11B). The slope criterion was
standardized, such that a higher degree of slope corresponded to low infiltration efficiency
(Figure 11C). The TWI criterion was also standardized, with lower values indicating lower
infiltration efficiency, where a value of 0 corresponded to impervious surfaces (Figure 11D).
The aspect criterion was standardized, with values closer to the north signifying lower
infiltration efficiency, while more southerly oriented slopes indicated higher infiltration
efficiency (Figure 11E). Finally, a Boolean mask (IS model) was applied, representing fully
impervious surfaces, such as asphalt, buildings, greenhouses, and water (Figure 11F).
After conducting 25 iterations of the AHP and selecting the final values for Wi, the CR
was calculated to be 0.02. This value fell within the acceptable range (<0.1), indicating
satisfactory consistency in the decision-making process [127]. This approach aligned with
a previous study [134], which employed a similar method on 0.5 m data, resulting in
significant improvements in the input spatial data for VHR hydrologic-hydraulic modeling
in urban areas.
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Infiltration Efficiency Index Model

By aggregating standardized criteria with specific Wi, the final VHR IEI model (0.5 m),
with values ranging from 0 to 0.71, was generated (Figure 12). The model revealed that
14.89% of the research area is covered by very low IEI values (0–0.1), which are related
to impervious surfaces. This percentage signified a favorable condition, in comparison
to urban areas worldwide [135–137]. However, it is important to highlight that the city
of Metković encompasses extensive agricultural regions that significantly impacted this
result. The majority of the research area (62.79%) exhibits a higher IEI, with values above
0.5. These areas are predominantly characterized by agricultural land use, encompassing
orchards, tangerines, olive groves, vineyards, and a diverse range of low-lying and high
vegetation on flat terrain. The research area exhibited a maximum IEI value of 0.71.

Urban land can have a significant impact on flooding, often increasing the risk and
severity of floods, due to changes in land cover, drainage systems, and impermeable
surfaces that can lead to increased runoff during heavy rainfall events [138]. In this IEI
model, urban land was not utilized as one of the input criteria. This decision was made
because the impermeability of urban surfaces was already incorporated as one of the input
criteria, in the form of the IS model (Boolean). The morphological spatial patterns of urban
land influence meso-level research. However, at the micro-level, which is the focus of this
model, it did not have a significant impact.

Nevertheless, the urban-land criterion can be added as one of the input criteria,
together with the IEI model, when developing susceptibility models using GIS-MCDA
methodology. Additionally, the incorporation of a thermal camera can provide significant
assistance in the mapping of ISs and infiltration efficiency [139–141]. However, caution
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should be exercised in interpreting these data, as the presence of tall buildings and trees
can create shaded areas with considerably lower temperatures, making it challenging
to establish an optimal threshold [142,143]. Previous studies predominantly focused on
lower-spatial-resolutions satellite data [5,9,17–27,32,135–137,139]. In contrast, this approach
offered notable advantages by using advanced GST, which facilitated the generation of VHR
models and enabled the mapping of infiltration efficiency at a micro level of research. This
model provided input spatial data for GIS hydrological analyses in this research area and
will be employed as an integral component of a project aimed at the creation of hazard and
risk maps for pluvial and fluvial floods. Furthermore, the precise identification of the IEI is
crucial in predicting land-surface temperature and studying urban heat islands [144], so the
methodology presented in this study can also be effectively employed for those purposes.
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4. Conclusions

The utilization of advanced GST, including MS sensors and LiDAR, facilitated the
acquisition of spatial data at VHR. These high-quality data enabled the derivation of precise
and accurate models. By incorporating these models into the GIS-MCDA process, highly
accurate outcomes were obtained, considering the spatial resolution and accuracy of input
data and derived models. Numerous authors have actively engaged in the field of flood
susceptibility modeling. However, it is worth noting that, to date, there has been a notable
absence of investigations that incorporated the spatial parameter of infiltration as an input
criterion. The current scientific study fills this gap by introducing an innovative approach
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for mapping the IEI at VHR through the application of GIS-MCDA. This methodology
not only expands the horizons of flood-susceptibility assessment, but also underscores the
importance of considering infiltration in such models, shedding new light on flood-risk
management and urban planning.

The study developed a VHR IEI model from six specific criteria that produced val-
ues ranging from 0 to 0.71. The model’s findings indicated that around 14.89% of the
studied area has a very low IEI, primarily due to ISs. This percentage is relatively fa-
vorable, when compared to urban areas globally. However, it is important to note that
the presence of extensive agricultural regions in the city of Metković had a significant
impact on this result. The majority acreage of the research area, accounting for 62.79%,
exhibited higher IEI values, exceeding 0.5. These areas are characterized by agricultural
land use, including orchards, tangerines, olive groves, vineyards, and various types of
vegetation on flat terrain. The highest observed IEI value within the research area was 0.71.
This suggested that the region’s land-use composition plays a crucial role in influencing
infiltration-efficiency patterns.

One of the limitations of this work was related to the uncertainty of the MCDA and
the choice of Wi for the input criteria, as well as the lack of validation. In future research,
the focus will be directed toward examining the influence of each utilized criterion and
validating the accuracy of the proposed IEI model. The impact of different criteria can be
assessed by measuring infiltration in various scenarios, combining the effects of different
criteria at locations determined through GIS-MCDA. Field measurements at these locations
can then provide the validation of the final model. The main purpose of this work was to
introduce a new concept of the IEI, which encompassed all influencing parameters, such as
LULC (indirectly), CN, ISs, slope, vegetation health, wetness, and temperature, into a single
index that is more suitable for spatial GIS analyses than conventional infiltration models.

The IEI model developed for the research area in Metković showcased excellent
differentiation between permeable and impervious surfaces, as evidenced by the high
accuracy achieved in the improved final LULC model. The application of GIS-MCDA
allowed the examination of variations in surface infiltration throughout the study area.
The generated IEI model holds great significance as an input spatial criterion for GIS
hydrological analyses in the study area. The IEI has practical value for various stakeholders,
including experts, decision-makers, and those interested in the research topic. For urban
planners and engineers, the IEI can inform sustainable urban development by highlighting
areas where water infiltration is optimal, aiding in the design of effective drainage systems
and reducing the risk of urban flooding. Environmental agencies and policymakers can
use the IEI to assess the impact of land-use changes on local hydrology and to plan
mitigation strategies for flood-risk reduction. Furthermore, the IEI can guide researchers
in identifying areas that are prone to flooding, allowing for targeted studies and resource
allocation. Ultimately, the index serves as a valuable tool for informed decision-making
and sustainable land-management practices.
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55. Wang, Y.; Hong, H.; Chen, W.; Li, S.; Pamučar, D.; Gigović, L.; Drobnjak, S.; Tien Bui, D.; Duan, H. A Hybrid GIS Multi-Criteria
Decision-Making Method for Flood Susceptibility Mapping at Shangyou, China. Remote Sens. 2019, 11, 62. [CrossRef]

56. Gudiyangada Nachappa, T.; Tavakkoli Piralilou, S.; Gholamnia, K.; Ghorbanzadeh, O.; Rahmati, O.; Blaschke, T. Flood Suscepti-
bility Mapping with Machine Learning, Multi-Criteria Decision Analysis and Ensemble Using Dempster Shafer Theory. J. Hydrol.
2020, 590, 125275. [CrossRef]

57. Birch, G.F.; Fazeli, M.S.; Matthai, C. Efficiency of an infiltration basin in removing contaminants from urban stormwater. Env.
Monit Assess 2005, 101, 23–38. [CrossRef]

58. Widomski, M.K.; Sobczuk, H.; Olszta, W. Sand-Filled Drainage Ditches for Erosion Control: Effects on Infiltration Efficiency. Soil
Sci. Soc. Am. J. 2010, 74, 213–220. [CrossRef]

59. De Carlo, L.; Caputo, M.C.; Masciale, R.; Vurro, M.; Portoghese, I. Monitoring the Drainage Efficiency of Infiltration Trenches in
Fractured and Karstified Limestone via Time-Lapse Hydrogeophysical Approach. Water 2020, 12, 2009. [CrossRef]

60. Archer, N.A.L.; Bell, R.A.; Butcher, A.S.; Bricker, S.H. Infiltration Efficiency and Subsurface Water Processes of a Sustainable
Drainage System and Consequences to Flood Management. J. Flood Risk Manag. 2020, 13, e12629. [CrossRef]

61. Državni Zavod Za Statistiku. Popis ‘21. Available online: https://popis2021.hr/ (accessed on 30 March 2022).
62. Docs&Tools—STREAM—Italia-Croatia. Available online: https://programming14-20.italy-croatia.eu/web/stream/docs-and-

tools (accessed on 23 October 2023).
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