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Abstract: As a sustainable substitute for non-renewable mineral resources and solid waste landfilling,
municipal solid waste incineration residues (MSWIRs) are useful in road pavements. This study
investigates the thermal characteristics and temperature distribution of flexible pavements containing
MSWIRs with hollow microsphere structures. First, the volumetric properties of asphalt mixtures
containing MSWIR fillers were measured. The effects of MSWIRs on the mixture’s physical char-
acteristics were investigated in terms of thermal conductivity, specific heat capacity, and thermal
diffusivity. A three-dimensional finite element model incorporating surface thermal conditions was
established and validated to analyze the internal temperature distribution and heat transfer behavior
within the asphalt. Finally, the high-temperature conditions of summer were simulated in an indoor
irradiation test to evaluate the risk of heat islands in urban areas. The results showed that the mixture
containing MSWIRs exhibited a higher specific heat capacity (from 0.8385 to 0.9554 J/(kg·K)) and
lower thermal conductivity (from 1.4356 to 1.1362 W/(m·K)) than the reference mixture with lime-
stone filler. Therefore, it contributed to a lower heat flux distribution within the pavement. However,
the increase in asphalt surface temperature caused by MSWIRs may exacerbate the urban heat island
effect in the summer, which should be considered before using road materials containing MSWIRs.

Keywords: asphalt; MSWIR; thermal simulation; urban heat island; waste recycling

1. Introduction

Rapid economic development [1], human activity [2], and urbanization [3,4] generate
billions of tons of solid waste in urban areas worldwide [5], and municipal solid waste
incineration (MSWI) residues accompany this waste [6,7]. Given their size distribution and
chemical composition [8], the geotechnical properties of MSWIRs can increase recycling
potential in construction when used as light fillers and aggregates [9]. Therefore, the sec-
ondary use of MSWIRs as sustainable substitutes for solid waste landfilling [10,11] has
been gaining increasing attention from civil engineers. Municipal solid waste undergoes a
combustion and pulverization process at coal-fired power stations, where complex physical
and chemical reactions occur [12] until the MSWI residues harden into fine-grained pow-
der [13]. High-temperature gases (mainly carbon dioxide and nitrogen) in the combustion
furnace can cause the MSWIRs to expand violently [14], generating a lightweight [15,16]
and hollow microsphere structure [17,18].

The thermal characteristics of construction materials determine their temperature
variation and distribution, influencing the environment of urban areas [19,20]. This thermal
behavior affects the durability of building materials [21]. As a typical viscoelastic–plastic
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material, asphalt is temperature-sensitive [22,23]. Higher air temperatures and solar radia-
tion in the summer result in more absorption and heat transfer energy in pavement [24,25].
As a result, high temperatures worsen permanent deformation, rutting risk, and moisture
damage [26,27]. From this perspective, investigations of thermal properties and behavior
are important for predicting and designing pavement materials and structures [28]. As a
composite material, asphalt contains different heat transfer channels because of its com-
ponents (i.e., coarse aggregates, fillers, and asphalt) [29]. Researchers have evaluated the
effect of graphite on the thermal properties of asphalt mixtures [30]. They have found
that asphalt-specific heat capacity decreases while thermal conductivity and diffusivity
increase with the addition of graphite [31]. In heating and cooling conditions, researchers
have tested different mixture specimens with various void ratios [32–34]. Densely graded
mixtures exhibit lower temperature-changing rates than porous mixtures. Chen et al. [35]
proposed a multiscale finite element model to simulate a mixture’s steady-state heat trans-
fer process and investigated its thermal conductivity. Similarly, Mirzanamadi et al. [36]
investigated the effects of void ratio and aggregate gradation and type on a mixture’s
thermal conductivity using a two-dimensional finite element model. Mu et al. calculated
temperature fluctuations and heat flux within a type of road pavement from a numerical
perspective [37]. Carbon fibers with high axial thermal conductivity were incorporated
into mixtures by Jiang et al. to enhance heat conductivity channels [38]. In another study,
the heat flow distribution and temperature field along carbon fibers were calculated using
a finite element approach [39]. Researchers have also studied the heat transfer and thermal
influencing factors of road pavement [40,41]. Conventional and alternative mixtures have
been investigated using in situ measurements and numerical simulations [42,43]. However,
the current research gaps, major difficulties, and challenges regarding MSWIRs can be
summarized as follows:

(1) Research on the effects of MSWI residues with hollow microsphere structures on the
thermal behavior of asphalt roads is still relatively limited;

(2) The numerical studies in the literature do not focus on the effects of MSWIRs with
hollow microsphere structures on the thermal behavior of flexible pavements;

(3) The interaction between MSWIRs in asphalt and the environment has not been vali-
dated through field investigations.

Therefore, the objectives of the present work include the following:

(1) Investigating the use of MSWIRs as fillers in asphalt mixtures whose thermal charac-
teristics must be measured;

(2) Developing a three-dimensional finite element model (FEM) to investigate tempera-
ture distributions;

(3) Analyzing the thermal resistance of asphalt mixtures with MSWIRs and their effec-
tiveness in countering urban heat islands.

This study investigates the thermal properties and behavior of building materi-
als, which are important for designing road pavement that can reduce the risk of rut-
ting and moisture damage and counter urban heat island effects. Additionally, sec-
ondary raw materials in asphalt can balance environmental and thermal goals, facilitating
sustainable solutions.

2. Materials and Methods
2.1. Materials

This study used a bitumen (#70 binder) compliant with JTG E20-2011 [44]. Table 1 lists
its physical properties.
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Table 1. Physical properties of #70 binder.

Property Unit Result Technical
Requirement Test Method

Penetration, 25 ◦C, 100 g/5 s 0.1 mm 71.2 60–80 T 0604 [44]
Softening point ◦C 46.3 ≥45 T 0606 [44]
Ductility, 10 ◦C cm 38 ≥20 T 0605 [44]
Ductility, 15 ◦C cm >150 ≥100 T 0605 [44]

Specific gravity (15 ◦C) g/cm3 1.039 - T 0603 [44]

The limestone aggregates used in this study were divided into four sizes: 10–15 mm,
5–10 mm, 3–5 mm, and 0–3 mm. The basic properties of these aggregates are listed in
Table 2. They were measured according to JTG E42-2005 [45].

Table 2. Basic properties of aggregates and fillers.

Aggregate Property Bulk Relative Density (g/cm3) Apparent Relative Density (g/cm3) Water Absorption (%)

10–15 mm 2.704 2.735 0.45
5–10 mm 2.686 2.720 0.44
3–5 mm 2.635 2.743 1.41
0–3 mm 2.621 2.663 1.56

Filler property Acronym Appearance Density (g/cm3)

Limestone filler LF White powder 2.77
MSWI residue MSWIR Gray spherical particles 0.72

The MSWIR used in this study was produced and recycled after heavy-metal filtration
in local incineration plants. The natural limestone filler was derived from grinding lime-
stone aggregate. The maximum size of both the LF and MSWIR was 0.075 mm, and their
properties are listed in Table 2.

We investigated the asphalt mixture SMA-13 because it is commonly used in the
wearing layer of urban areas. According to the equal volume concept, the MSWIR replaces
the LF with different LF-to-MSWIR mass ratios. The corresponding aggregate gradation
of SMA-13 and the specific mass ratios of the fillers in the asphalt mixtures are listed in
Table 3 (i.e., a control mixture and Mixtures #1 to #4, with increasing MSWIR content).

Table 3. Aggregate gradation of SMA-13 and mass ratios of fillers in asphalt mixtures [46].

Sieve size (mm) 16.0 13.2 9.5 4.75 2.36 1.18 0.6 0.3 0.15 0.075
Passing ratio by weight (%) 100 90.2 63.4 26.5 17.7 15.4 13.1 11.2 10.5 9.8

Mixture type Control Mixture Mixture #1 Mixture #2 Mixture #3 Mixture #4

Mixture number 1 2 3 4 5

Filler ratio (% by volume) LF 100 75 50 25 0
MSWIR 0 25 50 75 100

Mass ratio (% by weight) LF 9.6 7.2 4.8 2.4 0
MSWIR 0 0.6 1.2 1.9 2.5

2.2. Methods

Marshall’s design method was employed to determine the bulk density (ρ), air voids
(VV), air voids in mineral aggregate (VMA), and voids filled with asphalt (VFA) of SMA-13
according to [44]. The Marshall stability test was employed to measure the mechanical
parameters of the asphalt [44], including the Marshall stability (MS) and flow (FL) values.

Using the transient-plane heat source method (Hot Disk-TP3500, Xiangtan Instrument
Co., LTD, Xiang Tan City, China), the mixture’s thermal conductivity (λ) was measured
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with a thermal conductivity tester (DRE-2C). Before testing, each Marshall specimen was
cut into several slices with smooth surfaces. Then, a testing probe with a thermal sensor
was placed between two mixture slices in close contact (Figure 1); ten repeated experiments
provided the average thermal conductivity.
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Figure 1. Thermal conductivity test set.

In this study, a specific heat capacity tester operated in accordance with a heat transfer
method was used to measure the specific heat capacity of the asphalt (Figure 2). A Marshall
specimen was placed in an incubator with a uniform temperature and then immersed in
water in an insulated bucket. The specific heat capacity (c) value was calculated by judging
when the Marshall specimen reached a temperature equilibrium state.
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Figure 2. Set-up for heat capacity measurement.

Combining the mechanical and thermal properties of the mixtures, Equation (1) pro-
vides the thermal diffusivity (α, mm2/s)

α =
λ

ρc
(1)

where λ is the thermal conductivity (W/m K), ρ is the gross bulk density, g/cm3, and c is
the specific heat capacity of the mixture, J/(kg·K).
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The ABAQUS software version 2023 product was used to develop a three-dimensional
extended FEM of the asphalt mixture to simulate thermal conduction. The boundary condi-
tion parameters, contact form, and geometric assembly were like those in the experimental
set: (1) The sample model was isotropic and homogeneous in terms of measured density
(with a Young’s modulus equal to 6000 MPa and a Poisson’s ratio equal to 0.35), and the
thermal properties of the material were determined based on the above thermodynamic
tests. (2) The interfacial bonding was simulated with a tie constraint. (3) Fixed support and
field thermal conditions were determined for the topmost layer of the road pavement. Each
modeled specimen was a cylinder consisting of 8-node linear bricks with hourglass control
(C3D8R) for the mesh conditions.

The thermal FEM of the asphalt pavement was based on the measured volumetric
and thermal parameters of the asphalt mixture. The boundary condition of the model was
set as thermally insulated, in addition to the road surface where convective heat exchange
occurs. According to subroutines in the software, the surface thermal field of the pavement
was set in terms of solar radiation heat flux density (q_solar(t)), total and maximum daily
solar radiation (Q and q0, respectively), and heat flux transfer (Figure 3).

1. The DFLUX subroutine calculated the daily solar radiation absorbed by the surface
assuming an absorption coefficient equal to 0.88–0.95. Equations (2) and (3) describe
the solar radiation tendency

qsolar(t) =


0, 0 ≤ t ≤ 12 − b/2

q0cos(π(t − 12)/b), 12 − b/2 ≤ t ≤ 12 + b/2
0, 12 + b/2 ≤ t ≤ 24

(2)

q0 =
π

24
12Q/b (3)

where b is the effective sunshine hour (hour), and t is the time.
2. Equation (4) describes the surface heat transfer according to the FILM subroutine,

which results from the temperature difference between air and the asphalt surface

qair(t) = hc

[
Tair(t)− Tsur f ace(t)

]
(4)

Tair(t) = Ta + Tm

[
0.96sin

π(t − 9)
12

+ 0.14sin
π(t − 9)

6

]
(5)

hc = 3.7w + 9.4 (6)

where qair(t) is the transferred surface heat flux from external air at time t, W/m2; hc
is the heat transfer coefficient, W/m2 ◦C; Tair(t) is the air temperature, ◦C; Ta is the
daily average air temperature, ◦C; Tm is the daily excursion of the air temperature,
◦C; Tsur f ace(t) is the temperature of the asphalt surface, ◦C; and w is the daily average
wind speed, m/s.

3. Based on the Stefan–Boltzmann law, Equation (7) was used to calculate the surface
radiation of the pavement (qrad(t))

qrad(t) = 5.67 × 10−8ε

[(
Tsur f ace(t) + 273

)4
− (Tair(t) + 273)4

]
(7)

where ε is the surface emissivity of the asphalt.
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Figure 3. Thermal model of asphalt pavement and boundary conditions.

Indoor irradiation and temperature monitoring were conducted to simulate extremely
high-temperature conditions (Figure 4). Sixteen incandescent 275 W lamps were placed
90 cm above the Marshall specimens to simulate solar radiation in summer.
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Figure 4. Irradiation test installation and temperature monitoring.

Each sample was embedded with a temperature sensor and thermally insulated by
spraying foam to induce vertical heat flow. A thermal infrared imager (FLIR E6, FLIR
Systems, Inc., Wilsonville, OR, USA) was used to record the temperature of the upper
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surface. The temperature distributions in the mixtures were stored using a TOPRIE-TP700
recorder via an irradiation process.

3. Results and Discussion

The volumetric parameters of the asphalt mixtures with MSWIR and LF were deter-
mined using the Marshall design method (Table 4).

Table 4. Volumetric and mechanical properties.

Mixture MS (kN) FL (0.1 mm) VV (%) VMA (%) VFA (%) ρ (g/cm3)

Control
Mixture 12.04 30.6 4.29 17.74 74.78 2.389

Mixture #1 11.87 31.5 4.75 17.98 73.45 2.363
Mixture #2 11.81 31.3 5.31 18.41 72.44 2.331
Mixture #3 10.94 32.2 5.93 19.47 71.08 2.307
Mixture #4 10.42 32.6 6.12 20.87 70.53 2.282

The bulk density of the asphalt mixtures decreased with an increase in MSWIR content
because of the lower density of the MSWIR particles compared with the LF particles.
Meanwhile, the air void ratio of Mixture #4 was 1.83% higher than that of the control
mixture, with higher VMA and VFA values. This phenomenon can be explained by
the microstructure of the MSWIR, exhibiting spherical hollow particles, whereas the LF
consisted of poriferous fragments. The differences in the volumetric parameters of the
mixtures determined their thermal characteristics.

The thermal conductivity values of the specimens with different MSWIR additions
were measured (Figure 1), and the testing results are listed in Table 5 to reflect the effects of
the MSWIR on thermal conduction.

Table 5. Thermal conductivity of asphalt mixtures.

Mixture λ (W/(m·K)) Testing Error (W/(m·K))

Control Mixture 1.4356 0.0206
Mixture #1 1.2964 0.0248
Mixture #2 1.2401 0.0101
Mixture #3 1.1846 0.0292
Mixture #4 1.1362 0.0052

Although the MSWIR was incorporated into the mixture by replacing an equal volume
of LF, the asphalt mixtures containing MSWIR had lower thermal conductivity than the
control asphalt mixture. Table 4 shows that the average thermal conductivity of Mixture #4
is 0.2994 W/(m·K) lower than that of the control mixture. These results demonstrate that
the asphalt with MSWIR instead of LF had higher heat resistance.

The heat conduction characteristics of the asphalt mixture are related to its thermal
conductivity and depend on its specific heat capacity. The average values of c are shown
in Figure 5a and demonstrate that the heat storage capacity of the asphalt mixture was
improved by the MSWIR. The heat storage capacity of the asphalt mixtures increased from
838.45 J/(kg·K) to 955.37 J/(kg·K) when the MSWIR completely replaced LF (Mixture #4).
The increase in c became significant when the MSWIR was used as a substitute for at least
50% of the LF (the relative ratio of Mixture #3 is 8.1%).
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Figure 5. Thermal properties of asphalt mixtures: (a) specific heat capacity; (b) thermal diffusivity.

According to Equation (1), thermal diffusivity synthesizes the thermal properties of
the material. Incorporating the MSWIR significantly improved the thermal resistance of
the asphalt mixture, with a decrease in α of 0.1955 mm2/s compared with the control
mixture. An MSWIR with a hollow structure tends to prevent heat conduction, which,
in this study, affected the temperature distribution of the pavement (Figure 5b). Finally,
the temperatures at different depths of the asphalt mixture with MSWIR were monitored
and validated using an FEM model. A set of climate data documented by a TRM-ZS1
weather station was used to validate the experimental and simulation data. The daily
total solar radiation, air temperature, humidity, effective sunshine hours, air pressure,
and wind speed were measured and recorded by a monitoring station using a wireless
communication controller. Meteorological data measured from an asphalt road section
(SMA-13) in Changsha City, China, on 27 June (Figure 6) were input into ABAQUS for
full-scale thermal model validation. Furthermore, the bulk density, thermal conductivity,
and specific heat capacity of the asphalt mixture were included in the model. The maximum
and minimum surface temperatures were calculated using the thermal model.
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Figure 6. Meteorological data collection and temperature model validation.
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Figure 6 shows how the comparison was conducted between the simulated and
measured surface temperatures in order to verify the model. The surface temperature
ranged from about 16 ◦C to 42 ◦C in the thermal model, and this range was comparable
to the measured values. Given the solar radiation changes, the calculated maximum
temperature of the surface was a little higher than the measured values, while the minimum
surface temperature was approximately equal. This discrepancy is attributable to the
idealization of weather parameters and material thermal properties. The close agreement
between the simulated results and the field measurements indicates the reliability of
the proposed thermal model in investigating the thermal behavior of asphalt mixtures.
The typical weather conditions were determined to be 3.3 m/s for wind speed, 20 ◦C
for minimum air temperature, 30 ◦C for maximum air temperature, 11.5 h for effective
sunshine hours, and 6.747 MJ/m2 for daily total solar radiation. The selected surface
thermal conditions for the summer season and the measured thermal properties of the
asphalt mixtures were adopted in the thermal field model. A hexagonal element type with
linear heat transfer and tie interlayer constraints was applied during the thermal analysis.
The variation and distribution of the surface and internal temperatures (Figure 7) were
calculated according to the heat transfer calculation in ABAQUS for the control mixture
throughout the whole day.
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The daily surface temperature is shown in Figure 8a,b. Given the absorbent solar
radiation, the maximum surface temperature of the mixture was higher (by more than
15 ◦C) than the maximum daily air temperature under typical thermal conditions, which
occurred at about 13:00~15:00. Conversely, the lowest surface temperature of the asphalt
mixture was almost the same as the minimum daily air temperature. In addition, the
mixtures including MSWIRs presented higher temperatures in the afternoon and lower
temperatures at night compared with the control mixture.
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Figure 8. Finite element results: (a,b) daily maximum temperature; (c); daily internal temperature
gradient of the control mixture; (d) daily surface temperature gradient of each mixture.

The variation and distribution of the internal temperature gradient at different depths
of the control mixture were also recorded. Figure 8c shows that the mesh reading points
were vertically distributed from the longitudinal center of the asphalt mixture. The daily
variation range of the pavement temperature decreased markedly with increasing depth.
The largest temperature variation was on the surface because of direct contact and heat
exchange with the atmosphere [47–49].

Generally, the temperature differences between the various mixtures at the same
depth resulted from the voids within the hollow microsphere structure of the MSWIR
(Figure 8d). The heat conductivity of the voids was less than that of the asphalt mastics
and aggregate. Therefore, the voids in the MSWIR affected the temperature distribution
within the asphalt mixture, inducing a thermal resistance effect. Han et al. reported a
similar finding concerning the primary heat conduction in a mixture [50]. Moreover, the
temperature degradations of the asphalt mixtures represent different phenomena, which
may cause micro-weather changes near pavement at night [51–53]. The main reasons for the
temperature degradation difference include the thermal parameters and heat accumulation
during the daytime [54,55].

Heat conduction causes heat flux gradients at different depths. These prolonged heat
flux accumulations may disturb the thermal balance with the near-surface environment in
urban areas. The daily heat flux evolution of the asphalt mixture based on the simulation
analysis of the heat flux transfer is shown in Figure 9. The asphalt heat flux field exhibited a
certain level of hysteresis in the temperature change shown in Figure 7, which contributed
to the amount of flux absorbed and the conduction process.
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Upon comparing Figure 10a,b, a time lag between the maximum temperature and
the maximum heat flux can be seen in the mixture model. The heat flux gradient effect
within the internal structure will change the heat transfer direction at night. This time lag
phenomenon in the pavement’s heat flux further affects the partial heat balance and even
exacerbates heat islands [56,57].

Figure 10c,d show that the MSWIR reduced the flux gradient, indicating a higher
level of thermal resistance due to lower thermal conductivity. It can be inferred that
the obstruction of the transmission of heat into the in-depth layers would induce heat
flux around the upper layer. Therefore, the mixture with MSWIR will exhibit a higher
upper-layer temperature under the same solar radiation absorption conditions during the
daytime, and less stored heat energy will be lost to the ambient environment at night. This
phenomenon explains why Mixture #4 showed a larger temperature range in the daytime
and a smaller temperature range at night. Therefore, it has been theoretically confirmed
that the mixture with MSWIR can counter heat island effects because it releases less heat
into the ambient environment at night. However, the potential heat island effect due to
higher surface temperatures in the daytime cannot be overlooked.

Indoor irradiation simulated the high-temperature conditions of summer (Figure 3).
This study focused on temperature evolution at different depths (i.e., 0 cm, 2 cm, 4 cm, and
6 cm below the surface). Figure 11a–c show the temperature distributions of the control
mixture, Mixture #2, and Mixture #4, respectively.
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Figure 10. Finite element analysis results. (a,b) Daily maximum heat flux; (c) daily heat flux at
different depths of the control mixture; (d) daily surface heat flux gradient of each mixture.
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Figure 11. Temperature distributions: (a) control mixture; (b) Mixture #2; (c) Mixture #4.

Figure 11 shows that Mixture #4 had a higher average temperature than the control.
The MSWIR reduced thermal diffusivity and caused more irradiation energy to accumulate.
The average surface temperature increased, and the difference in surface temperature
between the traditional and alternative mixtures reached up to 2.5 ◦C. Figure 12 shows the
contrastive results of the calculated pavement temperatures.
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Figure 12. Comparison of temperature distributions between control mixture, Mixture #2, and
Mixture #4. (a) Overlapped view; (b) Intersection zone.

Figure 12 illustrates the contrastive results for the asphalt mixtures. Incorporating
MSWIR into the asphalt increased the temperature in the upper 2.5 cm thick layer. However,
the temperature results at 2.5 cm to 6 cm below the surface were opposite. The temperature
drop reached as low as 1.67 ◦C. A temperature distribution intersection zone could be
observed in the three-dimensional temperature field model at a depth of 2.5 cm; this was
caused by the MSWIR-to-LF ratio. This phenomenon can be explained in terms of thermal
conductivity.

The temperature-monitoring results for the structural elements and the heat conduc-
tion (Hc) of the upper-layer model are shown in Figure 13. They indicate that MSWIRs
in asphalt can mitigate heat accumulation inside the pavement, reducing the total heat
radiation flux. An increase in the surface layer temperature might exacerbate the peak
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heat island effect in urban areas. This can accelerate the convective dissipation of heat on
road surfaces [58] and can be combined with urban cooling technologies [59–61] such as
reflective [62,63] and evaporative pavements [64,65] and greenery [66].
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4. Conclusions

In this study, we investigated the thermal characteristics of asphalt mixtures with
MSWI residues substituting for limestone filler by varying the substitution volume between
0% and 100%. The temperature distribution within a flexible pavement was analyzed using
thermal simulations and indoor irradiation tests. This research revealed the effects of an
MSWIR with hollow microsphere structures on the thermal characteristics and behavior
of an SMA-13 asphalt mixture. Through our numerical studies, we developed a three-
dimensional finite element model describing the temperature distributions. The field
investigation validated the interaction between MSWIR in flexible pavements and the
urban environment.

The main conclusions are as follows:

(1) Incorporating MSWIR reduces the thermal conductivity of asphalt mixtures from
1.4356 to 1.1362 W/(m·K) compared with using LF. The specific heat capacity of the
mixture increases from 0.385 to 0.9554 J/(kg·K) because of the hollow microsphere
structure of the MSWI residues.

(2) Thermal diffusivity decreases by 0.1955 mm2/s, indicating enhanced thermal resis-
tance. Asphalt with MSWIR transfers less heat to lower layers at the same solar
radiation level, which is conducive to alleviating the heat island effect.

(3) The temperature and heat flux gradients indicate a time lag for heat stored in the
daytime and released at night. The heating accumulation and dissipation rate exhibit
a positive correlation with the MSWIR content.

(4) Compared with the daily maximum temperature of the asphalt mixture, the daily
heat flux can elucidate the thermal absorption and conductive mechanism at a more
specific level, helping us to understand pavement heat transfer.

(5) The indoor irradiation test indicated the exacerbated urban heat island effect during a
hot summer can cause an increase of about 2.5 ◦C in the surface layer temperature,
which should be considered before material design and proposing MSWIR applica-
tions. Therefore, the proposed approach, combined with cool pavement technologies,
can balance physical, mechanical, functional, and environmental goals.

Further studies should be conducted because this study only included SMA-13, and
more asphalt mixture types should be investigated. The comprehensive performance of
MSWI residues is still limited. Other testing procedures should be conducted to analyze
primary properties; these procedures include fatigue and dynamic creep tests. Moreover,
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we suggest deepening the investigation into the micro-mechanisms responsible for heat
conduction and carrying out thermogravimetric analyses of asphalt mixtures to identify
weight-loss phenomena concerning increased temperatures.
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