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Abstract: The global significance of fluoride and nitrate contamination in coastal areas cannot be
overstated, as these contaminants pose critical environmental and public health challenges across the
world. Water quality is an essential component in sustaining environmental health. This integrated
study aimed to assess indexical and spatial water quality, potential contamination sources, and
health risks associated with groundwater resources in Al-Hassa, Saudi Arabia. Groundwater samples
were tested using standard methods. The physiochemical results indicated overall groundwater
pollution. This study addresses the critical issue of drinking water resource suitability assessment by
introducing an innovative approach based on the pollution index of groundwater (PIG). Focusing on
the eastern region of Saudi Arabia, where water resource management is of paramount importance,
we employed advanced machine learning (ML) models to forecast groundwater suitability using
several combinations (C1 = EC + Na + Mg + Cl, C2 = TDS + TA + HCO3 + K + Ca, and C3 = SO4 +
pH + NO3 + F + Turb). Six ML models, including random forest (RF), decision trees (DT), XgBoost,
CatBoost, linear regression, and support vector machines (SVM), were utilized to predict groundwater
quality. These models, based on several performance criteria (MAPE, MAE, MSE, and DC), offer
valuable insights into the complex relationships governing groundwater pollution with an accuracy of
more than 90%. To enhance the transparency and interpretability of the ML models, we incorporated
the local interpretable model-agnostic explanation method, SHapley Additive exPlanations (SHAP).
SHAP allows us to interpret the prediction-making process of otherwise opaque black-box models. We
believe that the integration of ML models and SHAP-based explainability offers a promising avenue
for sustainable water resource management in Saudi Arabia and can serve as a model for addressing
similar challenges worldwide. By bridging the gap between complex data-driven predictions and
actionable insights, this study contributes to the advancement of environmental stewardship and
water security in the region.
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1. Introduction

Access to safe and clean drinking water is a fundamental human right, recognized
by the United Nations [1]. Ensuring the quality and safety of drinking water resources is
a global concern, as compromised water quality can have significant environmental and
public health implications [2–5]. The presence of contaminants such as fluoride and nitrate
in groundwater is a pressing issue, particularly in coastal areas where these pollutants pose
critical challenges [6–8]. Therefore, the evaluation of water quality, identification of contam-
ination sources, and assessment of associated health risks are of utmost importance [9]. The
significance of preserving water quality extends beyond immediate human consumption;
it is a cornerstone of environmental health and ecosystem sustainability. Groundwater, in
particular, plays a vital role in supplying fresh water to a substantial portion of the global
population [10]. Hence, maintaining its quality is crucial for safeguarding both human
health and environmental integrity.

This integrated study focuses on addressing these multifaceted challenges in the
context of Al-Hassa, a region in Saudi Arabia where groundwater serves as a primary source
of drinking water [11]. Al-Hassa is renowned for its extensive oases and agricultural activity,
making groundwater quality a critical concern, given the potential for contamination from
agricultural practices and industrial activities. An extensive investigation was carried out
in a semi-arid region of Yavtmal District, Maharashtra, India, employing a combination of
geochemical modeling and health impact assessment [12]. Chloro-alkaline indices indicated
cation exchange, with evidence of CaCO3 and CaF2 precipitation in the groundwater [12].
Key water–rock interactions involve calcite, gypsum, and albite dissolution, along with
dolomite, fluorite, halite, and K-feldspar precipitation [12]. Groundwater pollution analysis
revealed 18% of samples to be in a very-high-pollution zone, 3% in a high-pollution
zone, 8% in a moderate-pollution zone, and 24% in a low-pollution zone [12]. Different
pollution zones are associated with varying degrees of fluorosis, affecting 15% to 41% of
the population with dental fluorosis. Effective monitoring and treatment of high-fluoride
water are essential before its use for drinking or cooking [12].

Similarly, Egbueri [13] assessed the potability of groundwater in Ojoto and its vicinity
by employing the pollution index of groundwater (PIG), ecological risk index (ERI), and
hierarchical cluster analysis (HCA). The investigation focused on major ion concentrations,
primarily SO4

2−, Na+, and Ca2+, all of which were found to be below their respective
maximum allowable limits. The water samples were predominantly characterized as
NaSO4 (85%), CaSO4 (10%), and MgSO4 (5%) types [13]. The analysis revealed that 80%
of the samples exhibited minimal pollution levels, rendering them suitable for drinking,
while 20% showed high pollution levels, making them unsuitable for human consumption.
Additionally, 20% of the samples posed a significant ecological risk, while 80% presented a
low ecological risk. The samples were categorized into two clusters, with the first cluster
containing 80% of the water suitable for drinking and the second cluster containing 20%
unsuitable for human use. The study recommended water treatment for contaminated
sources [13].

In another study, Egbueri et al. [14] conducted an analysis of groundwater quality and
the associated probabilistic human health risks resulting from emanation of secondary ele-
ments (ESEs) in the Ameka area. This assessment utilized multiple indices and introduced
a novel health risk assessment framework named HHRISK. This study in south-eastern
Nigeria assessed health risks from water pollution due to mining and agriculture using the
HHRISK framework [14]. Samples from wells and boreholes showed extreme pollution.
The study identified Cd, As, Se, and other elements posing high health risks, especially
for children. Urgent pollution reduction measures are needed in Ameka [14]. Adimalla
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et al. [15] conducted an integrated study to assess groundwater contamination by compar-
ing it against national guidelines. They also quantified the health risks associated with
fluoride and nitrate using a model recommended by the United States Environmental
Protection Agency (USEPA). This study assessed fluoride and nitrate contamination in
arid regions, finding that groundwater samples exceeded national drinking water guide-
lines [15]. Non-carcinogenic health risk was higher in infants and children, emphasizing the
need for water quality management in these areas to safeguard public health, particularly
for vulnerable populations [15].

However, Shukla et al. [16] designed a study to interpret the hydrochemical fluctua-
tions in the groundwater sources of a rural area in Raebareli district. The study examined
fluctuations in hydrochemical factors in a rural area. The water was slightly alkaline and
influenced by various factors. Most samples were categorized as having “insignificant
pollution” during both pre-monsoon and post-monsoon periods. Children were found to
be more susceptible to health risks, with fluoride having a greater impact than nitrate [16].
Statistical analysis suggested probable pollution sources involving NO, Cl, Na, and K. The
samples were classified as NaHCO3 type and shallow meteoric water percolation type, and
they exhibited a dominance of alkalis and weak acids. Most samples fell under the “rock
dominance” category, indicating significant rock–water interaction [16]. Nath, et al. [17]
conducted a groundwater quality assessment in the Thettiyar watershed of Thiruvanan-
thapuram district, Kerala, India, utilizing a groundwater pollution index and geographic
information system (GIS). The work assessed the water quality of the Thettiyar Watershed
for drinking and irrigation purposes using various analysis techniques [17]. Water type
identification was performed using diagrams, including USSL and Wilcox diagrams. The
results indicated slightly acidic water within permissible limits. Seasonal variations were
observed, mainly attributed to water–rock interactions and dilution. Both natural and
anthropogenic factors influenced water quality, making the Thettiyar Watershed suitable
for drinking and irrigation [17].

Groundwater quality in a semi-arid region of India was evaluated using both an
entropy-weighted water quality index (EWQI) and a pollution index of groundwater
(PIG) [18]. The study looked at the quality of the water and the pollution in a semi-arid
region of India [18]. The methods were used to evaluate the data on the parameters of the
water. The samples were collected from the Dubbak region in India and were analyzed for
a number of parameters [18]. The study region’s water is alkaline. The order in which the
cations and anions are abundant is based on their mean values. The average of the values
was 93.3. Only a small percentage of the samples were suitable for drinking, but the rest
were unsuitable for drinking and would therefore need treatment. Only a small percentage
of the samples from the study area were suitable for drinking [18]. To comprehensively as-
sess water quality in Al-Hassa, we adopt an innovative approach centered on the PIG. This
index provides a systematic framework for evaluating the pollution status of groundwater
by considering a wide range of water quality parameters [19]. By integrating this index
with advanced machine learning (ML) models, we aim to predict groundwater suitability
for drinking purposes with precision and accuracy.

In recent years, ML has demonstrated remarkable potential in unlocking complex pat-
terns within large datasets [20–22]. In this study, we leverage the power of ML to forecast
groundwater quality based on the PIG. Our ML models include a diverse set of algorithms,
such as random forest (RF), decision trees (DT), XgBoost, CatBoost, linear regression, and
support vector machines (SVR). These models, driven by multiple performance criteria,
provide valuable insights into the intricate relationships governing groundwater pollution.
To enhance the transparency and interpretability of these ML models, we introduce SHapley
Additive exPlanations (SHAP). SHAP is an advanced technique in the field of explainable
AI, enabling us to gain deeper insights into the predictive decisions made by complex mod-
els. By shedding light on the factors contributing to groundwater suitability assessments,
SHAP enhances our understanding of the underlying dynamics. PIG prediction using
artificial intelligence (AI) has been studied in multiple papers. Derdour et al. [23] created
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a predictive model employing support vector machine (SVM) and k-nearest neighbors
(KNN) classifiers to estimate irrigation water quality index (IWQI) using hydrochemical pa-
rameters. Kulisz et al. [24] tested the capacity of ANN methods to model the water quality
index in groundwater and found satisfactory accuracy. Saha et al. [25] evaluated ground-
water potential maps (GWPMs) using machine learning algorithms (MLA) and achieved
satisfactory results for groundwater potentiality assessment. They evaluated groundwater
potential maps (GWPMs) using machine learning algorithms (MLA) and achieved satis-
factory results for groundwater potentiality assessment [25]. Kumar et al. [26] modelled
groundwater drought indices using machine learning techniques, specifically ANN and
random forest (RF), and found that the RF model showed superior performance [26]. These
studies demonstrate the effectiveness of AI approaches, such as SVM, KNN, ANN, and RF,
in predicting groundwater quality indices and potentiality.

In 2023, Musaab et al. [27] in northern Khartoum, Sudan, assessed groundwater quality
for drinking using MLP neural network and SVR models to predict the groundwater quality
index (GWQI). Most samples met WHO standards, with AI techniques enhancing GWQI
predictions, indicating mostly suitable water quality. Mosleh et al. [28] conducted a study
in the Al-Baha region of Saudi Arabia using a hybrid model combining single exponential
smoothing (SES) with BiLSTM and ANFIS to predict water quality. While both models
were effective, SES-BiLSTM was slightly more accurate. These models can reliably predict
water quality, benefiting similar groundwater quality studies and confirming Al-Baha’s
groundwater suitability for drinking and irrigation. More recent studies of GWQ were
conducted by [29,30]. The ultimate goal of this research is to bridge the gap between data-
driven predictions and actionable insights in the context of groundwater quality assessment.
We believe that the integration of ML models with SHAP-based explainability offers a
promising pathway for sustainable water resource management not only in Al-Hassa but
also as a model for addressing similar water quality challenges worldwide. In doing so,
this study contributes to the advancement of environmental stewardship, public health,
and water security. The global significance of groundwater contamination, particularly in
coastal areas, necessitates innovative and robust approaches for assessing and ensuring
drinking water suitability. This research endeavors to meet this challenge by introducing
a comprehensive framework based on the PIG, advanced ML models, and SHAP-based
explainability. Through this interdisciplinary effort, we strive to advance the understanding
and management of water quality, highlighting the importance of clean and safe drinking
water for both humanity and the environment. The uniqueness of this study is associated
with explainable AI in pollution control, which receives no less attention in literature.

2. Study Area, Climate, and Measurement

The Al-Hassa oasis is situated in the Eastern Province of Saudi Arabia, approximately
320 km east of Riyadh and 70 km west of the Arabian Gulf coastline (Figure 1). Geographi-
cally, it spans latitudes 25◦20′ N to 25◦40′ N and longitudes 49◦30′ E to 49◦50′ E, with an
elevation ranging from 130 to 160 m above sea level. Its topography gently slopes towards
the Gulf coast. This oasis assumes an “L” shape, with one axis extending approximately
30 km in a south-northeast direction and the other stretching about 18 km in a west-east
orientation, encompassing a total area of roughly 260 km2. Al-Hofuf City, located at the
intersection of these axes in the southwest region of the oasis, serves as the primary urban
center [31]. The climate of the Al-Hassa oasis exhibits significant seasonal and annual
variations and is categorized as belonging to the subtropical desert zone, characterized
by cold, arid winters and scorching, arid summers, as classified by Mansour. The winter
season spans from November to the end of March, with average temperatures ranging
from 8 ◦C to 21 ◦C. In contrast, the summer season extends from May to the conclusion of
August, featuring mean temperatures fluctuating between 24 ◦C and 45 ◦C. Notably, the
summer season is acknowledged as the hottest period in the region. Relative humidity
levels range from 21% to 29% during the summer months and increase to 31% to 55% in
the winter, with an average monthly value of approximately 38%. Precipitation is most
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frequent during the winter and spring seasons, with an average annual rainfall totaling
approximately 85 mm. The groundwater system in the Al-Hassa region is notably intricate,
comprising aquifers originating from Late Cretaceous and Tertiary geological formations,
including the Aruma, Umm Er Radhuma, Rus, Dammam, and Neogene. Of particular
importance is the Rus formation, which acts as a natural barrier, effectively isolating the
Umm Er Radhuma and Dammam aquifers due to its composition primarily consisting of
limestone, marls, and evaporates [32].
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of the Kingdom (C) Eastern Province, Saudi Arabia with Al-Hassa location, (D) Study area with
samples location.

Within this groundwater system, four partially interconnected aquifers constitute the
hydrogeological framework. The uppermost layer comprises the Neogene aquifer complex,
characterized by a combination of porous clastic aquifers and karstified fractured bedrock
aquifers. The Umm Er Radhuma aquifer primarily consists of a karstified fractured bedrock
aquifer. In contrast, the Dammam aquifer complex encompasses a partially karstified
fractured bedrock aquifer. The lowermost Aruma aquifer, consisting of karstified fractured
bedrock, is of relatively minor significance [32]. The Neogene aquifer is further delineated
into three formations: Hofuf, Dam, and Hadrukh, with Hofuf having a thickness of 20 to
100 m, and Dam and Hadrukh formations ranging from 100 to 200 m in thickness. These
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formations exhibit substantial fissuring and secondary porosity, with groundwater recharge
predominantly occurring in the southwest region and groundwater flow primarily directed
north-eastward. Groundwater serves as the primary source of irrigation water in the
research area [11,33]. Throughout the study, various physical and chemical parameters of
groundwater were assessed on-site, including pH, dissolved oxygen, oxidation-reduction
potential, electrical conductivity, and temperature. Samples of groundwater sourced from
the Neogene aquifer in Al-Hassa were collected and transported to the laboratory for
comprehensive physical and hydrochemical analyses.

A comprehensive field survey was conducted to acquire data on the physical and chem-
ical attributes of groundwater. Parameters such as pH, oxidation-reduction potential (ORP),
electrical conductivity (EC), total dissolved solids (TDS), turbidity, dissolved oxygen (DO),
temperature, and air pressure were measured in situ using the Hanna GPS Multiparameter
Meter (HI9829). To ensure data accuracy, groundwater wells were purged for 15 min to
eliminate standing water before measurements were recorded. A total of 72 groundwater
samples were randomly collected from Neogene aquifer wells scattered across the research
area, targeting main components for subsequent analysis. In compliance with the sampling
requirements stipulated by the US Environmental Protection Agency, the collected water
samples were filtered and stored in an icebox, maintaining a temperature below 40 ◦C.
Acid titration techniques were employed to determine bicarbonate concentrations, while
ion chromatography was utilized for the identification of ions present in the groundwater
samples. Key water characteristics, including chlorine (Cl−), sodium (Na+), magnesium
(Mg2+), calcium (Ca2+), potassium (K+), bicarbonate (HCO3), and water salinity (measured
in deciSiemens per meter—dS/m), were among the parameters evaluated. The salinity of
the water was determined using conductivity units, while chemical characteristics were
expressed in milligrams per liter (mg/L) of water (see Figure 2).
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3. Methods
3.1. Random Forest (RF)

The ensemble learning method, RF is a powerful model. RF reduces overfitting and
improves generalization through the use of several decision trees and a random selection
of characteristics and data points [34]. The strength of the RF lies in its ability to capture
complex relationships within the groundwater dataset, making it well-suited for predicting
pollution index values [35]. However, the RF model’s predictions may lack interpretability.
To address this, SHapley Additive exPlanations (SHAP) will be incorporated to explain
the contributions of each feature in the RF model’s predictions, ensuring transparency and
interpretability in the suitability assessment for drinking water resources. By integrating
RF into this methodology, it should be able to provide accurate and reliable assessments of
drinking water resource suitability [1]. This study sets the stage for more transparent and
data-driven decision making in water resource management, underscoring RF’s significance
as a valuable tool in addressing critical environmental and health challenges, particularly
in regions such as Al-Hassa, Saudi Arabia, and worldwide.

RF is a powerful ensemble learning algorithm that has been employed in this study to
predict the pollution index of groundwater. The RF algorithm consists of multiple decision
trees that work together to provide accurate predictions [2]. Given a dataset of groundwater
quality parameters (features), denoted as X, and the corresponding pollution index values
(target variable), denoted as Y, the RF prediction can be formulated as follows:

RF(X) =
1
N ∑n

i=1 Treei(X)R (1)

where RF(X) represents the prediction made by the random forest for the given input
features X; N is the number of decision trees in the random forest ensemble; and Treei(X)
represents the prediction made by the i-th decision tree in the ensemble for the input
features X.

3.2. Decision Trees (DT)

By breaking down complex solutions into smaller, more manageable options, decision
trees (DTs) organize them into a tree-like form [36]. DTs employ splits to choose charac-
teristics that reduce entropy in order to provide accurate class assignments. To predict
groundwater quality, decision trees (DTs) are employed as a fundamental component of
this predictive modeling framework. A decision tree is a tree-like structure that recursively
partitions the groundwater quality dataset based on feature attributes, leading to the pre-
diction of the pollution index for drinking water resources [3]. Mathematically, a DT can be
represented as:

DT(X) = ∑j
j=1 cj·I

(
XεRj

)
R (2)

where DT(X) represents the prediction made by the decision tree for a given set of input
features X; J is the number of terminal nodes or leaves in the decision tree; Rj represents
the region (leaf) in the feature space associated with leaf node j; cj is the constant value or
prediction made within leaf node j; and I

(
XεRj

)
is an indicator function that equals 1 if the

input features X fall within the region Rj, and 0 otherwise.

3.3. XGBoost (Extreme Gradient Boosting)

XGBoost is an optimized gradient-boosting algorithm that focuses on reducing errors
iteratively. It builds decision trees sequentially, with each tree correcting the errors of
the previous ones [37]. The XGBoost is a powerful gradient boosting algorithm that was
also incorporated into this methodology to enhance the accuracy of the pollution index
prediction for drinking water resources [38]. XGBoost works by training an ensemble of
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decision trees sequentially, optimizing for both model performance and interpretability [4].
Mathematically, the XGBoost prediction can be expressed as:

XgBoost (X) = ∑N
i=1 fi(X) (3)

where XgBoost (X) represents the final prediction made by the XgBoost model for the
input features X; N is the total number of decision trees in the ensemble; and fi(X) denotes
the prediction made by the i-th decision tree.

Herein, each fi(X) is learned sequentially, with each tree aiming to correct the errors
of the previous ones. This iterative process makes XgBoost highly accurate in predicting
the pollution index. However, to ensure transparency and explainability in our suitability
assessment, SHapley Additive exPlanations (SHAPs) were also integrated. SHAPs precisely
assist in understanding the contributions of individual features to the XgBoost predictions,
offering valuable insights into the groundwater quality factors that most strongly influence
suitability assessments for drinking water resources. This combination of XgBoost and
SHAP not only enhanced the accuracy of our predictions but also provided valuable
explanations for informed decision making in managing drinking water resources.

3.4. CatBoost Algorithm

Gradient boosting decision tree (GBDT) algorithm improvements such as CatBoost [39]
have great generality, high robustness, and efficient handling of a variety of data types.
Additionally, less hyperparameter tinkering and unnecessary fitting probabilities are re-
quired. The gradient of the current model and a weak learner are determined by gradient
training, which employs the same data set for each iteration of the typical GBDT technique.
Similarly, CatBoost, a high-performance gradient-boosting algorithm, played a pivotal role
in predicting the pollution index of groundwater. CatBoost excels in capturing intricate
relationships within the groundwater dataset, leading to accurate predictions. However, to
ensure that our predictions are interpretable and transparent, SHapley Additive exPlana-
tions (SHAPs) were integrated. SHAPs enabled us to elucidate the impact of individual
features on CatBoost’s predictions. Employing SHAP not only enhanced the accuracy of
the suitability assessments for drinking water resources but also provided valuable insights
into the underlying factors contributing to pollution, ultimately aiding stakeholders and
decision-makers in making informed choices regarding groundwater resource manage-
ment. The synergy between CatBoost and SHAP empowered the methodology with both
predictive power and interpretability [5]. Mathematically, the CatBoost prediction can be
formulated as:

CatBoost (X) = ∑N
i=1 fi(X) (4)

where CatBoost (X) represents the final prediction made by the CatBoost model for the
input features X; N is the total number of decision trees (boosting iterations) in the CatBoost
ensemble; and fi(X) denotes the prediction made by the i-th decision tree in the ensemble.

3.5. Linear Regression Model

A linear regression model was employed that provided transparency and interpretabil-
ity, to understand the linear contributions of individual groundwater quality parameters
to the pollution index. However, to account for potential nonlinearities and complex in-
teractions within the data, linear regression with SHapley Additive exPlanations (SHAPs)
was used. Herein, SHAP enabled us to capture and explain deviations from linearity in
the model, ensuring that the suitability assessment is both accurate and comprehensible,
thus facilitating informed decision making in managing drinking water resources. The
combination of linear regression and SHAP enriched the methodology with the capability
to capture linear and nonlinear effects for a more comprehensive understanding of ground-
water suitability. This involved employing linear regression as a foundational model for
understanding the linear relationships between groundwater quality parameters and the
pollution index. It is a classical and interpretable machine learning model, which is a crucial
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component for predicting the pollution index of groundwater [6]. The linear regression
model aimed to establish a linear relationship between the input groundwater quality
features, denoted as X, and the pollution index, represented as Y, through the following
equation:

Y = β0 + β1X1 + β2X2 + . . . + βpXp+ ∈ (5)

where Y represents the pollution index, which we seek to predict; X1, X2, . . . Xp are the
groundwater quality parameters considered as features; β0 is the intercept term, and β1, β2,
and βp are the coefficients associated with each feature, indicating their linear impact on
the pollution index; and ε represents the error term, accounting for the variability in Y not
explained by the linear relationship.

3.6. Support Vector Machines (SVMs)

Support vector machines (SVMs), known for their ability to handle both linear and
nonlinear relationships, played a critical role in this study for predicting the pollution
index of groundwater. The SVMs aimed to find a hyperplane that best separates the
groundwater quality features denoted as X into distinct classes or levels of pollution.
SVM provided a robust approach for predicting the groundwater pollution index while
being capable of handling complex, nonlinear relationships. Integration of SHAP herein
enabled us to explain the contributions of individual groundwater quality parameters
to the SVM predictions, ensuring that the suitability assessment is not only accurate but
also comprehensible, thus facilitating informed decision making in managing drinking
water resources. The combination of SVM and SHAP enriched the methodology with both
predictive power and interpretability, making it a valuable tool for groundwater resource
management [7]. The prediction made by SVM can be expressed as:

SVM (X) = Sign
(
∑N

i=1 αiyiK(X, Xi) + b
)

(6)

where SVM (X) represents the prediction made by the SVM model for the input ground-
water quality features X; N is the number of support vectors, which are the data points
closest to the decision boundary; αi represents the Lagrange multipliers associated with
each support vector; yi is the class label of the i-th support vector; K (X, Xi) is the kernel
function that measures the similarity between the input features X and the i-th support
vector Xi; and b is the bias term, which shifts the decision boundary away from the origin.

3.7. Performance Validation and Data Processing

The crucial mechanisms in constructing models prior to the tuning algorithms and
modelling involve a convergence on reliability of the data and an analysis of uncertainty,
especially when dealing with a small data sample. Reliability analysis is essential in
numerical modelling and data-mining methods, with a specific emphasis on dependency
analysis. Reliability analysis has been employed in both scientific and engineering contexts
to decipher the relationships and resilience of separate input variables towards desired
results. For instance, some researchers, such as [40,41], have gauged stability through both
linear and nonlinear feature sensitivity analyses.

It is vital to highlight that the efficacy of any complex process is dependent upon
the sensitive input variables applied to the system, analogous to those in data-mining
models. Given that many relationships are nonlinear, advocating for nonlinear sensitivity
becomes imperative. With recent criticisms of correlation methods in selecting suitable
input variables, numerous scientists and researchers have transitioned to nonlinear sensi-
tivity methodologies. The data from the field sample and experimental laboratory were
divided into 70:30 for training and testing phases, and the performance evaluation indi-
cators are presented in Table 1. The input variables combination is presented in Figure 3.
Effective data processing ensures accuracy, relevance, and interpretability, opening the
way for informed decision making and optimized outcomes. As mentioned above, 10-fold
cross-validation is a technique in ML used to assess the performance of predictive models.
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The original dataset is randomly split into 10 roughly equal subsets or folds as presented.
The model selection and 10-fold cross-validation helps navigate the bias–variance trade-off,
potentially introducing slight bias since each training set has only 90% of the data, but sig-
nificantly reducing variance in model evaluation. Similarly, normalization was conducted
prior to model development.

Table 1. Formulas of different performance measures.

Equation Ranges

R2 = 1− ∑N
i=1(Y (o)−Y(p))

2

∑N
i=1(Y(o)−Y′ (p))

2
(∞ < R2 ≤ 1)

MSE = 1
N

N
∑

i=1

(
Y (p) −Y(o)

)2 (0 < MSE < ∞)

MAE =
∑N

i=1|Y(p)−Y(o)|
N

(0 < MAE < ∞)

Where, Y(o)i represents the observed (actual) value for the ith observation; Y(p)i denotes the predicted value for
the ith observation; Y′(p)i refers to the mean of the predicted values; and N is the total number of observations or
data points.
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4. Application of Results

In this section, the modeling results and visualization are presented based on the
set objectives. Leveraging emerging data-driven AI and IoT technologies would change
the perceptions of groundwater resources. The major important result in this section is
accessing the input variable combinations; for instance, PIG was determined using three
different combinations: C1 = EC + Na + Mg + Cl; C2 = TDS + TA + HCO3 + K + Ca; and C3
= SO4 + pH + NO3 + F + Turb (see Figure 3). With low MAE, MSE, and a high R2 value,
RF-C1 performed exceptionally well throughout the training phase. Strong prediction
accuracy was shown, demonstrating a very good match to the training data. While MAE
and MSE were slightly higher, MAE values, MSE values, and RF-C1 still attained a high
R2 value of 97%, indicating its ability to make correct predictions on test data. Similarly,
DT-C1, with the lowest MAE, MSE, and highest R2, demonstrated impressive accuracy in
the training phase, demonstrating an optimal fit to the training data. While XGBoost-C1
had outstanding accuracy in the training phase with close to zero MAE, zero MSE, and a
flawless R2 score, DT-C1 continued to surprise in the testing phase with fair MAE, MSE,
and R2 values of 99%. XGBoost-C1 in the testing set achieved almost zero MAE and MSE
and optimal R2.

While CatBoost-C1 showed outstanding performance in the training phase, with low
MAE, zero MSE, and a nearly flawless R2 value, XGBoost-C1 displayed strong performance
in the testing phase. Similarly, CatBoost-C1 in the training phase achieved zero MSE.
Throughout testing, CatBoost-C1 achieved a goodness of fit around 99%, demonstrated its
consistent performance and its capacity to sustain accuracy on test data. SVR-C1 shows
respectable performance, with a moderate MAE, MSE, and a relatively high R2 in the
training phase. In the testing phase, SVR-C1 maintained a respectable level of accuracy
for MAE, MSE, and R2 value, despite a modest reduction in R2. With low MAE and MSE
and a high R2 value, LR-C1 performed well throughout the training phase with values of
93%. With an R2 of 92%, and high MAE and MSE, the LR-C1 showed good performance
throughout testing (Table 2).

Table 2. Results of training phase for PIG.

Applied Models MAE MSE R2

RF-C1 0.0331 0.0016 0.9804
DT-C1 0 0 1

XGBoost-C1 0.0006 0 1
CatBoost-C1 0.0021 0 0.9999

SVR-C1 0.0732 0.0075 0.9084
LR-C1 0.0624 0.0054 0.9339
RF-C2 0.0417 0.0023 0.9713
DT-C2 0.0783 0.0093 0.886

XGBoost-C2 0.0006 0 1
CatBoost-C2 0.0008 0 1

SVR-C2 0.0812 0.0077 0.9051
LR-C2 0.0794 0.0088 0.8914
RF-C3 0.0651 0.0061 0.9257
DT-C3 0 0 1

XGBoost-C3 0.0004 0 1
CatBoost-C3 0.0008 0 1

SVR-C3 0.0781 0.0072 0.9116
LR-C3 0.1082 0.0187 0.771

Further numerical analysis and comparison are presented in Figure 3. For example,
Figure 3a for C1 displays strong positive correlations between various variables and PIG,
with Mg and Cl showing the highest correlations at 0.93. Almost all pairs of variables exhibit
robust intercorrelations, primarily above 0.9, suggesting significant relationships among
them. This intense intercorrelation could imply potential multicollinearity concerns if these
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variables were simultaneously used in a predictive model for PIG. Figure 3b highlights the
correlation strengths between various variables and PIG, with TDS showing the highest
correlation at 0.93. Among the other variables, K and Ca demonstrate notable correlations
with PIG, registering at 0.88 and 0.81, respectively. The variables exhibit substantial inter-
correlations, with many values above 0.8, indicating significant relationships. However,
Figure 3c indicated that the SO4 variable exhibits the most significant positive correlation
with PIG at 0.7. However, many variables show weak or even negative correlations with
PIG, such as pH and NO3, with values of −0.22 and 0.15, respectively. Furthermore, there
are notable negative correlations between some variables, such as between Turb and SO4
at −0.77. Overall, while some variables, such as SO4, show a stronger relationship with
PIG, others display weak or negligible correlations, implying a varied influence on the
PIG variable.

Quantitative analysis and discussion of evaluation criteria indicated that the various
algorithms, namely RF-C1, DT-C1, XGBoost-C1, CatBoost-C1, SVR-C1, and LR-C1, showed
distinctive results. DT-C1 and XGBoost-C1 exhibited seemingly impeccable performances
during training, with both MAE and MSE nearing zero and R2 values touching perfection,
albeit raising potential flags for overfitting that require further investigation. Contrastingly,
RF-C1 demonstrated a notable performance, albeit with marginally higher MAE and MSE,
but still preserving a high R2 value, underscoring its predictive aptitude on test data.
Similarly, CatBoost-C1 manifested an impressive, consistent performance across training
and testing phases, emerging as a potentially stable and reliable model, with minimal
deviation in predictive accuracy, as evidenced by its very high R2 values and low error
rates. On a different note, SVR-C1 and LR-C1, while not mirroring the striking precision of
certain aforementioned models, still presented respectable, consistent results, showcasing
their steady, reliable predictive capabilities. Consequently, while certain models such as
DT-C1 and XGBoost-C1 hint at unparalleled precision, it is imperative to delve deeper into
further validations and checks, such as cross-validation and regularization, to ensure their
genuine, robust applicability in diverse datasets, thereby safeguarding against potential
overfitting and securing generalized, reliable predictive performances. The scatter plot is
presented in Figure 4 showing the observed and predicted value.

In the training phase, RF-C2 demonstrated great performance with low MAE and MSE
and a high R2 value, indicating a good fit to the data. During testing, it achieved commend-
able metrics, emphasizing its effectiveness. DT-C2, both in training and testing, maintained
its respectable performance with noteworthy MAE, MSE, and R2 values. XGBoost-C2
showed outstanding accuracy throughout the training phase and demonstrated consistent
performance in the testing phase. CatBoost-C2 consistently performed well in the training
phase, with a perfect R2 value and low MAE and MSE. During testing, CatBoost-C2 reaf-
firmed its excellence and capacity to sustain accuracy on test data. SVR-C2, during both
the training and testing phases, achieved respectable R2 values, along with moderate MAE
and MSE. LR-C2 displayed stability and accuracy across both phases with appropriate
metrics, demonstrating its reliability. RF-C3 provided a good fit to the data in the training
phase with impressive metrics and maintained its performance in the testing phase. DT-C3
demonstrated an ideal fit to the training data, achieving near-perfect accuracy. XGBoost-C3
maintained its impressive performance throughout both the training and testing phases.
CatBoost-C3 showed remarkable performance during training and maintained its excel-
lence during testing. SVR-C3 performed admirably in the training phase and maintained
its accuracy in the testing phase, emphasizing its stability and predictive capacity. Lastly,
LR-C3 had an acceptable fit to the training data and showed consistent results during
testing. The testing results of these models are presented in Table 3. In the testing phase,
RF-C1 achieved an R2 of 97.54%, and DT-C1 and XGBoost-C1 led with an R2 of 99.5%,
closely followed by CatBoost-C1 at 99.49%. SVR-C1 and LR-C1 secured 90.34% and 92.89%,
respectively. For the C2, RF-C2 attained 96.73%, and DT-C2 had 88.2%, while XGBoost-C2
and CatBoost-C2 both peaked at 99.6%. SVR-C2 and LR-C2 registered 90.11% and 88.74%.
In C3, RF-C3 reached 92.27%, and DT-C3, XGBoost-C3, and CatBoost-C3 all impressively
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tied at 99.7%, with SVR-C3 at 90.86% and LR-C3 lagging at 76.8%. Models such as DT-C1,
XGBoost-C1, XGBoost-C2, CatBoost-C2, DT-C3, XGBoost-C3, and CatBoost-C3 showcased
their performance with R2 values nearing or exceeding 99.5%, while LR-C3 had the lowest
performance criteria.
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Table 3. Results of testing phase for PIG.

Applied Models MAE MSE R2

RF-C1 0.0521 0.0029 0.9754
DT-C1 0.0962 0.0153 0.995

XGBoost-C1 0.0906 0.0126 0.995
CatBoost-C1 0.0362 0.0027 0.9949

SVR-C1 0.0699 0.0051 0.9034
LR-C1 0.0482 0.0034 0.9289
RF-C2 0.0949 0.0109 0.9673
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Table 3. Cont.

Applied Models MAE MSE R2

DT-C2 0.0781 0.0137 0.882
XGBoost-C2 0.1046 0.0151 0.996
CatBoost-C2 0.1179 0.0207 0.996

SVR-C2 0.1063 0.0123 0.9011
LR-C2 0.0988 0.01 0.8874
RF-C3 0.1252 0.0239 0.9227
DT-C3 0.1047 0.0148 0.997

XGBoost-C3 0.0997 0.0155 0.997
CatBoost-C3 0.1179 0.0207 0.997

SVR-C3 0.1341 0.0232 0.9086
LR-C3 0.1067 0.0279 0.768

To acquire a deeper understanding of the model predictions, we also used SHAP
(SHapley Additive exPlanations) summary plots and force plots. These representations
helped us comprehend how particular features affected the model’s predictions and offered
insightful justifications for model behavior [42,43]. We were able to investigate general
feature relevance and its influence on predictions using SHAP summary plots. In our
investigation, we found that while certain factors had a larger influence on the models’
predictions than others, other features did so more significantly. These insights emphasized
the variables influencing the models’ conclusions and offered helpful advice for feature
selection. We were able to explore the predictions for certain cases in our dataset using
SHAP force plots. To visualize the contributions of each attribute to the prediction for
that specific instance, we chose specific data points and created force plots. We were able
to determine which characteristics were responsible for the predictions and their relative
relevance thanks to these plots, which provided thorough justifications for why a model
generated a certain forecast for a given input. SHAP summary and force plots for five steps
ahead are presented in Figure 5.
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5. Conclusions

The comprehensive modelling of PIG in the complex multi-aquifer groundwater sys-
tem of the Al-Hassa Oasis using an integrated spatial and chemometric study approach
has provided valuable insights into the state of groundwater quality in the region. The
investigations conducted in this study have demonstrated that the groundwater resources
in the Al-Hassa Oasis are indeed polluted with trace elements. The presence of elevated
concentrations of these pollutants raises significant environmental and public health con-
cerns. This integrated investigation has substantially elevated our understanding of the
magnitude and drivers of fluoride and nitrate contamination in groundwater resources
in Al-Hassa, Saudi Arabia, thereby shedding light on a crucial environmental and public
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health issue of global significance. By leveraging advanced machine learning (ML) mod-
els in tandem with Shapley additive explanations (SHAP) for enhanced interpretability,
the study did not only predict groundwater quality with remarkable accuracy but also
navigated through the often intricate relationship dynamics among various physiochemi-
cal parameters. The devised methodological synergy underscores a novel approach that
couples predictive analytics with explainability, facilitating a nuanced understanding of
the data-driven insights and consequently enabling informed decision making toward
sustainable water resource management.

6. Recommendations

• Wider deployment of the employed ML models and SHAP should be explored in
different geographical locales and various types of water bodies to validate their
efficacy and adaptability.

• Formulation and enforcement of stringent water quality regulations should be ad-
vanced to mitigate the contamination at source points.

• Policymakers and planners should leverage the insights provided by the model to
formulate, implement, and monitor strategic interventions aimed at safeguarding
water quality.

• Programs should be initiated to raise awareness among local communities regarding
water conservation and the impact of contamination on health and the environment.

• Communities should be engaged in water monitoring programs, ensuring a decentral-
ized and participative approach to water management.

• Investments should be made in the development and upgrading of water treatment
facilities to ensure the accessibility of safe drinking water for the population, even
when natural resources are compromised.

• Further research should delve into devising feasible, eco-friendly, and economically
viable solutions to manage and reverse groundwater contamination.

• Other predictive models and methodologies that can be amalgamated with the existing
system to enhance prediction accuracy and applicability should be explored.

7. Limitations

• While the models demonstrated high predictive accuracy, their performance is intrin-
sically tied to the quality and quantity of the data upon which they are trained and
validated. Therefore, potential inconsistencies or gaps in data could affect predictions.

• The models were specifically tailored and validated for the Al-Hassa region, and their
direct applicability to other regions, with different hydro-geological and contamination
contexts, may be limited without further adaptations and validations.

• While the study achieved an accuracy of over 90%, it is paramount to acknowledge that
ML models might sometimes overly adapt to the training data (overfitting), potentially
limiting their generalization to new, unseen data.

• The study largely focuses on the technical and scientific aspects of water contamination
and does not delve deeply into the socio-economic implications or mitigation strategies,
which are crucial for holistic water resource management.

• The study does not directly address the long-term impacts of contamination on envi-
ronmental and public health, which would be pivotal in understanding the broader
implications and in strategizing remediation efforts.

In light of the insights and constraints identified in this study, it is imperative for
future research to navigate through these limitations, ensuring more robust, holistic, and
globally applicable methodologies for water resource management. Furthermore, the
recommendations provided should guide pragmatic actions and policy formulations to
safeguard water resources, thereby ensuring environmental sustainability and public
health.
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