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Abstract: With the development of new energy sources and the increase in the installed scale of energy
coupling equipment, the low-carbon transformation of the energy supply of the integrated energy
system (IES) has a serious impact on the reliability of the IES supply, and there is an urgent need for a
reasonable and accurate assessment and trade-off between the IES resilience and economics. In this
regard, this paper models the overall optimization of the resilience and economic configuration and
operation scheduling of the IES in the islanded operation mode after grid faults, proposes a two-layer
optimization strategy model of resilience and economy, and solves the unit configuration, coupled
output characteristics, and optimal scheduling of the islanded IES using the Markov decision-making
process and forbearing stratified sequencing method, and evaluates and analyzes the resilience and
cost of the various types of IES configuration schemes. Resilience and cost are also evaluated and
analyzed. Finally, an example analysis is carried out in an electric-heat-cooling integrated energy
system. The results show that the proposed two-tier optimization strategy model can optimize the IES
configuration scheme and coordinate the scheduling of each equipment, and the overall annualized
cost of the energy system decreases by CNY 45.21 thousand, or a percentage decrease of 5.24%,
compared to the same configuration of the conventional strategy. The typical day toughness index
improved by 7.33%, 7.56%, and 13.01% in the spring, summer, and autumn, respectively.

Keywords: resilience; collaborative optimization; integrated energy system; energy management;
Markov decision process

1. Introduction

With the development of society and economy, governments are paying more and
more attention to the continuous impact of greenhouse gases on climate change, and are
vigorously developing new energy sources to replace coal-fired power generation, while
promoting a low-carbon transition in energy supply, which also creates great challenges
to the reliability of energy supply in IESs [1–3]. Due to the different levels of technology
and cost of energy supply equipment [4,5], energy storage, and demand-side loads for
IESs, as well as the complexity of the coupling relationship between different energy
types, the traditional IES strategies are no longer effective, and there is an urgent need
for IES scheduling optimization and apples-to-apples with multi-objective and synergistic
considerations for multiple energy sources [6–8].

And some extreme events cause energy supply system failure and shutdown, which
may be fatal to IESs, hospitals, schools, food factories, etc. [9,10]. Reference [11] quanti-
tatively assessed the impact of system failures due to extreme weather. Reference [12]
specifically examines the correlation of IES failures with socio-economic and physical fac-
tors after extreme events. IESs face the influence of external environment and fluctuating
characteristics of their own equipment, exhibiting phenomena such as reduced reliability
of energy supply and loss of load generation after the influence of external environment
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and stochastic events, which is similar to the concept of resilience in physics. The ability of
the IES to stabilize when supplying energy and reduce the loss of load of electricity, heat
and cooling is referred to as the resilience of the IES.

Currently, most of the research on optimizing IES resilience focuses on the configura-
tion phase and the operational strategy phase. Reference [13] proposes a methodology for
the configuration of unit equipment and standby, which takes into account the multiple
threats to the reliability of energy supply during the prevention phase of extreme events
affecting the IES, such as wind power prediction errors and unit outage rates, with the
objective of optimizing the configuration scheme to maximize the response to exceptional
events. Reference [14] delineates customer loads and critical infrastructure loads, considers
critical loads, and synergizes multiple resources such as electricity, water, and gas to facili-
tate the IES to achieve normal operation and maximize the recovery of multiple types of
loads. Reference [15] investigated the resilience of IES energy supply in the survival phase,
and proposed a methodology for the recovery of electricity and gas IES timing faults, real-
izing the two-way flow of energy through the establishment of combined heat and power
(CHP) and electricity-to-gas equipment, and making decisions about the integrated energy
supply system. Reference [14] proposed a multi-stage resilience optimization model for
IES with minimum amount of lost load during the survival period as an objective function
so as to improve the resilience of IES energy supply. Reference [16] proposed a robust
resilience-oriented optimization model for distribution networks considering distribution
network line failures under extreme natural disasters to enhance the resilience of power
systems. Reference [17] proposed a two-stage recovery strategy model to enhance the
ability of IES to cope with multi-fault problems. Current research on the IES resilience
problem mostly focuses on individual stage IES resilience enhancement, while research on
how to enhance IES resilience for multi-stage co-optimization is still very limited.

In order to further accurately simulate the IES supply operation and reduce the
decision time, research workers have conducted studies combining deep learning and
algorithms. Reference [18] proposed a robust optimization model suitable for wind power
uncertainty, but the power system resilience enhancement strategy based on robust form
determination is less flexible. The current methods for short-term power generation predic-
tion of units mainly include physical modelling method and deep learning method, and
deep learning is favored due to its fast computational speed and high accuracy [19,20].
Reference [21] proposes a genetic long and short-term memory framework consisting of
long- and short-term memories and genetic algorithms to predict the short-term wind
power. The ability of LSTM to automatically learn features from sequential data and
the global optimization strategy of the genetic algorithm were utilized to optimize the
window size and the number of neurons in the LSTM layer. Gated recurrent unit (GRU)
models have been applied with some success in areas such as short-term wind power
prediction [22–25]. Reference [26] proposed a new algorithm that combines Conditional
Generative Adversarial Networks with Convolutional Neural Networks and Bidirectional
Long and Short-Term Memory in order to improve the accuracy of the hourly PV power
prediction. Reference [27] used BiLSTM model and ELM model for prediction of high
frequency and low frequency components respectively. IRSA was used to optimize the
parameters of the model. Finally, the predicted values of each component are summed to
give the final wind power prediction.

Rationally configuring equipment to organically and synergistically supply and store
energy to improve the resilience of an integrated energy system in the operational phase has
the advantage of high feasibility, but excessive redundancy and robustness can also burden
the economics of the system. It is important to accurately evaluate the relationship between
resilience and economics of integrated energy systems. For this kind of multi-objective
problem of tolerance hierarchical sequence method [28], there have been more mature
practice cases, which can avoid the conflict of the objective function ordering rules and the
difficulty of determining the weighting coefficients, and the tolerance hierarchical sequence
method is the focus of the solution method in this study.
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IESs face uncertainties such as distributed energy output and load variations [29,30],
and in resource-limited energy supply processes; conventional strategies may lead to
premature energy depletion of energy storage devices, or difficulties in adequately invoking
storage to ensure the continuous operation of critical loads in islanded operation, which
may lead to large load loss and additional cost burden on the IES. When these uncertainties
are considered, the multi-objective problem of IESs can be viewed as an optimal decision
process for stochastic dynamic systems. Reference [28] considers the Markov Decision
Process (MDP) as a mathematical method for studying dynamic stochastic sequential
decision problems of the same class as Markov, and reference [31] calculates the resilience
of IES under different types of natural disasters through a Monte Carlo simulation and
Markov state transfer. In this paper, it can be used to explain and deal with the decision-
making problem of energy supply and coupled equipment states of the IES at different
moments in an uncertain environment.

Based on the above facts, this paper addresses the limitations of the above studies,
and models the toughness and economic configuration and operation of the IES under the
islanded operation mode, proposes a two-layer optimization strategy model, solves and
optimizes the unit configuration and coupled output characteristics of the IES by using the
Markov decision process and the tolerant hierarchical sequence method, and simulates the
fluctuations of the new energy output and other uncertainties of the system. We evaluate
and analyze the resilience and cost of various islanded IES configurations, weigh and
analyze the most resilience and economic IES configurations, and, finally, validate the
effectiveness of this paper’s strategy through simulation.

The objective of this study is to propose a two-tier optimization strategy model in
IES configuration and operation optimization and to demonstrate the effectiveness and
practicality of the strategy. Unlike the previous research, the main contributions of this
study are listed as follows.

(1) Aiming at the difference between IES device configuration and actual operation, this
paper proposes a two-layer optimization strategy model and innovatively extends the
IES configuration and optimization strategy by using the BGRU model and the IALO
algorithm to predict the outgoing power and to reduce the time consuming to solve
the problem;

(2) In this paper, the Markov decision-making process is applied to the IES energy supply
chain to make full use of the energy storage so as to further optimize the reliability
and economy of the IES energy supply in an integrated manner;

(3) Depending on how much resilience and economic goals are valued, combined with
the parameterization of the forbearing stratified sequencing method, it is possible to
adjust the goals that the IES configuration runs want to achieve.

The remaining sections of this study are organized as follows. Section 3 describes the
relevant methodology used in this study. Section 2 the model structure and measures of
IES devices. Section 4 presents the empirical results and their analyses. Finally, Section 5
gives the conclusions of this study and the focus of future research work.

2. Modeling
2.1. Integrated Energy System Model

This paper investigates the ability of the park’s integrated energy system to remain
resilient and economical in the face of extreme events that turn it into islanded operation.
The detailed integrated energy system is shown in Figure 1. The islanded integrated
energy system in Figure 1 contains four main parts: the electric power supply system, the
heating subsystem, the cooling subsystem, and the energy storage system, in which the
electric power subsystem is the distribution grid system with wind turbines, photovoltaic,
Combined Heat and Power (CHP) units, and as the power source; the heating subsystem
utilizes the electric boiler, the gas boiler, and the CHP units to convert the electric power
supplied by the electric power grid and natural gas supplied by natural gas network into
heat energy to supply heating to users; the cooling system mainly refers to compression
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chillers; in addition, there are storage batteries, heat storage tanks, and cold storage
tanks to regulate the real-time output. The abbreviations used in this paper are shown in
Table 1.
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Table 1. Abbreviations named in this article.

Sets and Symbols Abbreviations Sets and Symbols Abbreviations

t Index of time periods q Start-stop state and output value
of each unit

s Index of simulation runs of IES
counting example h Equation constraint

v Index of equipment g Inequality constraint
¯, _ Max and min value of parameters Q Optimal operating strategy of IES

CO Random coefficient generated by
the Cauchy distribution function

Parameters Abbreviations Parameters Abbreviations

ηCHP
e Conversion efficiency of

gas-to-electricity of the CHP unit µv
Unit price of investment in the

equipment v

ηCHP
h Conversion efficiency of

gas-to-thermal of the CHP unit yv Useful life of the equipment v

λg
Calorific value of consumed

natural gas COM
v Operation and maintenance

coefficients for the equipment v

ηGB
Gas turbine’s power
generation efficiency CEC

v Energy consumption coefficients
for the equipment v

ηEB
Electric transfer efficiency of the

electric boiler Iv
Corresponding maximum

installed capacity of device v

ηCC

Conversion efficiency of the
compression refrigerator from

electricity to cold
Imax Upper limit of the size capacity

of the IES

χj, χk, χl

Index of load levels in the
electricity, and heating and

cooling networks
γ

Markov reward decision process
discount factor

rv Discount rate of the equipment v
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Table 1. Cont.

Sets and Symbols Abbreviations Sets and Symbols Abbreviations

Variables Abbreviations Variables Abbreviations

PCHP
t Generation power of the CHP

unitat time t R Resilience index of the IES

GCHP
t Amount of natural gas consumed

by the CHP unit at time t Rw
Corresponding weighted reward

value for IES
PWT

t Actual output of the wind turbine ∆es
t Load loss of the electricity

uWT
t Installed capacity of the

wind turbine ∆hs
t Load loss of the heat

PPV
t Actual output of the photovoltaic ∆cs

t Load loss of the cooling

uPV
t Installed capacity of the

photovoltaic LE
t Baseline loads of the electricity

Pv
t Output power of the energy

supply equipment v at time t LH
t Baseline loads of the heat

HCHP
t Heating power supplied by the

CHP unit at time t LC
t Baseline loads of the cooling

HGB
t Amount of heat supplied by the

gas boiler at time t Mij Initial position

HEB
t Thermal power of the electric

boiler at time t M’
ij

Next updated position of the
initial position

EEB
t Electrical power consumed by the

electric boiler at time t x0, y0 Original positions of the ant lion

CCC
t Refrigeration power of the

compression refrigerator at time t x’0, y’0 New positions of ant lion

ECC
t Electric power consumed by the

compressor at time t η
Constant controlling the

variation step

PSBD
t Storage battery discharge power

at time t C Total economic cost of the IES

PSBC
t Storage battery charge power at

time t Ci
Investment cost of energy

supply equipment

PHSD
t Heat storage tank discharge

power at time t Co
Operation and maintenance cost

of the IES

PHSC
t Heat storage tank charge

power at t Cc Energy consumption costs

PCSD
t Cold storage tank discharge

power at time t nv
Number of units of the type of

equipment v

PCSC
t Cold storage tank charge power

at time t ε Tolerance

SSB
t Charging state of the

storage battery SHS
t Charging state of the heat

storage tank

SCS
t Charging state of the cold

storage tank

IESs utilize CHP units consisting of gas turbines and waste boiler heat recovery
systems, wind turbines, and distributed photovoltaics to supply electric loads.

Pt
CHP = ηe

CHPGt
CHP (1)

0 ≤ Pt
WT ≤ uWT (2)

0 ≤ Pt
PV ≤ uPV (3)
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IES heating equipment includes CHP unit, gas boiler, and electric boiler. CHP gener-
ates electricity and heat through the unit by consuming natural gas, and gas boiler generates
heat by consuming natural gas, and the heat generated is related to the energy conversion
efficiency of the gas boiler and the amount of fuel. Since the system is firstly provided with
electricity and heat by the CHP unit, when it cannot satisfy the heat demand, the electric
boiler generates the heat to supply the heat load.

Ht
CHP = ηh

CHPλgGt
CHP (4)

Ht
GB = ηGBλgGt

GB (5)

Ht
EB = ηEBEt

EB
(6)

The IES is supplied with cold loads by converting electrical energy from
compression chillers.

Ct
CC = ηCCEt

CC (7)

2.2. Objective Function

The resilience of the IES has rich meanings, and this paper mainly focuses on the
robustness after the occurrence of faults at the assessment level, and the results of the
robustness assessment can reflect the degree of resilience of the integrated energy system
in dealing with the risk of extreme weather, and the better the robustness is, the smaller the
amount of lost load of the IES energy supply is. In this paper, the operational resilience
index R of the integrated energy system is proposed from the point of view of load loss,
and the formula is as follows:

R =

t∫
0


1

1 +

S
∑

i=1

3
∑

j=1

2
∑

k=1

2
∑

l=1
(χj∆et

i+χk∆ht
i+χl∆ct

i

)
S(Lt

E+Lt
H+Lt

C)

dt (8)

The main considerations in terms of economic cost objectives for IESs are annualized
investment costs, post-operational equipment operation, and energy consumption costs.

C = CI + CO + CC (9)

CI =
rv(1 + rv)yv

(1 + rv)yk − 1

N

∑
v=1

µvnv (10)

CO =
T

∑
t=1

Cv
OM Pt

V (11)

CC =
T

∑
t=1

Cv
EC Pt

V (12)

2.3. Binding

Multiple energy flows in the IES should meet energy balance constraints.

Pt
CHP + Pt

PV + Pt
CHP + Pt

SBD = Lt
E + Et

EB + Et
CC + Pt

SBC (13)

Pt
CHP + Pt

EB + Pt
GB + Pt

HSD = Lt
H + Pt

HSC (14)
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Pt
CC + Pt

CSD = Lt
C + Pt

CSC (15)

The output power of each energy supply equipment in the IES should not exceed its
maximum installed capacity in each time cycle.

0 ≤ Pt
v ≤ Iv, v ⊂ CHP, PV, WT, GB, EB, CC (16)

CHP, PV, WT, GB, EB, and CC represent CHP units, photovoltaic arrays, wind turbine
generators, gas boilers, electric boilers, and compression chillers, respectively.

Due to the spatial and geographical conditions of the region where the island IES is
located, the total installed size of the energy supply and energy coupling equipment cannot
exceed the upper limit.

0 ≤
n

∑
v=1

Iv ≤ Imax (17)

For energy storage devices, the state of charge of the batteries, the state of storage of
the heat storage tanks, and the state of storage of the cold storage tanks must not exceed
their upper and lower limits:

St
SB ≤ St

SB ≤ St
SB (18)

St
HS ≤ St

HS ≤ St
HS (19)

St
CS ≤ St

CS ≤ St
CS (20)

In this paper, the initial energy storage of the energy storage system at the beginning
of a typical day is set to be 60%.

3. Methodology
3.1. IES Mdp

The Markov reward decision process is a mathematical framework for modeling
reward values and strategy solving; this paper is used for sequential decision making
problems at discrete moments of a typical day in the IES and the state space in which it
is located at that time, and by constructing the MDP model, the optimal decision making
strategy can be solved by using the methods such as reinforcement learning, so as to
enable the integrated energy system to realize the efficient utilization of energy resources
and operation management. In the IES energy supply, the MDP process includes state
space St, decision action space A, transfer probability PR, reward function RW, and decay
coefficient γ. The core objective of the MDP problem is to find the optimal strategy of
the system.

The state space St includes the state quantities of the IES energy supply state space
in the decision cycle at moment t. The IES control center in state St selects the action that
maximizes the cumulative reward value of the multi-objective planning.

St = (t, Pt
v, Lt

E, Lt
H , Lt

C, St
SB, St

HS, St
CS), v ∈ CHP, PV, WT, GB, EB, CC (21)

The decision action space A of the IES, on the other hand, involves the development
of an allocation scheme for energy resources, e.g., choosing when to start or stop an energy
generation unit, adjusting the conversion ratio between different energy sources, etc. It can
be represented as:

A = {St, PR(St+1|St, ak), γ} (22)
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When IES is in the state, the decision action ak is selected and the transfer probability
from state St to St+1 can be expressed as:

PR(st+1

∣∣∣sk, ak) = PR(Pt+1
v

∣∣∣Pt
v)× PR(St+1

HS

∣∣∣St
HS)

×PR(St+1
CS

∣∣∣St
CS)× PR(St+1

SB

∣∣∣St
SB)× PR(t + 1

∣∣∣t) (23)

The isolated IES takes the system multi-objective weighted reward function value
as the optimization objective, and sets the reward and punishment reward function of
the MDP; the setting of the reward function will be directly related to the convergence
speed and degree of the algorithm, when the integrated energy system is in the state St, the
system-weighted reward value of the selected action At can be expressed as RW (St, At).

The model ultimately seeks the optimal decision to maximize the economic weighted
value of resilience; in order to consider the impact of the current behavior on future rewards,
the total discounted rewards in the tth decision cycle is denoted by RWt, which is defined
as the sum of the immediate rewards at the moment t and the discounted rewards at the
moment t + 1. γ is the discount factor, reflecting the importance of future returns. the
smaller the value of γ, the greater the importance of current returns.

RWt = r(st, at) + γ
∞

∑
i=1

r(sk+i, ak+i) (24)

3.2. Forbearing Stratified Sequencing Method

Considering that there are two objective functions in the model problem of this paper,
and their magnitudes and influence degrees are different, which is a typical multi-objective
problem, the tolerant hierarchical sequence method, which can avoid the conflict of the
objective function ordering rules and the difficulty of determining the influence weight
coefficients, is chosen to solve the function.

The tolerance hierarchical sequence method puts the objectives in the multi-objective
planning problem in accordance with its importance priority ordering, gives priority to
solving the optimal solution of the objective function of high importance, and then considers
the pre-given tolerance ε as the priority condition of the low priority objectives; it then
continues to solve the optimal solution of the next objective on the basis of this, and so on
until all the objectives are all solved, and the value of the tolerance ε represents the IES’s
pair of the transfer to the risk of loss of load and the degree of acceptance of economic
costs that may occur after the islanding, the use of various types of resources to improve
the system resilience and thus minimize the amount of loss of load, and reduce the cost of
degradation of the importance of the two objective functions by the decision maker wants
to achieve the optimization effect to be determined.

The steps to solve the multi-objective planning problem are as follows:
min R(q)
s.t. g1(q) ≤ 0

h (q) = 0
(25)

In the first step, the first priority objective is solved first. The optimal resilience
indicator V* is solved. 

min V(q)
s.t. g1(q) ≤ 0

g2(q) = V(q)− (1 + ε) · R∗
h(q) = 0

(26)
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In the second step, the tolerance ε is considered, and new constraints are replaced and
added to optimize the second-stage objective function.

The optimal resilience metrics and operating costs are finally solved along with the
system’s relatively optimal operating strategy Q and the corresponding weighted reward
value Rw for the optimal resilience economy.

3.3. Improved Ant Lion Algorithm

The ALO algorithm is a heuristic algorithm proposed by Seyedali Mirjalili in 2015 that
mimics learning the hunting process of ant lions in nature with good global merit seeking
capability. The algorithm simulates several main aspects of the ant colony by walking
randomly, setting traps, catching prey, and reconstructing traps. However, it sometimes
falls into local optimum and converges slowly during the solution process.

Therefore, this paper improves the ALO algorithm to cope with the shortcomings of
the original algorithm in the global search for superiority and convergence accuracy. The
adoption of the Cauchy Gaussian variation can enhance the ant lion colony species and
effectively improve the diversity and global search ability of ant lions. The density function
of the Cauchy distribution is defined as follows:

s =
1
π
(

1
t2 + x2

), x ∈ (−∞,+∞) (27)

In addition, the use of the Cauchy Gaussian variation can also shorten the convergence
time of the algorithm. By combining the random vector of the Cauchy distribution with
the state of the elite ant lion, it can make the individual more inclined to choose the action
plan with higher risk in the decision-making process, thus achieving a speed-up effect and
providing a guarantee for its greater role in practical applications. The specific expression
of the variation is:

M′ij = Mij + η · C(0, 1) (28)

When the algorithm enters an iterative loop, each time an iteration is executed, an
optimal value for the current iteration is generated. In order to improve the performance
and generalization ability of the algorithm, the optimal value of all iterations needs to be
recorded during the execution of iterations. Usually, the optimal value converges with the
number of iterations, but if two adjacent iterations produce almost the same optimal value,
it means that the algorithm may have fallen into a local optimal point or trap. In this case,
the Corsi–Gaussian variational method is used.

Variation operation: Overwrite the fitness value and number of optimal antlions to
the original population size for the next iteration process and use the variation to update
the position and optimal value of the antlion population as follows:

x′0 = x0 + x0 · C(0, 1) (29)

y′0 = y0 + y0 · C(0, 1) (30)

3.4. Bidirectional Gated Recurrent Unit

The unidirectional GRU unit model can only extract features in a single direction of
data input, while wind power is a kind of time series data with bi-directional continuity,
which means that for power prediction at a certain moment, it is necessary to consider not
only the power situation at the historical moment, but also the power change trend at the
future moment. In order to better handle this kind of time series data with bi-directional
continuity, Bidirectional Gated Recurrent Unit (BGRU) introduces the inverse GRU on
the basis of the unidirectional GRU to form a bi-directional gated recurrent network. By
learning both forward and inverse data features, the bidirectional gated recurrent network
can more accurately predict the power values at future moments and better capture the
correlations and dependencies in time series data, thus greatly enhancing the capability of
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time series feature extraction. Therefore, in this paper, the BGRU network model, which
performs well in extracting bidirectional timing features, is used as the base model to
predict the real-time power of wind power generation. The BGRU network model is shown
in Figure 2.
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3.5. Resilient Economy Two-Layer Optimization Strategy

This paper proposes a two-tier optimization algorithm for the islanded IES resilience
economy to achieve the overall objective. In the upper layer decision-making, the
isolated IES first solves the mixed integer linear model planning by means of enhancing
redundancy and adjusting the energy supply structure to find the optimal configuration
investment plan of IES within a certain range, and passes the configuration plan as a
parameter to the lower layer IES control center. In the lower layer, based on the acquired
IES energy supply configuration plan, the isolated IES control center uses the BGRU
network model to forecast the outputs of wind turbines and distributed PV, respectively,
and uses the Markov reward decision-making process to assist the decision-making
to rationally adjust the output scheme of power supply, heating, cooling, and energy
coupling equipment according to the future reward value in the subsequent moments,
and make full use of the incremental energy storage characteristics of CHP unit, gas
boiler, electric boiler, compressed chiller, and storage batteries at all levels, to satisfy the
resilience economy optimization of the island IES. The optimized resilience indicator
loss of load and operation and maintenance costs are fed back to the upper layer, which
obtains the system economic costs based on the acquired data parameters, plus the
discounted investment costs, solves and accelerates the optimization of the resilience
economy multi-objective problem by using the Tolerance Hierarchical Sequence Method
and the IALO algorithm, and solves the optimal solution of the isolated island IES
configuration and operation optimization in multiple iterations. The specific flow of the
elastic economy two-layer optimization strategy is shown in Figure 3.
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4. Examples and Results

In this paper, a certain IES containing electricity, heat, and gas is selected to conduct
an arithmetic analysis; the annual utilization hours of the PV power generation equipment
in the region is about 1020 h, and the annual utilization hours of the wind turbines is about
1920 h. When the extreme event occurs, the grid turns to island operation, the electricity
source is composed of rooftop distributed PV from the IES and wind turbines in the region,
and the natural gas source is delivered from the underground pipeline of natural gas that
is laid underground and unaffected. In this paper, three types of typical days in summer,
typical days in winter, and typical days in spring and fall are set up, and the electricity,
heat, and cooling loads on the typical days of the three seasons are shown in Figure 4.
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4.1. Prediction Model Analysis

In order to critically assess the prediction accuracy of the model, three metrics are
used as the basis of this paper: mean absolute error (MAE), mean absolute percentage error
(MAPE), root mean-square error (RMSE).

In this section, SVR, LSTM, GRU, and BGRU network models are developed to fit and
predict the actual wind turbine power generation series, and the prediction accuracy of
their fitting results are shown in Table 2. However, all other indicators did not reach the
optimum, the prediction results of the BGRU network had a smaller error compared with
the other models, and its MAPE was 9.03% and RMSE was 39.82 kW, both of which reached
the optimum. At the same time, according to the prediction results shown in Figure 5, it is
difficult to predict the sample part with more concentrated and complex changes, but the
purple curve fits better overall. Therefore, the subsequent work uses the BGRU network as
the base prediction model.

Table 2. Comparison of model prediction accuracy.

Indicators MAE MAPE RMSE Indicators

SVR 44.81 11.93% 68.78 SVR
LSTM 32.66 8.96% 44.20 LSTM
GRU 34.09 9.43% 41.21 GRU

BGRU 30.61 9.03% 39.82 BGRU
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4.2. Algorithm Function Performance Test

In order to test the effect of IALO algorithm performance improvement, four single
model algorithm control variables, IPSO, SSA, ALO, and IALO, were selected for compar-
ison experiments. The population parameter is set to 40 and the number of iterations is
set to 200; the test function is shown in Equation (9), and its function-related parameters
are set with reference to Table 2. The average adaptation values of the four single-model
algorithms after the test calculation are compared as shown in Table 3.

f1 =
n

∏
i
| xi+|
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∑
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)
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1 −

1
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x6
1 − 4x1x2 − 3x2

2 + x4
2 (33)

Table 3. Comparison of Test Function Fitness Values.

IPSO SSA ALO IALO

f 1 1.599 × 10−1238.6 0.085 1.4117 × 10−6 0
f 2 13.582 17.753 8.750 9.351 × 10−11

f 3 −0.914 −1.131 −1.032 −1.032

The results in Table 3 show that IALO has the best overall performance among the
four algorithms in the comparison of the fitness values in the test function, followed by
IPSO and ALO, while the SSA algorithm has a poor performance in the test fitness values.

4.3. Configuration Results

In the first tier of the optimization strategy, the IES shifts to silo operation in the face
of extreme events, and the best configuration investment plan is found by enhancing the
redundancy of the installed size and adjusting the supply structure of energy coupling
equipment and energy supply devices.

In this paper, due to the space limitation of the environmental area, the upper limit
of the scale capacity of IES energy supply and energy coupling equipment Imax is set to
4 MW. Five different scenarios are formulated based on the parameter settings and priority
objectives of the tolerant hierarchical sequence method to compare and analyze:

Scenario 1: With economy as the first priority target, the tolerance parameter ε setting
for the resilience index is set to be 0.6 and a Markov decision process is used to go for
energy supply regulation strategies.

Scenario 2: With economy as the first priority target, the tolerance parameter ε setting
for the resilience indicator is set to be 0.2 and a Markov decision process is used to go for
energy supply regulation strategies.

Scenario 3: With resilience as the first priority target, the tolerance parameter ε setting
for economic indicators is set to be 0.8 and a Markov decision process is used to go for
energy supply regulation strategies.

Scenario 4: With resilience as the first priority target, the tolerance parameter ε setting
for economic indicators is set to be 0.4 and a Markov decision process is used to go for
energy supply regulation strategies.

Scenario 5: With resilience as the first priority objective, the tolerance parameter ε for
the economic indicators is set to 0.4. However, the Markov decision process energy supply
regulation strategy is not used.
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In MATLAB 2020b, a resilient economic two-tier optimization strategy, as well as
the methodology proposed in this paper, is used to obtain the initial configuration of an
islanded integrated energy system. The obtained energy coupling equipment configuration
options are shown in the Table 4.

Table 4. Integrated Energy System Configuration Results.

Equipment
Number of Equipment

Scenario I Scenario 2 Scenario 3 Scenario 4&5

Gas turbine 6 6 4 3
Gas boiler 5 4 3 3

Chillers 1 1 1 1
Photovoltaic 2 4 3 5
Wind turbine 6 5 5 3
Electric boiler 0 1 1 2

Heat storage tank 0 1 1 1
Cold storage tank 0 0 0 1

Storage battery 1 1 2 2

Considering the three critical loads of electricity, heat, and cold, the amount of inte-
grated energy system loss of load at each time point is derived, the time period with more
load supply loss in IES decision-making is identified to readjust the energy supply alloca-
tion planning, and the energy supply structure and the parameters such as the installed
capacity of the coupled equipment, the resilience tolerance, and the key loads are adjusted
by continuous feedback iteration. Economic and resiliency indicators are shown in the
Tables 5 and 6.

Table 5. Comparison of Economic Indicators.

Scenario
Costs/Thousand ¥

C CI CO CC

Scenario 1 688.19 473.69 137.98 76.52
Scenario 2 739.55 494.92 154.54 90.09
Scenario 3 782.37 495.61 169.95 116.81
Scenario 4 817.06 532.46 178.72 105.88
Scenario 5 862.27 532.46 205.30 124.51

Table 6. Comparison of Resilience Indicators.

Scenario
R

Spring and Fall Summer Winter

Scenario 1 0.853 0.823 0.679
Scenario 2 0.880 0.803 0.731
Scenario 3 0.897 0.806 0.835
Scenario 4 0.996 0.939 0.886
Scenario 5 0.928 0.873 0.784

From the results in the table, it can be seen that the choice of the first objective,
and the tolerance setting of the secondary objective will seriously affect the results of
the configuration of the supply coupling equipment for the islanded IES, and due to the
constraints of the economic indicators and the amount of lost load, the total configuration
size of the five scenarios for the islanded IES will basically be close to the maximum
installed scale capacity of 4 MW.
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Scenarios 4 and 5, the first objective of the selection of resilience indicators and
economic cost tolerance settings are also the same, so the two scenarios of the annualized
investment costs and the configuration of the energy supply coupling equipment to solve
the same results, the difference between the two is that Scenario 5 does not use the Markov
returns to assist in decision-making to regulate the supply of energy. From the typical
day data, annualized operation, and maintenance and energy costs, in Scenario 5, IES
energy supply equipment scheduling process, the IES center did not receive the return
value of the scheduling strategy for the future time period, and only found that the new
energy generation equipment cannot meet the load requirements after the hasty dispatch
to meet the demand at that time, and cannot trade-off the overall economic cost of a typical
day within 24 h and resilience goals. And scenario five will be the relationship between
heating, power supply, and cooling separately, not fully utilizing the coupled equipment
before the synergistic effect, resulting in energy supply equipment part of the time period
of the phenomenon of excess power. Energy consumption is not used by the demand
side, so that the waste of resources and the economic cost, and the annualized cost of
operation and maintenance of the scenario four rose by 14.87%, and the annualized cost
of energy consumption rose by 17.60%, reaching CNY 124.51 thousand. Meanwhile, the
energy coupling conversion equipment is not fully utilized during the typical daily peak
load demand hours in summer and winter, resulting in more lost loads than Scenario IV,
with the typical daily resilience index in summer and the typical daily resilience index
in winter being only 0.873 and 0.784, respectively. In Scenario IV, the Markov decision-
making process-assisted regulation of the supply of energy makes the overall annualized
cost of the IES fall by CNY 45.21 thousand, with a decline percentage of 5.24%. The
good regulation strategy, which uses energy coupling equipment to charge when load
demand is low and discharges during peak load consumption to achieve the effect of
peak shaving and valley filling, improves the typical daily resilience indexes by 7.33%,
7.56%, and 13.01% in spring, summer, and fall, respectively, relative to Scenario 5. The first
four scenarios all use a conditioning strategy with a Markov decision process. With the
increasing weight on the resilience indicator load loss, the installed size of photovoltaic
and electric boilers also tends to rise, because the output curve of photovoltaic is mostly in
the daytime period of a typical day, which is roughly the same trend as that of the electric
load curve, and the electric boiler with the elevated investment cost, but also can quickly
convert electric energy into heat, which enhances the resilience of the winter heat supply.
In Scenarios 1 and 2, the installed number of gas units and fan units is significantly higher
than Scenarios 3 and 4, which may be caused by the higher cost of gas units and the fan in
the middle of the night. There will be a certain degree of wind abandonment phenomenon
of energy supply, and both scenarios in which the battery size is only 500 kW, which will
soon be filled, and cannot be very good peak shaving to fill in the valley, result in a large
amount of load loss enhancement. All four scenarios are solved by investing in a set of
compression chillers.

It can be seen that in Scenario 1, where economy is the first priority goal, its total
cost, investment cost, and energy consumption cost are less than Scenario 2, Scenario 3,
and Scenario 4, and the total cost is decreased by 6.94%, 12.04%, and 15.77%, respectively,
compared to Scenarios 2, 3, and 4, but its typical day resilience indexes are basically the
worst performers of all four scenarios except for a better typical day in summer due to
the configuration of the compression chillers and storage tanks, and the typical day in
spring, fall, and winter with a spike in heat loads are poorly performed. The IES in the
upper control will control the cost in the first place, and will not purchase enough heat
storage tanks such as thermal energy storage and electric boilers, and due to the cost of too
many gas-fired units subject to the limitations of the natural gas pipeline supply, it cannot
be sufficient to supply the IES’ required heat. In contrast, Scenario 4 basically does not
consider the cost aspects of the problem. The reasonable configuration of the ratio between
the supply and coupling equipment, as far as possible configuration of electric heat and
cold energy storage equipment, makes full use of the synergistic relationship between the
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PV and the fan before a typical spring and fall day; its resilience index is 0.994, and the
loss of load is only a very considerable 4.51%, although on a typical winter day there is
still a 12.92% combined loss of load. The resilience metrics and economic costs associated
with continuing to invest in compression chillers and storage tanks clearly do not meet the
tolerance requirements of Scenario 4, and the loss of load is within an acceptable range,
where the IES energy supply capacity is utilized to its fullest potential.

4.4. Operation Analysis

As an example, for Scenario 4, which has the greatest diversity in the types of
energy-supply coupling equipment, the supply outputs and load profiles for each time
period of the three typical days of the islanded integrated energy system are shown in
Figures 6 and 7 and Tables 7 and 8.

Figure 6. Typical Daily Energy Supply Operation. (a) Electric supply in spring and fall; (b) Electric
supply in summer; (c) Electric supply in winter; (d) Heat supply in spring and fall; (e) Heat supply in
summer; (f) Heat supply in winter; (g) Cold supply in spring and fall; (h) Cold supply in summer;
(i) Cold supply in winter.
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Figure 7. Typical Day Energy Storage Device Status. (a) Spring and Fall; (b) Summer; (c) Winter.

Table 7. Typical Daily Loss of Load.

Time
Spring and Fall Summer Winter

Electric Heat Cold Electric Heat Cold Electric Heat Cold

1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
4 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
6 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
7 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
8 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
9 0.00 0.00 0.00 190.98 0.00 0.00 0.00 0.00 0.00

10 0.00 0.00 0.00 0.00 0.00 30.52 0.00 153.43 0.00
11 0.00 0.00 0.00 0.00 0.00 146.06 0.00 247.51 0.00
12 0.00 0.00 0.00 0.00 0.00 161.58 0.00 584.50 0.00
13 0.00 0.00 0.00 0.00 0.00 30.92 0.00 0.00 0.00
14 0.00 0.00 0.00 0.00 0.00 12.11 0.00 0.00 0.00
15 0.00 0.00 0.00 0.00 0.00 49.60 0.00 49.76 0.00
16 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
17 0.00 0.00 0.00 144.04 0.00 0.00 0.00 182.06 0.00
18 0.00 0.00 0.00 398.75 0.00 21.64 0.00 307.74 0.00
19 44.22 0.00 0.00 48.03 0.00 0.00 0.00 487.36 0.00
20 59.75 0.00 0.00 326.21 0.00 0.00 0.00 422.12 0.00
21 0.00 0.00 0.00 0.00 0.00 0.00 0.00 316.00 0.00
22 0.00 0.00 0.00 298.92 0.00 0.00 0.00 264.44 0.00
23 0.00 0.00 0.00 33.38 0.00 0.00 0.00 139.15 0.00
24 0.00 0.00 0.00 329.83 0.00 0.00 0.00 56.79 0.00

Total 103.97 0.00 0.00 1770.13 0.00 452.43 0.00 3210.87 0.00

On a typical day in spring and fall, the IES energy supply in the configuration of
Scenario 4 is very effective, especially in the heating and cooling segments, where the IES
perfectly supplies all the loads by utilizing relatively stable gas boilers, CHP units, and
compression chillers. The cold storage tanks are not discharged on this typical day, and
the heat storage tanks are only discharged from 19:00 to 22:00 h to balance the heat loads.
In the power supply segment, the storage battery has more use; most of the time, it is
involved in the IES energy supply, discharging at 4 to 6 o’clock and 14 o’clock to 19 o’clock,
and recharging at 9 o’clock to 14 o’clock to maintain the battery operation, while the wind
turbine, PV, and CHP as the main power supply most of the loads, and it can be seen that
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the wind turbine output is relatively smooth, and the trend of the PV output and the load
curve have also similarities. The loss of load in the supply chain mainly comes from 19:00
to 21:00, which is a small amount of loss of load because there is almost no PV output
in the IES, and the batteries have been depleted by the peak power consumption in the
previous hours.

Table 8. Typical Day Energy Storage Device Status.

Time
Spring and Fall Summer Winter

SB HS CS SB HS CS SB HS CS

1 0.61 1.00 1.00 0.47 1.00 1.00 0.61 1.00 1.00
2 0.60 1.00 1.00 0.46 1.00 1.00 0.89 1.00 1.00
3 0.55 1.00 1.00 0.65 1.00 1.00 1.00 1.00 1.00
4 0.49 1.00 1.00 0.50 1.00 1.00 0.80 0.91 1.00
5 0.28 1.00 1.00 0.33 1.00 1.00 0.87 1.00 1.00
6 0.31 1.00 1.00 0.28 1.00 1.00 0.74 1.00 1.00
7 0.39 1.00 1.00 0.22 1.00 0.91 0.86 1.00 1.00
8 0.31 1.00 1.00 0.18 1.00 0.71 0.99 0.96 1.00
9 0.09 1.00 1.00 0.00 1.00 0.20 1.00 0.57 1.00

10 0.38 1.00 1.00 0.17 1.00 0.00 1.00 0.00 1.00
11 0.49 1.00 1.00 0.32 1.00 0.00 1.00 0.00 1.00
12 0.58 1.00 1.00 0.62 1.00 0.00 1.00 0.00 1.00
13 0.66 1.00 1.00 0.46 1.00 0.00 1.00 0.27 1.00
14 1.00 1.00 1.00 0.54 1.00 0.00 1.00 0.10 1.00
15 0.91 1.00 1.00 0.37 1.00 0.00 1.00 0.00 1.00
16 0.98 1.00 1.00 0.39 1.00 0.31 0.80 0.31 1.00
17 0.68 1.00 1.00 0.00 1.00 0.12 0.59 0.00 1.00
18 0.24 0.96 1.00 0.00 1.00 0.00 0.20 0.00 1.00
19 0.00 0.72 1.00 0.00 1.00 0.41 0.00 0.00 1.00
20 0.00 0.42 1.00 0.00 1.00 0.59 0.01 0.00 1.00
21 0.05 0.22 1.00 0.01 1.00 0.69 0.04 0.00 1.00
22 0.01 0.29 1.00 0.01 1.00 0.97 0.01 0.00 1.00
23 0.04 0.23 1.00 0.01 1.00 1.00 0.00 0.00 1.00
24 0.12 0.54 1.00 0.01 1.00 1.00 0.00 0.00 1.00

And when it comes to the simulation session on a typical summer day, the hot weather
makes the demand of cold load rise sharply, and the cooling supply session is seriously
challenged, the compression chillers are running at peak power from eight to 22 o’clock,
and the power out of the remaining time period is higher than half of the rated maximum,
and the saving cold tanks are supplying the cold by releasing from eight to ten o’clock,
although the cold load is more than the maximum refrigeration capacity of the chillers,
and the remaining capacity of the 500 kW storage tank was not enough to supply the
cooling load until 11:00, and there was a cooling loss of 430.79 kW in the following six
hours. The IES heating supply remained stable. At the height of summer, the usage of
various electrical equipment rises sharply, plus the electric conversion of the compressed
refrigeration machine also consumes a considerable portion of electricity, resulting in the
irregularity of the IES electric load curve on a typical summer day. Although the fans,
PV, and CHP units supply electricity stably, the irradiation intensity of the sun gradually
becomes weaker from 17:00 to 24:00 when the sun goes down, and it is difficult for the fans
and CHP units to support the full electric load, and the lost load totaled 4639.52 kW.

With lower temperatures in winter, the IES does not have much problem in both
cooling and power supply on a typical day in winter, the loss of load in both power and
cooling segments is zero with the synergistic effect of the multiple energy supply units
and the energy coupling equipment. While facing a large number of lost loads from heat
loads, due to the weighting of the IES economic indicators in addition to the resilience
indicators in the process of solving the multi-objective using the tolerant hierarchical
sequence method, it is taken into account that the lost loads only occur on typical winter
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days that only account for about a quarter of the year. Therefore, the installed capacity of
the heating equipment includes only 300 lW gas boilers and 200 kW electric boilers, and the
energy storage equipment has only 500 kW capacity, although the battery is charged and
discharged by the Markov decision process to calm the heat load, the lack of the installed
size allows the IES typical day in the morning and most of the evening to generate a large
number of lost loads, and if you want to reduce the generation of lost loads, you can be in
the tolerance setting parameter settings for appropriate cost reduction.

5. Conclusions

In this paper, on the basis of fully considering the economy and reliability of IES en-
ergy supply, a two-layer optimization strategy based on the resilience economy-oriented
IES configuration optimization method for isolated islands is proposed. In the upper
layer decision-making, the IES first solves the mixed integer linear model planning by
means of enhancing redundancy and adjusting the energy supply structure to find the
optimal configuration investment plan of IES within a certain range, and passes the
configuration plan as a parameter to the lower layer IES control center. In the lower layer,
based on the acquired IES energy supply configuration plan, the isolated IES control
center uses the BGRU network model to forecast the outputs of wind turbines and dis-
tributed PV, respectively, and uses the Markov reward decision-making process to assist
the decision-making to rationally adjust the output scheme of power supply, heating,
cooling, and energy coupling equipment according to the future reward value in the
subsequent moments.

The following conclusions are obtained through the analysis of the arithmetic examples:

(1) The use of a two-layer optimization strategy can provide timely feedback to convey
resilience and economic metrics, accelerate the solution of the resilience-economy
multi-objective problem using the tolerance hierarchical sequence method and the
IALO algorithm, and arrive at an optimal solution for the optimization of the IES
configuration and operation in multiple iterations;

(2) During the typical day operation phase, using the Markov reward decision-making
process can make decisions that are most compatible with the loss of load and eco-
nomic cost multi-objective planning to further optimize the reliability and economics
of the IES supply capacity in a comprehensive manner;

(3) The method proposed in this paper can be combined with the parameter setting of the
tolerance of the forbearing stratified sequencing method and the selection of priority
objectives to adjust the resilience and economic cost objectives that the IES decision
maker wants to achieve.

In addition, a more rational combination of forecasting models and fully extracting the
time-series characteristics of power data, or quantifying the impact of stochastic extreme
events are the focus of future research work.
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