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Abstract: Although functional identifiability represents a key aspect for promoting visual conno-
tation and sustainable usability in historic building groups, there is still no consensus on how to
quantitatively describe its identification basis at a large scale. The recent emergence of the potentiality
of deep learning and computer vision has provided an alternative to traditional empirical-based
judgment, which is limited by its subjective bias and high traversal costs. To address these challenges,
this study aims to build a workflow for a visual analysis of function and facade to extract the different
contributions that facade elements provide to functional expression. The approach is demonstrated
with an experiment on a section of the Chinese Eastern Railway (CER) where large-scale historical
buildings images were categorized to identify functions using deep learning, together with acti-
vation and substance for visual calculations. First, the dataset aggregated with images of historic
buildings along the CER was used to identify functional categories using SE-DenseNet merging
channel attention. The results of the model visualized using t-SNE and Grad-CAM were then used to
analyze the relationships of facade features across functional categories and differences in elemental
feature representation across functional prototypes. The results show the following: (1) SE-Densenet
can more efficiently identify building functions from the closely linked facade images of historic
building groups, with the average accuracy reaching 85.84%. (2) Urban–rural differences exist not
only in the count of spatial distributions among the CER’s historic building groups, but also in
a significant visual divergence between functions related to urban life and those involved in the
military, industry, and railways. (3) Windows and walls occupy areas with more characteristics, but
their decorative elements have a higher intensity of features. The findings could enhance the objective
understanding and deeper characteristics of the historical building group system, contributing to
integrated conservation and characteristic sustainability.

Keywords: historic buildings; visual relationship; historical function classification; facade characteristics;
deep learning; the Chinese Eastern Railway

1. Introduction

Railway architectural heritage, as an essential component of historic building groups,
records the footprint of human development. The routes of historic buildings have system-
atic functional classifications, reflecting the historical communication and collaboration
of the military, industry, religion, technology, and trade [1,2]. An understanding and the
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cognition of historic building groups are usually established by visual observation (such
as through images, films, and visiting the complex) [3]. Due to historic building groups
being designed to survive for a long time, the effective preservation of visually meaning-
ful attributes is essential for sustainability and conservation, and these should not suffer
damage or degradation [4,5]. However, the conservation of railway heritage has been
challenged by rapid urbanization and abandonment, causing a deviation in the visual
relationship between function and facade, leading to confusion in functional identification
and disorder in collective memory. There is a growing imbalance in the historic functional
structure and the deformation of the facade texture, damaging the traditional character
and identifiability to varying degrees [6]. In addition, it is difficult to cover all aspects with
the existing integral and classified conservation for scattered buildings along a railway,
and the implementation process still requires precise direction for the interpretation of
each building and its own facade elements [7,8]. In this case, the visual representation of
historical functions reflected on facades is regarded as an essential impressionistic label,
which is the starting point for establishing recognition and linking history [9]. Therefore,
maximizing the perpetuation of the visual relationship between historical functions and
facades among historic building groups has become a fundamental concern for researchers,
managers, and engineers.

The visual relationship between the function and facade of historic buildings has been
studied previously [10]. This relationship helps to understand historic buildings’ genera-
tion, usage, and reconstruction [11]. Early urban and architectural designers believed in
the principle that form follows function [12], and this was also the concept implemented
during the initial construction of railway buildings [13]. The functional description was
characterized by visual features that convey an essential framework of cognition and per-
ception [14]. Multiple functions were linked into a complex system of historic building
groups and created abundant forms and values [15]. In addition, the facade, as one of the
essential elements of the building form, contributes to the diversity of the built environ-
ment and thus becomes an element affecting sustainability [16]. The facade elements that
convey values that positively impact the characteristics of historic building groups should
be identified [17]. Due to the differences in styles, materials, colors, and elements among
facades [18,19], the complex and numerous types of historic building facades are always
fragmented or incomplete [20,21]. In this case, verifying the universal values by a manual
traversal procedure is an intricate and difficult process, especially when the building’s
facades are similar and only possess minor differences. In order to reduce the complexity
and find distinguishable differences between functional categories [22], the selection of
“prototypes” with universal value as typological representatives for interpretation has be-
come the main research approach [23]. Although an exhaustive statistical investigation into
each facade element can reveal considerable information, it also has disadvantages, such as
potential subjective bias and limited sample size [24]. Therefore, the objective understand-
ing and identification of historic building groups remain underexplored, and clarifying the
visual mapping relationship between function and facade remains challenging.

With the rapid development of deep learning and computer vision, image classification
techniques have shown great potential in the urban and architectural fields. Recent research
has shown that building function can be predicted from the salience of architectural form
and historical identifiable descriptions [14], mining facade characteristics [25], and rating
places to mimic people’s perceptions [26]. Many studies use image recognition to study
interiors [27], exteriors [28], roofs [29], footprints [30], facades [31], colors [32], and symbolic
components [33]. These images are widely sourced from satellites [34], drones [35], street
views [36], media websites [37], and open-source datasets [38]. In contrast to applications
dedicated to extensive generalizations or accurate identification, at resent, more attention is
being paid to the learning of non-linear relationships to mine the inherent characteristics of
instances in the architectural heritage field [39]. Research on historical buildings using im-
age classification focus on predicting architectural styles [19], religious symbols [40], tourist
patterns [41], architectural masterpieces [9], Chinese cultural heritage [42], and stones [43].
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Facing the nuances of individual buildings among historical building groups remains chal-
lenging, specifically identifying historical functions with similar styles, materials, colors,
and components. We follow the trend of model refinement to classify the original functions
among historical building groups along the railway, not only guaranteeing authenticity but
also focusing on deep learning to discover qualitative patterns [44].

Considering the urgency of conservation, the meaning of the relationship between
function and facade, and the advantages in computer vision, research that combines the
three is needed and timely. In this study, we aim to build a workflow for the visual analysis
of function and facade to extract the contributions that different facade elements provide
to its functional expression. We believe that the model trained by deep learning that
could be used as a “detector” replacing human eyes to more accurately identify functions
from large-scale architectural images. The model also provides pixel-level areas that
serve as the major determinants of functional judgment. The study applies deep learning
techniques to establish a cognitive framework for historical building groups from visual
characteristics, analyzes the inherent relationship between historical function and facades,
and mines their expression characteristics and key contributing elements to regenerate
historic buildings. First, the visual characteristic differences of functional categories were
trained and evaluated using the improved SE-DenseNet model, which merges the channel
attention mechanism and DenseNet to enhance the ability to focus on facade features.
The model’s results were then visualized to analyze the characteristic relationships of
visual identification among historical function categories, and the deep characteristic
areas of the model were extracted from the selected prototypes to analyze the different
expression of facade elements. We used the Chinese Eastern Railway (CER) historic building
groups as the research object to explore the multidimensional vector characteristics of 16
functions of historic buildings and the visual mapping relationships between functions and
facades. The results of this study provide an overall and subdivisional understanding of the
characteristics along the CER to improve the historic building groups’ systemic perception
and support their integral conservation, sustainable development, and regenerating criteria.

2. Materials and Methods
2.1. Study Area

This study used the historical building groups along the CER as the research object.
The CER was an important transportation route built jointly by Russia and China in the late
19th and 20th centuries, and the areas where the stations were located became increasingly
urbanized, which led to the rise and prosperity of many towns along the route. Figure 1
shows that these historic buildings are located in the Heilongjiang (HLJ) and Nei Mongol
(NM) provinces, including the cities of Qiqihar, Daqing, Suihua, Harbin, Mudanjiang, Jixi,
Suifenhe, Manchuria, Hailar, Yakeshi, and Zalantun. There are two reasons for choosing
these historic buildings. On the one hand, the historical buildings along the CER were
built in one specific era, characterized by a unified architectural style, various architectural
functions, and connection among functions [45]. The functional identification of the historic
building groups along the Heilongjiang section has become challenging by its large number
and rich functions. On the other hand, the conservation of historical building groups along
the railway is under more significant pressure from natural and constructive factors, such
as erosion by wind and rain, frost boils, renewal and renovation, and the upgrading of the
high-speed railway, leading to a certain deviation from the original relationship between
function and facade. In addition, the historic buildings of the NM section along the CER
route were also adopted to test our model’s generalizability and transferability. Compared
to the HLJ line, although there are fewer historic buildings on the NM line, they were all
constructed to serve one railroad during the same period, and the small gaps in the test
sample could have a positive effect on the robustness of the model.
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Figure 1. Location of the study area. (a) CER location; (b) Heilongjiang section route; and
(c) Nei Mongol section route. The administrative boundary was extracted from the Standard Map
GS(2019)1686, supervised by the Ministry of Natural Resources of the People’s Republic of China
(http://bzdt.ch.mnr.gov.cn/index.html, accessed on 3 September 2023).

2.2. Data Sources

In this study, we organized several field surveys of historic buildings along the CER,
including the collection of images, locations, and basic information. The field survey was
conducted by four teams with two people each; half teams conducted surveys at the points
of built-up stations, and the other teams conducted surveys in line with the wilderness
along the CER. Despite the harsh field environment and even unpredictable dangers of this
process, it is worth noting that the existing official documentation was updated by our field
surveys, including the addition of new discoveries, corrections of existing information, and
the removal of lack of information.

2.2.1. Building Function Data

The data used in the study were mainly the original functional categories of historic
buildings along the CER. We collected data for 1366 historic buildings distributed along
the CER, including 1208 buildings in HLJ and 158 in NM. The data originated from the
Third National Cultural Relics Survey registered by the National Cultural Heritage Ad-
ministration, successive lists of cultural heritage protection sites and historical buildings,
conservation planning project reports, and the first-hand data verified by our survey along
the CER [46]. Our fieldwork added 224 buildings to the original archive, even though
they were not registered as protected buildings. Table 1 shows a sample of the building
function data, including the building ID, official document number, original function,
current function, and coordinates.

2.2.2. Building Facade Images

Facade image data were used to explore the functional identification and characteristic
representation of facades. They were obtained from images obtained manually using
handheld cameras, existing official documentation, and open-source websites. Although
most of the images collected were manually aggregated, occlusions by cars, trees, wire
poles, and tall buildings remained. We selected intact and available building facade images

http://bzdt.ch.mnr.gov.cn/index.html
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to ensure the complete expression of the facade elements. In line with the images and text
documents investigated along the CER, Figure 2 shows our image database of historical
buildings in the Heilongjiang section along the CER according to building ID. In order to
enhance the efficiency of text–image linkage, the database consists of display front-end and
management back-end, where the front-end performs a better human–computer interaction
by the UI design, and the back-end uses tree-structured data to be used by WebGIS and
API offline maps.

Table 1. Sample data for addresses and functions of historic buildings.

Location ID Document
Number

Historic
Function

Current
Function Coordinates

HLJ Qiqihar Q-FLEJ-001 230206-0013 Train station Train station 123.543169, 47.244953
Harbin H-DL-061 230102-0047 Hospital Hospital 126.613617, 45.772577
Daqing D-DM-019 230624-0003 Work area Residence 124.438397, 46.870988
Suihua S-ZD-013 231282-0070 Office Residence 125.990628, 46.078661

Mudanjiang M-HL-103 231083-0429 Train garage Exhibition 129.069733, 44.818738
Jixi J-LS-001 230305-0012 Residence Residences 130.711617, 45.062775

Suifenhe SF-SFH-004 231081-0004 Religion Churches 131.153397, 44.390952

NM Manchurian N-MCR-063 150781-0088 Mansion Residence 117.444027, 49.578333
Hailar N-HLR-009 Unregistered Water tower Unoccupied 120.071055, 49.191166

Yakeshi N-YKS-015 150782-0014 Military camp Residence 121.902555, 48.758416
Zhalantun N-ZLT-023 150783-0040 School School 122.733468, 48.016591
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2.3. Research Methods
2.3.1. Dataset Building

The function of historic buildings was used as the classification task. Table 2 shows
examples and the numbers of images for each architectural heritage category, combined
with heritage history and survey results [47]. We categorized them into 16 historical
function types, as follows: train station, train garage, water tower, assistant, work area,
military camp, pillbox, police, leisure, office, school, religion, business, hospital, mansion,
and residence. Due to the large variation in preserved historical buildings along the CER,
we performed data enhancement on the dataset to reduce the model prediction bias caused
by the imbalanced category sample size [48]. Data enhancement was achieved by horizontal
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flipping, rotation, grayscale conversion, and increasing luminance for the small sample size
categories, while random selection was used for large sample size categories. Our dataset
consisted of 1366 historic buildings with a total of 7070 images. The dataset of the HLJ
section was divided into two parts, 80% for training and 20% for validation and evaluation.
In addition, we used 623 images of 158 historic buildings in the NM section of the CER as a
test set to test the generalizability and transferability of our model.

Table 2. Samples of the dataset of the CER architectural heritage images.

Category Examples

Train station
(268)
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2.3.2. Image Classification with Deep Learning Techniques

The self-built dataset was fed to DenseNet as the backbone for deep learning. As an
advanced deep learning network, DenseNet is good at identifying and classifying charac-
teristics at different scales [49]. Due to DenseNet directly connecting all the network layers
to ensure a maximum information flow, its dense connection enhances the propagation
and recurrence of features across the network [50]. It retains the original information
of feed features and gradients in the network as much as possible, alleviating the phe-
nomenon of gradient disappearance, which can easily occur in deep networks. Thus, this
network framework can extract more global and essential features and be trained more
accurately and efficiently. The pre-trained weight was used to transfer learning to reduce
false positives and improve the model’s accuracy [51,52]. In the classification scene for
historical functions, some complex background disturbances and common information
were distributed on the channels of the feature map, affecting the feature extraction and
detection accuracy. In order to improve the model to focus on more valid features based
on DenseNet’s feature extraction capability in the spatial domain, we added an attention
mechanism to assign different weights to each channel of the feature map in two stages:
“squeeze” and “excitation” [53]. Figure 3 shows the structure of our attention-infused
SE-DenseNet network with the added squeeze-and-excitation module (SE-Module) on the
original network.
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In the squeeze stage, the input feature was compressed into one-dimensional values
in the channel dimension by compressing the feature tensor [54]. The input feature U size
was H ×W × C, the spatial domain size was H ×W, and the number of channels was C.
The global average pooling was used to compress each spatial domain H ×W into a single
value, and the output was 1 × 1 × C. The calculation formula of output zc is as follows:

zc= Fsq(uc) =
1

W×H

W

∑
i=1

H

∑
j=1

uc(i, j) (1)

The excitation stage merges the information between different channels through two
fully connected layers to learn the nonlinear relationship [50]. Firstly, W1 of the first fully
connected layer is multiplied by the input value z. The value-merged channel information
is made nonlinear through a ReLU function. Then, the result is multiplied with the W2
of the second fully connected layer, which is a step that uplifts the previously merged
information. Finally, the sc value of each feature is output through Sigmoid function. The
calculation formula of the output is as follows:

sc= Fex(z, W)= σ(g(z, W))= σ(W 2δ(W 1 z)) (2)

where σ is the Sigmoid function, δ is the ReLU function, and W1 and W2 are the parameters
of the C layers. Then, each feature channel is assigned a corresponding weight.

2.3.3. Metrics for Model Evaluation

In order to evaluate the performance of the model, we used the accuracy, precision,
recall, F1 score, and kappa as the performance metrics. The counts of true positives (TP),
false positives (FP), true negatives (TN), and false negatives (FN) for the predicted results
were determined using the type confidence. Accuracy indicates the percentage of the
total samples that had correct prediction results. Precision indicates the proportion of
all the samples predicted by the model that were correctly predicted. Recall indicates
the proportion of all the true samples in the dataset that were correctly predicted. The
F1-score is the harmonic mean of the precision and recall, which measures the performance
of the model with the same weight for both. The value of kappa is calculated from the
results of the confusion matrix for consistency testing and can also be used to measure the
classification accuracy. The model evaluation formula is as follows:

Accuracy =
TP + TN

TP + TN + FP + FN
(3)

Precision =
TP

TP + FP
(4)

Recall =
TP

TP + FN
(5)

F1 = 2 × Precision × Recall
Precision + Recall

(6)

Kappa =
Po − Pe

1 − Pe
(7)

where P0 represents the consistency of the prediction, Po = ∑C
i=1 Ti

n ; Pe represents the

accidental consistency, Pe = ∑C
i=1 aibi

n2 ; n is the total number of samples; C is the total number
of categories; Ti is the number of samples correctly classified in each category; ai is the
number of true samples in each category; and bi is the number of samples predicted in
each category.
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2.3.4. Overall Feature and Prototype Extraction

Deep features in model prediction results are extracted and widely used to track the
features of instances and scenes in images [55]. The overall features of the historical building
groups were mapped into a 2D scatter plot using t-SNE feature vectors extracted from the
images, which showed the deeper semantic features of the category in the penultimate layer
in the network [56]. The scattered location distribution of the t-SNE reflected the cluster
characteristics, and all the locations were regarded as network nodes in order to judge the
category characteristics to track general trends and detect abnormal patterns [57,58]. The
position of the feature vectors assigned by dimensionality reduction reflected the overall
dispersion between categories, and close data points reflect similar features of the facade
images. The t-SNE scatter analysis using our model mined the shared and individual
features among the function categories without manual matching one by one, reducing
the impact of subjective preferences and fuzzy generalizations. In order to describe the
characteristic relationships of each category, the scatter distribution of the t-SNE was further
described using each intra-cluster compactness (CP) and each inter-cluster separation
(SP) [59,60]. CP shows the clusters’ average homogeneity, while SP shows the clusters’
separation from other clusters. A higher SP means more independent clusters, and a lower
CP means generalized homogeneity [41]. The calculation formula is as follows:

CP =
1
|Ck| ∑

xi∈Ck

‖xi−µk‖ (8)

SP =
2

K(K− 1)

K

∑
1≤p<k

‖µk−µp‖ (9)

where the Euclidean distance is used to calculate the CP and SP; µk and µp are the cluster
centroids of Ck and Cp, respectively; and xi are all the data points within cluster Ck.

Appropriate images were chosen to represent the typological paradigm of the historic
groups, which is an essential carrier for cognition establishment and image dissemina-
tion [61]. Kernel density analysis is a method of mining the sample’s own characteristics to
extract the core of each category [62]. In the t-SNE scatter plot, the location points closer to
the cluster core reflect samples with general characteristics within the cluster, rather than
their individuality. The calculation formula is as follows:

f(s) =
n

∑
i=1

1
h2 k

(
s− si

h

)
(10)

where f(s) is the kernel density estimate of scatter point s after t-SNE dimensionality
reduction; h is the distance decay threshold; k is the weight function; and n is the number
of scatter points whose distance from position s is less than or equal to h.

2.3.5. Facade Element Characteristic Areas

The areas of the facade elements in the image represent the semantic characteristics
of the facade that are used to segment to reflect the characteristic details. Figure 4 shows
our segmentation of the historic building facade into inherent areas and highlighted areas.
Among them, the facade-fixed area was divided using EISeg, which is based on the semi-
automatic interactive annotation tool developed by PaddlePaddle [63]. Combining the
characteristics of historic building facades and the classification of existing facade datasets
along the railway [64,65], we finally identified 12 categories to represent the inherent
regional semantics of facade elements. The facade elements of each historic building were
divided into wall, wall decoration, roof, roof decoration, door, door decoration, window,
window decoration, cornerstone, balcony, chimney, and pillar. The highlighted facade areas
were used to extract the characteristic areas predicted by the model through Grad-CAM,
providing a visual interpretation for deep learning networks [66]. Grad-CAM uses network
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layers to generate a rough localization map to highlight areas with solid features in the
process of historic building function identification and superimposes a gradient plot to
distinguish the feature strength and location on the original image.
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2.3.6. Metrics for Differential Expression

In order to clarify the differences among historical building functions in the expression
of facade elements, we calculated the average weight (AW) and weighted area (WA) of each
facade element expression based on the pixel distribution from the Grad-CAM visualization
results. The pixel characteristic values of the facade elements were averaged by AE to
identify the intensity of each element’s expression in the image. The WA was calculated
based on the proportion of the weighted pixel area of each element in the highlighted area,
helping with the further interpretation of the characterization of the highlighted area of
Grad-CAM. The calculation formula is as follows:

AE =
1
ne

ne

∑
i=1

wie (11)

WA =
∑ne

i=1 wie

∑E
e=1 ∑ne

i=1 wie
(12)

where wi is the pixel weight of the facade element e, ne is the number of pixels of element
e, and E is the number of categories of the facade element.

2.4. Research Framework

Figure 5 shows the technical framework of our research. First, we aggregated the
basic information and original sample data of historical building groups along the CER,
unifying the IDs of heterogeneous data to concatenate the data attributes. Second, the
overall facade analysis determined the identification features in terms of spatial distribution,
homogeneous confusion, and feature vectors, which were trained and predicted by using
the processed dataset in the improved SE-DenseNet structure. Finally, the prototype
samples predicted by the model were used as new inputs for facade element analysis
and divided into highlighted and inherent areas by semantic segmentation and CAM
visualization to explore the expression differences between the functions and facades
among the historic building groups.
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3. Results
3.1. Model Performance
3.1.1. Experimental Procedure

The experimental environment was implemented using Python 3.8 and PyTorch 1.12
with two GeForce RTX 3060-12G GPUs for calculations. The classification training process
used mixed precision training, set 100 epochs with 0.0001 as the initial learning rate, and
used Cosine Annealing with Warmup to adjust the learning rate dynamically. A batch size
of 64 was used for training, testing, and validation, and Polyloss and AdamW were selected
as the loss function types of the model with the optimizer [67,68]. Our classification model
reached a total accuracy of 85.84% with the validation set for the 20% HLJ section and a
total accuracy of 72.36% in the test set for the NM section. Figure 6 shows the details of the
process by which the model was trained to reach convergence at roughly 40 epochs.

3.1.2. Classification Accuracy by Class

We compared the more popular image classification networks to identify the origi-
nal functional classification of historic building groups. According to the configuration
described in Section 3.1.1, training and validation were performed on the CER dataset.
Table 3 shows the classification results and performance of each model. Compared with
other popular networks, DenseNet, with its dense connectivity mechanism, performs better
in the function classification of realistic historical buildings, making the model deeper and
extracting more comprehensive features. It was observed that, upon adopting the self-
attention mechanism to assign weights to different features, the more informative features
were effectively utilized, improving the feature extraction capability of the network and
improving the generalization ability.
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Table 3. Results comparing the models’ performances.

Models Accuracy Precision Recall F1-Score Kappa

VGG16 64.12% 0.68563 0.42847 0.41324 0.49452
mnasNet 76.93% 0.75818 0.68849 0.70065 0.68751

ShuffleNet V2 78.35% 0.76400 0.69833 0.7241 0.70299
ConvnNxt-B 80.13% 0.81898 0.72112 0.76123 0.72445
MobileNet v3 80.34% 0.78627 0.70427 0.73068 0.72714

Resnet 50 81.19% 0.81127 0.7134 0.75584 0.73814
Sequencer2d-M 81.33% 0.83392 0.73904 0.77813 0.74214
EfficientNet V2 81.55% 0.84747 0.73819 0.78192 0.74629
DenseNet 121 83.22% 0.85339 0.75298 0.78732 0.76778
SE-DenseNet 85.84% 0.88355 0.80856 0.84190 0.81553

3.2. Overall Differences in Facades among Functions
3.2.1. Spatial Distribution

We analyzed the spatial and error distributions of historical building groups along
the CER. Figure 7a shows the amount and accuracy of the historical buildings in each area,
with blue indicating the correctly predicted buildings and orange indicating the incorrectly
predicted buildings. The TP%s in the city and suburbs of Harbin were 81.34% and 84.02%,
respectively. The major errors occurred in cities with building functions, such as business,
hospitals, and schools, while the errors in suburbs mainly occurred in the working and
military areas along Daqing, Suihua, and Suifenhe. Figure 7b shows the urban–rural count
differences in the spatial distribution of building functions. The majority of the confusion
was found in Harbin, and the diachrony may cause style merging and renovation deviations.
In order to facilitate the expansion and support of immigrant settlements, Harbin’s early
urban construction was developed by supplementing functions from the railway backbone,
leading to rich and varied styles of public buildings [19]. In addition, the concept of early
renovations emphasized the facade’s shape rather than its authentic conservation [69].
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3.2.2. Classification Features

In order to evaluate the visual relationships between each function type of the historic
buildings, we computed the confusion matrix of the model using the validation set. Fig-
ure 8 shows the confusion matrix, which compares the predicted and ground truth labels,
including the precision, recall, and F1-score for each function type. Overall, most of the
historic buildings along the CER can be basically identified as the correct category, with the
accuracy of the identification results being above 0.72, recall above 0.70, and F1-score above
0.73. Proportionally, 18% of assistant buildings, 24% of military camps, 18% of mansions,
and 23% of work areas were misidentified as employment residences. Assistant buildings,
train garages, and water towers were misidentified as work areas with error rates of 9%,
13%, and 15%, respectively. Compared to the historic buildings often seen in towns and
villages, 16% of police stations and 12% of schools were misclassified as office buildings,
and 15% of leisure buildings were misclassified as business buildings. Considering the
militarization, colonization, and industrialization of the CER repair process, the embry-
onic forms of towns along the railway were closely related to the military administration
and employment–residence buildings close to railway projects [47], reflecting a certain
similarity in architectural forms and potential homogeneity among functional clusters.

The t-SNE facilitates the recognition and understanding of anomalies and relationships
between the functional systems of the historic building groups by visualizing the in-depth
features from each type of sample cluster in the validation set. In order to understand
the functional systems and visual connections of the CER building groups from a holistic
perspective, Figure 9 shows our t-SNE two-dimensional mapping plot of the 16 classes of
historic buildings in the test set. It also includes quantitative CP and SP descriptions of the
clusters. According to the distribution structure of the t-SNE, military, industrial, railway,
and employment residences are usually distributed in towns and villages, demonstrating a
clear separation from the function categories commonly found in cities. The leisure building
cluster is at the system’s center, connected with other clusters around it and becoming the
more critical visual image representative type of the entire building group. The compact
and isolated clusters of pillboxes, water towers, and religious structures show a certain
degree of visual heterogeneity.

The relationships between inner and outer clusters were calculated using the CP and
SP in complementary fashion. Figure 9 (right) depicts the features of each cluster, which
were divided into four visual features using 2D vectors—high–high, low–low, high–low,
and low–high—using the mean CP and mean SP of all the clusters as the coordinate origins.
High–high indicates diversity within a cluster and independence between clusters, and
this type of building is widely used to serve operation and trade for a railway. This may
be due to the different hierarchies of stations along the CER [70], with levels matching
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and independent of the functional system. Conversely, low–low indicates intra-cluster
unicity and inter-cluster similarity. As important public service buildings, leisure buildings
and schools formed their own characteristic focus under the urban construction led by the
Tsarist government. Low–high historic buildings are independently identifiable by the
serious or exclusive function that no diverse facades are represented along the route. The
high–low historic building facades are diverse and interconnected, with a large number
of buildings attached to different consulates and residents, and their self-governance may
promote a close integration among the cluster facades.
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3.2.3. Classification Extraction Prototype

In order to extract the prototypes for each type of historic building, a kernel density
calculation was applied to each cluster visualized by the t-SNE across the entire dataset,
and the densest sample in each cluster was selected as the “representative” type using Jenks.
Figure 10a,b shows our density visualization for the entire samples in each cluster, and the
samples within the red core areas in each cluster, which were selected as representatives
of the cluster’s prototype, are shown in the figures on the right. Although our extraction
process did not judge the heritage value, the extraction results show that the prototype
extraction after the traversal process of the global features was consistent with the conven-
tional sense under the general patterns, which are essential and integral universal features.
Figure 11 shows examples of the extracted prototypes, which represent most of the features
across residential buildings.
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3.3. Elemental Differences in Facades among Functions
3.3.1. Elemental Areas of the Facade Features

The features of the global average pooling layer in the model were extracted using
Grad-CAM to generate a positioning map to highlight the category’s feature areas. Using
the prototypes of the building groups extracted above, the combination of Grad-CAM
with fixed semantics could reflect more meaningful elemental features. Table 4 shows
the samples of categories with fixed semantic elements overlaid with Grad-CAM feature
weights, and in parentheses are the numbers of prototype images for each category. Our
model was not influenced by the first floor, which came from the modern facade renovation,
store signage, and pedestrian vehicles, especially in the commercial building identification.
The feature areas are primarily focused around windows, which also play an important
role in the identification of historic buildings along the CER [71].

Table 4. Sample prototypes of the CER architectural heritage.

Category Examples

Train station
(21)
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Table 4. Cont.

Category Examples

Pillbox
(65)
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Table 4. Cont.

Category Examples

Mansion
(611)
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3.3.2. Elemental Expression of Facade Features

Describing the expression of the facade elements allows us to understand the relation-
ship between the functional characteristics and the facade elements in the building group.
Figure 12 shows the differences in our representation of the façade elements of the historic
buildings along the CER, in which the area size indicates the mean area of the featured
facade elements, and the color represents the mean weight of the featured intensity. Walls,
windows, and their decorations are the main parameters that identify the function category.
Although the main feature areas of windows and walls are generally higher than those of
their decorative elements, their feature strengths are significantly lower than those of their
decorative elements. The results show that combining Grad-CAM with the fixed semantics
of the facade elements helps to mine the facade features of building groups.
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4. Discussion
4.1. Visual Measurement of Historic Building Groups

It is widely known that the identification of historic building groups is an important
field of heritage conservation; due to the limitations of technology and data, information
on the buildings’ visual characteristics often depends on a manual traversal process and
the subjective experience of experts. This study explored an objective and efficient traversal
analysis methodology using deep learning techniques to identify the features of historical
building groups. The model SE-DenseNet was deliberately designed with a channel
attention mechanism to improve the accuracy of historical building identification, which
could enhance the effective features for learning and extraction. Although the addition of
squeeze excitation to the model increases the parameters, training time, and computational
resources, it is worthwhile in terms of the training effect and more significant features. The
preset application scenario did not require responses in real time, instead acting as a visual
inspector of the traversal analysis of the numbers of building groups; therefore, it does not
impact the model’s usability in real applications.

4.2. Visual Relationship between Function and Facade

With the rapid development of deep learning techniques, image data reflecting con-
servation values provide new paths for describing and understanding historic building
groups. The potential connections among the building groups were the primary contri-
butions in our dataset, with the buildings having similar colors, styles, and symbols, and
being built during the same period of construction. Although their scattering along the
railroad produced a blind spot that was challenging to be covered by the street view images
that are widely used at present, it is more important to understand the typological analysis
supported by this methodology for historic building groups. The identification results for
16 historic building functions further explain the details of the multi-vector features among
the building groups in terms of geographic distribution, typological relationships, and
element expressions. These findings provide a feature reference for historical research and
visual perpetuation in the CER and will help to promote the authenticity and integrity of
the historical building groups.

We observed in both qualitative and quantitative explorations that the features ex-
plained by the model equally reflect instances of more valuable information and patterns,
such as the complexity of deep descriptions, multi-scale similarity observations, and overall
understanding, which often require long-term tracking and investigation [72]. We also
found that the characteristic differences in diversity and specialization, whether demon-
strated using the binary structure of the t-SNE with clusters or not, largely conform to
the existing conventional sense regarding the CER, further confirming the findings of a
previous investigation [69]. The expression of facade elements could provide an effective
interpretation of the multi-dimensional vector features among the historic building group.
Our methodology provides an important reference point for the identification and classifi-
cation process by extracting the typological paradigm and tracing the elements’ position
in the historic building group. Similarly to studies on the classification of architectural
styles, windows are the most essential element, and their diverse decoration is the primary
point of reference for distinguishing the classification [55,73], as well as the criterion for
regeneration in the future. In addition, this process should recognize the inherent value
of historic buildings, and the spatial and temporal evolution of heritage value elements
should be integrated into the conservation framework [74].

4.3. Limitations and Future Work

There are limitations that could be addressed in future studies. Since empirical appli-
cations were selected from historical building groups along the CER, dismantling the group
features formed by industrial expansion was the focus of this study, which had a unified
construction background. The context of historic buildings in the study was not absolutely
comprehensive, and there may be other missing buildings that still lack preservation at-
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tention. Continuous surveys will be needed in future work to maintain the integrity of
the CER historic buildings for conservation. During the data collection phase, a portion
of the historic building facades were found to be in disrepair, renovated, and remodeled.
This irreversible change may have induced some deviation in the experimental results,
which could have also been influenced by the fact that the images were shot manually, thus
affecting their quality. In future work, preset, unified shooting devices and multi-source
image data could be considered through different wavelength ranges to distinguish such
alterations (e.g., mold, deterioration, and stain) and to enhance the capabilities in prediction
and interpretability [75]. In addition, the study initially defaulted to equal values in his-
toric buildings without considering the individual differences supporting the typological
contribution. Future research could combine heritage value assessments to further support
the typological representation.

5. Conclusions

This research applied computer vision and image classification to establish the cog-
nitive structure of the visual features of historic building groups, analyzed the inherent
relationship between function and facade in historic building groups, and excavated their
expressive features as well as crucial elements to provide criteria for their regeneration,
preservation, and inheritance.

Our methodology was applied to the functional categories of 1208 historical buildings
along the Heilongjiang section of the CER, and 158 buildings were tested through the
Inner Mongolia section of the CER. The results show that our method had a satisfactory
accuracy, with a precision of 85.84%. Compared with previous methods, the interpretation
of the model further explored the depth features in historical building groups, which could
assist traditional studies that employ the manual traversal process. At the same time, we
found that the building distribution along the CER is characterized by an urban–rural
dichotomy and a clear differentiation between military, industrial, and railroad functions,
with buildings being commonly found in cities and towns. In addition, the elements that
influence the facade features along the CER are the decorative parts of the elements, instead
of the fundamental parts.

A systematic understanding of historic building groups promotes value transfer and
renovation for conservation. Exploring the functional logic and systemic vein within the
historical building groups, both comprehensive and segmented, will provide a new path
for integrated conservation and stable inheritance.
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43. Ergün Hatir, M.; İnce, İ. Lithology Mapping of Stone Heritage via State-of-the-Art Computer Vision. J. Build. Eng. 2021, 34, 101921.
[CrossRef]

44. Dang, A.; Liang, Y.; Chen, M.; Wu, G. Research Progress and Trend of Information Technology Methods for the Conservation of
Historic Cities. China Anc. City 2021, 35, 33–37. [CrossRef]

45. Cui, W.; Hu, Y.; Wang, Z. Typology and Geographic Distribution Characteristics of Chinese Eastern Railway Heritages. Econ.
Geogr. 2016, 36, 173–180. [CrossRef]

46. Wang, F.; Zhao, Z.; Tao, G. Research on Survey Methods and Strategies of the Chinese Eastern Railway Groups: Case Study of the
Comprehensive Conservation Plan of the Chinese Eastern Railway (Heilongjiang Section). In Proceedings of the Annual National
Planning Conference 2018, Huangzhou, China, 24–26 November 2018; pp. 906–915.

47. Liu, D.; Bian, B.; Li, Q. Architectural Cultural Heritage of Chinese Eastern Railway; Harbin Institute of Technology Press: Harbin,
China, 2020; ISBN 978-7-5603-8520-4.

48. Japkowicz, N.; Stephen, S. The Class Imbalance Problem: A Systematic Study. Intell. Data Anal. 2002, 6, 429–449. [CrossRef]
49. Huang, G.; Liu, Z.; van der Maaten, L.; Weinberger, K.Q. Densely Connected Convolutional Networks. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recognition 2017, Honolulu, HI, USA, 21–26 July 2017; pp. 4700–4708.
50. Tao, Y.; Xu, M.; Lu, Z.; Zhong, Y. DenseNet-Based Depth-Width Double Reinforced Deep Learning Neural Network for High-

Resolution Remote Sensing Image Per-Pixel Classification. Remote Sens. 2018, 10, 779. [CrossRef]
51. Shi, Z.; Hao, H.; Zhao, M.; Feng, Y.; He, L.; Wang, Y.; Suzuki, K. A Deep CNN Based Transfer Learning Method for False Positive

Reduction. Multimed. Tools Appl. 2019, 78, 1017–1033. [CrossRef]
52. Hussain, M.; Bird, J.J.; Faria, D.R. A Study on CNN Transfer Learning for Image Classification. In Proceedings of the Advances

in Computational Intelligence Systems, Savannah, GA, USA; Springer International Publishing: Cham, Switzerland, 2019;
pp. 191–202.

53. Hu, J.; Shen, L.; Sun, G. Squeeze-and-Excitation Networks. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition 2018, Salt Lake City, UT, USA, 18–23 June 2018; pp. 7132–7141.

https://doi.org/10.1016/j.buildenv.2021.107921
https://doi.org/10.1016/j.culher.2021.10.004
https://doi.org/10.1007/s10489-016-0762-6
https://doi.org/10.1016/j.buildenv.2022.108781
https://doi.org/10.3390/ijgi10080551
https://doi.org/10.1016/j.ins.2013.08.020
https://doi.org/10.3390/rs11111259
https://doi.org/10.1016/j.landurbplan.2022.104569
https://doi.org/10.1016/j.isprsjprs.2018.02.006
https://doi.org/10.1145/3383314
https://doi.org/10.1016/j.patrec.2020.02.017
https://doi.org/10.3390/app7100992
https://doi.org/10.1016/j.tourman.2020.104165
https://doi.org/10.3390/buildings12060809
https://doi.org/10.1016/j.jobe.2020.101921
https://doi.org/10.19924/j.cnki.1674-4144.2021.04.005
https://doi.org/10.15957/j.cnki.jjdl.2016.04.024
https://doi.org/10.3233/IDA-2002-6504
https://doi.org/10.3390/rs10050779
https://doi.org/10.1007/s11042-018-6082-6


Sustainability 2023, 15, 15857 23 of 23

54. Tong, W.; Chen, W.; Han, W.; Li, X.; Wang, L. Channel-Attention-Based DenseNet Network for Remote Sensing Image Scene
Classification. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 4121–4132. [CrossRef]

55. Sun, M.; Zhang, F.; Duarte, F.; Ratti, C. Understanding Architecture Age and Style through Deep Learning. Cities 2022, 128, 103787.
[CrossRef]

56. Van der Maaten, L.; Hinton, G. Visualizing Data Using T-SNE. J. Mach. Learn. Res. 2008, 9, 2579–2605.
57. Frey, B.J.; Dueck, D. Clustering by Passing Messages between Data Points. Science 2007, 315, 972–976. [CrossRef]
58. Oliveira, M.; Gama, J. A framework to monitor clusters evolution applied to economy and finance problems. Intell. Data Anal.

2012, 16, 93–111. [CrossRef]
59. Cardoso, M.G.M.S.; de Carvalho, A.P. de L.F. Quality indices for (practical) clustering evaluation. Intell. Data Anal. 2009, 13,

725–740. [CrossRef]
60. Li, K.; Cao, X.; Ge, X.; Wang, F.; Lu, X.; Shi, M.; Yin, R.; Mi, Z.; Chang, S. Meta-Heuristic Optimization-Based Two-Stage Residential

Load Pattern Clustering Approach Considering Intra-Cluster Compactness and Inter-Cluster Separation. IEEE Trans. Ind. Appl.
2020, 56, 3375–3384. [CrossRef]

61. Deng, N.; Li, X. (Robert) Feeling a Destination through the “Right” Photos: A Machine Learning Model for DMOs’ Photo Selection.
Tour. Manag. 2018, 65, 267–278. [CrossRef]

62. Wang, H.; Zheng, X.; Yuan, T. Overview of Researches Based on DMSP/OLS Nighttime Light Data. Prog. Geogr. 2012, 31, 11–19.
63. Xian, M.; Xu, F.; Cheng, H.D.; Zhang, Y.; Ding, J. EISeg: Effective Interactive Segmentation. In Proceedings of the 2016 23rd

International Conference on Pattern Recognition (ICPR), Cancun, Mexico, 4–8 December 2016; pp. 1982–1987.
64. Gadde, R.; Marlet, R.; Paragios, N. Learning Grammars for Architecture-Specific Facade Parsing. Int. J. Comput. Vis. 2016, 117,

290–316. [CrossRef]
65. LIU, H.; ZHANG, J.; ZHU, J.; HOI, S.C.H. Deepfacade: A Deep Learning Approach to Facade Parsing. In Proceedings of the 26th

International Joint Conference on Artificial Intelligence, IJCAI 2017, Melbourne, Australia, 19–25 August 2017; pp. 2301–2307.
[CrossRef]

66. Selvaraju, R.R.; Cogswell, M.; Das, A.; Vedantam, R.; Parikh, D.; Batra, D. Grad-CAM: Visual Explanations from Deep Networks
via Gradient-Based Localization. In Proceedings of the IEEE International Conference on Computer Vision, Cambridge, MA,
USA, 22–29 October 2017; pp. 618–626.

67. Leng, Z.; Tan, M.; Liu, C.; Cubuk, E.D.; Shi, X.; Cheng, S.; Anguelov, D. PolyLoss: A Polynomial Expansion Perspective of
Classification Loss Functions. arXiv 2022, arXiv:2204.12511.

68. Llugsi, R.; Yacoubi, S.E.; Fontaine, A.; Lupera, P. Comparison between Adam, AdaMax and Adam W Optimizers to Implement
a Weather Forecast Based on Neural Networks for the Andean City of Quito. In Proceedings of the 2021 IEEE Fifth Ecuador
Technical Chapters Meeting (ETCM), Cuenca, Ecuador, 12–15 October 2021; pp. 1–6.

69. Zhang, L.; Zhao, Z. Study on Characteristics of Typical Units of Middle East Railway Complex in Harbin (Jurisdictions),
Heilongjiang Province, in Perspective of Type Differentiation. Urban. Archit. 2018, 32, 13–20. [CrossRef]

70. Zhang, B.; Zhao, Z.; Li, P.; Wang, Q.; Zhang, X. Study on the Earlier Town’s Planning under the Application of Spatial Syntax:
Taking the Secondary Station-Located Towns as an Example. Urban Dev. Stud. 2018, 25, 128–133.

71. Lee, S.; Maisonneuve, N.; Crandall, D.; Efros, A.A.; Sivic, J. Linking Past to Present: Discovering Style in Two Centuries
of Architecture. In Proceedings of the IEEE International Conference on Computational Photography, Houston, TX, USA,
24 April 2015.

72. Glatolenkova, E.V. Railway Architecture Along the Chinese Eastern Railway at the Beginning of the 20th Century. In Proceedings
of the IOP Conference Series: Materials Science and Engineering, Russky Island, Russia, 6–9 October 2020; IOP Publishing: Bristol,
UK, 2021; Volume 1079, p. 042003.

73. Xu, Z.; Tao, D.; Zhang, Y.; Wu, J.; Tsoi, A.C. Architectural Style Classification Using Multinomial Latent Logistic Regression. In
Proceedings of the Computer Vision—ECCV 2014, Zurich, Switzerland, 6–12 September 2014; Springer International Publishing:
Cham, Switzerland, 2014; pp. 600–615.

74. Zhang, H.; Zhao, Z. Collaborative Conservation Framework of Historic Urban Landscape for Territorial Resources Total Elements
and Total Space-Time Governance—Taking Mudanjiang, a Town along the Chinese Eastern Railway, as an Example. Chin. Landsc.
Archit. 2022, 38, 68–73. [CrossRef]

75. Perez, H.; Tah, J.H.M.; Mosavi, A. Deep Learning for Detecting Building Defects Using Convolutional Neural Networks. Sensors
2019, 19, 3556. [CrossRef] [PubMed]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1109/JSTARS.2020.3009352
https://doi.org/10.1016/j.cities.2022.103787
https://doi.org/10.1126/science.1136800
https://doi.org/10.3233/IDA-2011-0512
https://doi.org/10.3233/IDA-2009-0390
https://doi.org/10.1109/TIA.2020.2984410
https://doi.org/10.1016/j.tourman.2017.09.010
https://doi.org/10.1007/s11263-016-0887-4
https://doi.org/10.24963/ijcai.2017/320
https://doi.org/10.19892/j.cnki.csjz.2018.32.003
https://doi.org/10.19775/j.cla.2022.10.0068
https://doi.org/10.3390/s19163556
https://www.ncbi.nlm.nih.gov/pubmed/31443244

	Introduction 
	Materials and Methods 
	Study Area 
	Data Sources 
	Building Function Data 
	Building Facade Images 

	Research Methods 
	Dataset Building 
	Image Classification with Deep Learning Techniques 
	Metrics for Model Evaluation 
	Overall Feature and Prototype Extraction 
	Facade Element Characteristic Areas 
	Metrics for Differential Expression 

	Research Framework 

	Results 
	Model Performance 
	Experimental Procedure 
	Classification Accuracy by Class 

	Overall Differences in Facades among Functions 
	Spatial Distribution 
	Classification Features 
	Classification Extraction Prototype 

	Elemental Differences in Facades among Functions 
	Elemental Areas of the Facade Features 
	Elemental Expression of Facade Features 


	Discussion 
	Visual Measurement of Historic Building Groups 
	Visual Relationship between Function and Facade 
	Limitations and Future Work 

	Conclusions 
	References

