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Abstract: Vehicular ad hoc networks (VANETs) are a rapidly evolving field at the intersection of
intelligent transportation systems, emphasizing the need for a stable and scalable VANET topology
to accommodate growing vehicular densities. The intricate challenge of route selection calls for
advanced clustering protocols to bolster road safety and message routing. This research introduces a
novel approach to intelligent clustering routing protocols, leveraging heuristic-based solutions built
upon an enhanced ant colony optimizer (ACO) framework. The study unfolds in two stages: the
creation of a dynamic search space model and the election of cluster heads (CHs). The innovative
dynamic aware transmission range parallel Euclidean distance (DA-TRPED) technique establishes a
dynamic search space using the parallel Euclidean distance (PED) concept. This approach evaluates
vehicular nodes by estimating PED values, reducing the search process’s complexity. Subsequently,
an intelligent cluster head is selected by enhancing the dynamic evaporation factor (DEF) within
the ACO technique. The experimental validation of the DA-TRPED technique takes place in NS2
simulations, demonstrating superior performance compared to conventional ACO. This enhancement
is evident in metrics such as packet delivery, packet drop, throughput, end-to-end delay, and the
lifetime analysis of clustered nodes. The proposed approach holds promise for optimizing VANETs,
enhancing their stability and scalability while promoting road safety and efficient message routing.

Keywords: VANETs; ACO; DEF; parallel Euclidean distance; dynamic constraints; cluster head
selection; search space modeling

1. Introduction

Routing protocols and clustering techniques play essential roles in the operation of ad
hoc networks, including mobile ad hoc networks (MANETs), vehicular ad hoc networks
(VANETs), and flying ad hoc networks (FANETs) [1]. These networks require efficient
routing to ensure reliable communication, and various intelligent approaches, such as
fuzzy logic and artificial bee colony (ABC) optimization, can be used to enhance the
performance of routing protocols. Let us discuss different routing protocols and how these
intelligent approaches can be applied in the context of MANETs, VANETs, and FANETs [2].
MANETs include ad hoc on-demand distance vector (AODV), a reactive routing protocol
that establishes routes only when needed, reducing overhead in the network, and dynamic
source routing (DSR), a reactive protocol that maintains a route cache to store frequently
used paths, reducing the latency in route discovery. VANETs are designed specifically for
vehicular networks considering vehicle positions and speeds for routing decisions. FANETs
require specialized routing protocols to account for the mobility and unique characteristics
of flying nodes including protocols that consider altitude, 3D space, and dynamic network
topologies [3].

VANETs have captured considerable attention from both researchers and the vehic-
ular community. This type of network falls under the mobile ad hoc network (MANET)

Sustainability 2023, 15, 15903. https://doi.org/10.3390/su152215903 https://www.mdpi.com/journal/sustainability

https://doi.org/10.3390/su152215903
https://doi.org/10.3390/su152215903
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com
https://orcid.org/0000-0002-5183-7631
https://orcid.org/0000-0002-3188-529X
https://orcid.org/0000-0003-0394-7008
https://doi.org/10.3390/su152215903
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com/article/10.3390/su152215903?type=check_update&version=1


Sustainability 2023, 15, 15903 2 of 18

category, where vehicles are treated as communication nodes [4]. These vehicles employ
transceivers to enable technologies, such as advanced driver-assistance systems (ADAS),
the Internet of Things (IoT), and communication modes like vehicle-to-infrastructure (V2I),
vehicle-to-vehicle (V2V), and vehicle-to-anything (V2X) [5–8]. The technology adheres to
the IEEE 802.11p standards, facilitating the WAVE and DSRC models [6,9,10]. In this setup,
vehicles collaborate using MANETs, resulting in dynamic and fast-paced communication
that introduces significant challenges to the network structure. Consequently, the quality of
service (QoS), including communication reliability, scalability, and quality, suffers. Various
protocols have been proposed to alleviate the impact of poor inter-vehicular communica-
tion. However, achieving cooperation among deployed vehicular nodes remains complex.
Intelligent clustering protocols have emerged to enhance network QoS substantially.

Routing protocols in ad hoc networks include non-clustering routing protocols and
clustering routing protocols. Non-clustering routing protocols are based on a flat or peer-
to-peer network structure and proactive (table-driven) or reactive (on-demand) route
discovery mechanisms. Clustering routing protocols involve division of the network into
smaller, manageable clusters, logically grouping vehicular nodes based on factors like
communication links and node distances [6]. Clustering helps improve scalability by
reducing the number of nodes participating in routing, which minimizes control overhead.
Moreover, cluster heads can intelligently manage traffic within clusters, leading to better
load balancing and improved network efficiency. In cluster protocols, control messages
are confined to within clusters, reducing the overall control overhead in the network. In
addition, clustering can provide better security and isolation within clusters, making it
harder for external attackers to disrupt the network [11].

Clustering ant colony optimization (ACO) in VANETs is a technique used to address
various optimization problems related to clustering in VANETs. Fuzzy logic and artificial
bee colony (ABC) optimization can be applied to routing protocols in various ways to
optimize the routing process in ad hoc networks. Fuzzy logic can be used to make routing
decisions based on imprecise or uncertain network information considering factors like
signal strength, link quality, and node mobility to make intelligent routing decisions.
ABC optimization can be used to optimize routing parameters or adapt routing decisions
dynamically based on network conditions through optimal routes by considering factors
like energy efficiency, load balancing, and path reliability [11].

The clustering process operates based on specific criteria, each one defined by its ap-
plication domain and functionality. The cluster network comprises cluster members (CMs)
and cluster heads (CHs). Data are then transmitted through intra-cluster and inter-cluster
processes [12]. The selection of cluster heads significantly influences network optimiza-
tion. CHs facilitate high-speed data transfer, benefiting communication by enhancing
the transmission capabilities and cellular interfaces of nodes under them. Thus, selecting
CHs becomes a challenging task [9]. Addressing optimal clustering falls into the realm of
NP-hard problems, often tackled with metaheuristic algorithms, as traditional clustering
methods struggle to adapt across diverse communication scenarios.

Clustering in VANETs encounters challenges when handling dynamic network pa-
rameters, which can limit support for a wide range of vehicle routing applications. In
our research, we believe we have achieved a significant milestone by introducing the
dynamic aware TR-PED technique, effectively addressing the limitations of conventional
swarm-based routing protocols. The key contributions of this paper are as follows:

• This study introduced DA-TRPED, a heuristic-driven clustering method that improves
network connectivity and data delivery in heterogeneous environments (V2V and V2I)
by incorporating dynamic transmission ranges into ACO. It also addresses the local
search space problem through constraint modeling, promoting efficient collaboration
and adaptability to changing topologies while reducing routing exploration time
and congestion.
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• We implemented the proposed DA-TRPED model to Network Simulator (NS-2) to
facilitate the observation, tracking, and enhancement of the transmission process in
comparison to traditional VANET models.

The remaining sections are organized as follows: in Section 2, we provide a com-
prehensive assessment of existing methods, highlighting their strengths and weaknesses.
Section 3 outlines the research methodology, our proposed model and simulation criteria,
offering insights into practical solutions for addressing the research challenges. Section 4
demonstrates the results of comparative simulated analysis to validate the effectiveness
of the proposed communication model. Finally, in Section 5, we present the conclusions
drawn from the proposed model and provide recommendations based on our findings.

2. Literature Review

Swarm intelligence represents a recent field that characterizes the behavior of dis-
tributed autonomous systems. Within the realm of vehicular networks, researchers investi-
gate the communication and interaction between deployed vehicles and their environment
through the lens of swarm intelligence [13]. This approach involves vehicles communi-
cating directly, guided by factors such as architecture, speed, and light measurements. It
mirrors the behaviors observed in natural phenomena like ant colonies, bird groups, fish
schools, and microbial cognition. The challenges encountered during the transition phase
of VANETs primarily revolve around ensuring stability and security in congested environ-
ments. Consequently, it is imperative to ensure connectivity in VANETs before practical
deployment. The growing diversity within VANETs, with more vehicles equipped with on-
board units (OBUs), enhances the likelihood of vehicular connectivity, thereby promoting
fairness in vehicular communication modules [14]. Efficiently organizing reliable routing
between deployed vehicular nodes is a task of great importance. Clustering emerges
as an effective solution for designing efficient route planning processes and enhancing
network stability.

In the context of VANETs, clustering can be categorized into two classes: network
associativity-based and identifier-based algorithms [2]. The former focuses on selected
cluster heads (CHs) and members within their nearest transmission range, while the lat-
ter operates in a manner similar to the CH with the least ID. In a study, it was noted
that the connectivity-based model tends to perform less optimally than identifier-based
algorithms [6]. In line with this observation, the CBRP algorithm was introduced, which
optimizes the route planning process by transforming the lowest identifiers [15]. An ant
colony system (ACS) was utilized for routing performance analysis [16]. Both the ACS
and the ACS’s variation algorithms have redefined challenges associated with clustering.
However, the ACS’s speed and accuracy have shown limitations. To address these lim-
itations, ant colony optimization with different favors (ACODF) combines the selection
of favorable ants with the stimulated annealing (SA) strategy, resulting in a faster path
selection process [17]. This approach calculates node intensities, selects nearby nodes as
ants, and utilizes a reactivation function based on pheromones. The cluster formation takes
place at the edge points of the ant data. The ACS and its variation algorithm were applied to
cluster data [18]. Similar studies, such as ant K-means (AK) and ant systems (ASCA), were
conducted to address challenges related to clustering systems [19]. The combination of AK
and ASCA was introduced to enhance the performance of database clustering models, with
a focus on association rules algorithms and the continuous updating of pheromones using
variance [20].

Moreover, trust-based ant colony routing (TACR) has been explored, considering
parameters like vehicular nodes’ position, direction, and relative speed [21]. To enhance
the scalability of the clustering process, real-time updates of vehicle position and trust are
taken into account. TACR was compared to the mobility aware-based DYMO algorithm,
revealing the need to improve routing overhead in TACR compared to MAR-DYMO [22].
Conventional clustering architecture and ACO are employed to enhance the efficiency
of routing operations, making ACO deployment beneficial for the VANET environment.
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Various authors, as listed in Table 1, have explored the formulation of intelligent-based
clustering models.

Table 1. Literatures of state-of-art clustering techniques in VANET applications.

Reference Routing Application Clustering Protocol Performance Evaluation

[23] Routing optimization Whale algorithm PDR, throughput, and overhead

[24] True Pareto optimal Dragonfly algorithm PDR, throughput, and delay

[25] Disconnections during communication Firefly algorithm Coverage

[26] Capacitated vehicle routing problem Grey wolf algorithm PDR, throughput, delay, and degree of
node

[27] Rapid modulation in topology Fuzzy bacterial foraging
optimization No. of clusters and grid size

[28] Clustering formation ACO and PCO algorithm Simulation time and radio propagation

[29] Geocast routing PSO optimized PDR, normalized routing load, and
throughput

The advancement of VANET technologies has been utilizing the 5G network architec-
ture for better network stability and connectivity. One study presented the software-defined
network (SDN) on 5G communication systems to administer urban traffic [30]. The inten-
tion was to enhance repercussion time under the emergency scenario. A few parameters,
such as vehicle localization, traffic forecasting, and control, were carried out by intelli-
gent architectural design. An Internet of Vehicles (IoV)-based optimizer algorithm was
introduced to support a dynamic routing system [31]. Adopting particle swarm optimiza-
tion (PSO) and ACO for the routing development process proved that ACO has better
efficacy than PSO in minimizing traveling time. A contact centric-based network (CCN)
was introduced to eliminate the scarcity of IPs during transmission [32]. The concept
of CCN-IoV in the CCN methodology was studied [33]. The performance of network
delay and throughput parameters was not remarkable. The scalability of the IoV needs
to be improved. Two metaheuristics-based algorithms also investigate the exploration
of network performance using ACO in a VANET, comprehensive learning oriented PSO,
and multi-objective PSO [34]. The study explored cost maximization for packet routing
and minimized usage of cluster counts. However, the weights are static. In alignment
with this, other parameters such as transmission range, mobility model, and topology
are considered static. To summarize, the dynamic nature of evolutionary techniques can
unleash interesting solutions to support large-scale networks. To further enhance the MOPs,
the dynamic characterization of evolutionary algorithms have been incorporated. Several
baseline algorithms, such as artificial immune system (AIS) [35], adaptive neuro-fuzzy
interface system (ANFIS) [36], and genetic algorithm (GA) have been discovered [37].
Reinforcement learning maintains its effectiveness over time in finding the most optimal
route in the VANET network [38]. An adaptive beaconing strategy based on the fuzzy logic
scheme for geographical routing was investigated which effectively reduced the routing
overhead and improved the packet-delivery ratio, throughput, average end-to-end delay,
and normalized routing load as compared to traditional routing protocols [39].

ACO has resolved various optimization problems by proving its ability in solution dis-
covery, better search strategies, and robustness. However, a few drawbacks are maximized,
such as the time taken for searching, convergence speed, and stagnation of discovered
solutions. The design of improved ACO will meet the following scenarios.

(a) Evaluating the communication stability under a dynamic nature.
(b) Estimating the fairness in network load distribution to have an optimized and scalable

VANET environment.
(c) Evaluating the performance regarding packet delivery, throughput, and network

delay to the number of vehicles and time.
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3. Methodology

This section of the paper delineates the structure of our proposed ACO model and
elucidates the underlying mechanisms, as illustrated in Figure 1. The existing literature
underscores the effectiveness of ACO as one of the foremost meta-heuristic models. ACO
draws inspiration from the way real ants modify their behavior and navigate to discover
the most efficient routes to their resource destinations. The selection of communication
channels is contingent upon the presence of highly concentrated pheromone levels and
heuristic values. Our framework is fashioned with inspiration from the adaptation and
cooperative strategies exhibited by ants. The iterative process underpins the solution
generation. During each iteration, ants derive insights from pheromone trails to formulate
solutions. The connections play a pivotal role in estimating the pheromone values used
for problem-solving. Ants employ a transition rule to visit nodes in a random manner.
Continuous learning facilitates the real-time update of pheromone information, and the
evaporation rate of pheromones influences the quality of ants’ chosen paths. Our approach
takes inspiration from evolutionary algorithms to elevate the quality of ant-generated
solutions, ultimately yielding the shortest and most optimal paths.
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Figure 1. Architecture of the proposed vehicular ad hoc networks (VANETs).

Let us assume that the vehicular networks are fully connected to the environment.
In alignment with the 5G networks, the usage of 5G infrastructure covers the highest
communication ranges and coverages. GPS helps to localize the position of vehicles. The
continuous changes in topology and mobility look for the standardized conditions achieved
from the quantity of cluster formation. Better communication is ensured in the minimum
count of clusters. Here, ACO is modified for better CH selections for the V2I model. Each
vehicular node is treated as point of solution, and the swarm indicates the set of solutions.
At a particular period, an ant portrays the IDs of CHs to the routes. This work intends to
establish optimal solutions for VANET clustering, achieved by intelligent node selection
and energetic evaporation rate. Every vehicle is equipped with 5G and 802.11p. Based on
the formed cluster and the VNeigh, the vehicular networks are organized. The integrity of
the proposed framework is achieved in two ways: search space modeling and initialization
and the CH selection strategy (Algorithm 1).
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Algorithm 1: Cluster Head (CH) Selection

Input: No. of ant nodes A
Output: Fittest CHs
For i in set of nodes estimated using (TR-PED)

Find the node with the highest PEDs
Set it as the representative node

End for
Selecting the first node with the best TR-PED values

For ant evolution ( )
Calculating the distance ratio of each candidate
The node that fulfills the DP constraints becomes the real clusters
The representative nodes shares the information and ready for next rounds

End for
Process Update ()

If ant_position 6= target then
Moveto (ant_position + target)

Leaves pheromones (environment)
End if

UpdateType (environment, source area, food sources)
Nextmove (environment, source area, food sources)

End Process

3.1. Modeling the Search Space

Our proposed framework represents a substantial advancement in cluster formation,
as illustrated in Figure 2. For reference, Table A1 provides an overview of the notations
employed in our proposed framework. The search space design is the greatest issue in
swarm-based routing. The ants estimate the candidate solution by performing a search
in graphical form. Initializing the route is the first step to discovering the optimal routes.
The distance oriented approach (DOA) calculates the distance between the current node
and its neighbors by forwarding beacon messages. A novel distance metric is introduced
to accurately calculate the distances between deployed vehicles named parallel Euclidean
distance (PED). PED is symmetric, positive definite, and fulfills points placed in triangle
inequalities. It falls between 0 to 1. Let us assume two lanes, a = [a1, a2. . .an] and b = [b1,
b2. . .bn] and p = [p1, p2. . .pn], are the three finite points under Euclidean space Pn, wherein
p 6= a and p 6= b. The PED is estimated as follows:

PED(a, b; P) =
||a− b||

||a− p||+||b− p|| (1)

where
||a− b|| = ||a− b||2 =

√
|a1 − b1|2 + . . . + |an − bn|2

The estimated PED is preserved at the routing table. The role of PED estimation is to
allocate costs for the node’s edge. Initially, the track, distance, node count, and velocity
for each ant/vehicle are predefined. For instance, an immediate PED estimates if any
vehicle alters its speed. The assigned costs are taken up as the objective function. Because
of the VANET’s dynamic nature, the path’s cost also changes. The purpose of the PED
is to eliminate the overheads in cluster and communication. The routes are formed in
mesh topology among ants using dynamic aware transmission range on the estimated
PED (DA-TRPED) algorithm. The proposed DA-TRPED treats the highway vehicles as a
swarm and assigns Transrang using the estimated local PED of each node. The topology is a
directed graph that holds vertices and edges, which is expressed as:

Network = (Vertices V and Edges E) (2)
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The density of the neighboring vehicles is measured as follows:

TDensity =
VNeigh

Disfront + Disback·CL ∗ 100 (3)

where
TDensity denotes the traffic density of the vehicles;
VNeigh denotes count of neighboring vehicles detected;
Disfront denotes the distance between vehicles and the neighbors in front;
Disback denotes the distance between vehicles and the neighbors behind;
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CL denotes the count of lanes in roads.
The density of the local vehicles [40] is measured as follows:

LDensity = [

(
1− TDensity

)
ρ‘ + 1]−1 (4)

where LDensity denotes local density. During the free-flow scenario, the transmission range
of the vehicles is measured from

Transrang = TRmax (5)

Likewise, the transmission range in the normal scenario is measured as follows:

Transrang = TRmax ∗
(

1− LDensity
)

(6)

The transmission range in the congested scenario is measured as follows:

TDensity =

√
TRmax·ln TRmax

LDensity + γ·TRmax (7)

Lats, the lowest value of pheromones and the costs are allocated to the edges of the
node’s network, which is expressed as:

ϑt+1
ij (iter = 1) =

1
|Nsum| (8)

where iter denotes iteration. All vehicular nodes estimate the PED. Thus, a dual perfor-
mance is given by the vehicles, i.e., it acts as a beacon during the transmission process
and estimates the distance to neighboring vehicles. The task is performed uniformly on
all vehicles. After the successful completion of PED estimation, the proposed ACO is
employed to deposit pheromone relying on the costs function. The ants traverse to find the
intenders by using the vehicles’ cost and routing table information. The cost of the edges
determines the clusters.

3.2. Cluster Head (CH) Selection

Once the clusters are formed, the cluster head is elected by the proposed ACO for
transmission purposes.

3.2.1. First-Node Election

Prior methods have randomly selected the first node to select the CHs. Here, a novel
way of selecting the first node is carried out to strongly impact the quality of traversing ants
with the awareness of pheromones and heuristic values. An additional column is inserted
into the pheromone matrix for the first node election. The matrix is updated eventually to
find the first node for the better ant tour.

3.2.2. Evolution Rule

The addition of new ants is estimated from the equation below. The objective function
for each ant is estimated to conduct a tour. The high heuristic and pheromone values
explore the probability of each vertex. The first rule is the addition of a new vertex to the
current tour which ensures that only the CMs belong to one cluster. Secondly, two similar
transmission ranges of vertices are ignored. It is designed to ensure one CH for a cluster.
The process continues until all ants are visited.

Pi,j =
ϑij· Heurij

∑k∈N ϑij · Heurij
(9)
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In this context, “i” represents the label of the last vertex added to the current ant’s
tour, “j” is the label of the next candidate vertex that the ant can choose, “Pi,j” denotes the
selection probability of the edge between vertex i and j. “N” refers to the set of all available
vertices for selection while considering the given constraints. Additionally, “ϑij” and
“Heurij” represent the pheromone and heuristic values associated with the edge between
vertex i and j, respectively.

3.2.3. Evaluating the Objective Function

The clustering process is viewed as a multi-objective model to evaluate the objective
function. The heuristic value and objective function are expressed as:

ft = Weigh1. f1 + Weigh2. f2 (10)

where
f1(∆devia) = ∑N

i=1 Abs ( D− |CMi |
)

(11)

f2 (Dis− Sum) =
|N|

∑
i=1

(
|CMi |

∑
j=1

PED
(
CHi, CMi,j

)
) (12)

In this context, “weigh1” and “weigh2” represent weight factors, both of which are set
to 0.5. “f 1” corresponds to ∆devia, which is the difference in cluster route length within
N. “f 2” is defined as the sum of the distances between CMs (cluster members) and CHs
(cluster heads) for all clusters. “D” is a constant value that quantifies the density degree
for each cluster. First, the PED is computed for all “i” clusters, and it is the sum of the
distances between inter-vehicular node CMi,j and CHi for each cluster “j” within the total
cluster set “N”.

3.2.4. Estimating Dynamic Evaporation Factor (DEF) under Dynamic Constraints

The conventional ACO uses a static evaporation rate, i.e., 0.05, which lowers the
convergence rate and searchability. The inefficiency in the search process lowers the
pheromone value and the unvisited vertex. Therefore, tuning evaporating and pheromone
values are the metrics used to release the pheromones. Here, the evaporation factor at
dynamic constraints (DP) is measured as:

δ (t) = ϑij ∗ (1− DP· δinit)) (13)

The role of DP calculation is to update the pheromone with the best decision for
predicting the next ants. Initially, it ranges from [0, 1], which is changed with respect to
time. At the range 0, the ants explore the network; as time passes, it moves to 1. In this part,
the pheromone change is multiplied by the evaporation factor to justify the convergence
speed of the proposed ACO. Finally, the DP is estimated as:

DP = {min
(

1,
DP− CS ∗ t

T

)
i f , DP− CS > 2 }

DP = { t
T

i f , DP− CS ≤ 2 } (14)

Along with the converging speed foundation, the best solution for ants is also evalu-
ated. The DP-CS to modify the pheromone’s speed is defined as [1 −Max_Iteration ants].
Consequently, increasing the ranges might bring the best solutions for ants.
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3.2.5. Updating the Pheromones

The quality of ants visiting the network is adjourned by using pheromone values.
Finally, the edges are updated with the pheromone values measured as:

ϑik (t + 1) = (1− ϑ)δik(t) + (1− ϑik (t)
(1 + fn)

) (15)

3.2.6. Finding the Best Solution

Finally, the fittest CHs are selected as FittestAntcost. The proposed ACO stops at the
given terminating criteria.

4. Results and Discussion

This section introduces the experimental configuration, parameters, and analysis of the
proposed approach. We implemented our method on Network Simulator (NS-2), a versatile
simulation tool known for its ability to model various network scenarios and interfaces [41].
The NS2 Simulation parameters utilized in this study are listed in Table 2. The messages
or data packets contain both header and payload information, facilitating the monitoring,
tracking, and updating of the transmission process. The sample simulation outputs of
cluster formation of the proposed DA-TRPED model using the Network Simulator 2 (NS-2)
tool are given in Figure 3. The proposed framework was evaluated by five performance
parameters, namely, the lifetime of the CHs and CMs, throughput, packet delivery ratio,
count of clusters, end-to-end delay, and packet drop rate.

Table 2. Simulation parameters and configurations utilized in NS-2 to evaluate the performance of
the proposed VANET model.

Simulation Parameters Ranges Used

Mobility type Freeway mobility

Propagation type 2-way ground

Antenna type Omni-directional

MAC layer protocols IEEE 802.11p

Beam-forming technology mmWave

Maximum count of packets in queue 50

Population size (ants) 100

Movement of nodes Bidirectional

Count of iterations 100

Size of grid 4 km2

Velocity 22–30 m/s

Count of network nodes 20, 40, 60,80 and 100 vehicles

Protocols UDP (transport layer)

Traffic type CBR

Transmission range Dynamic

Magnitude of packets 512 bytes

No. of executions 20

Confidence rate 90%
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4.1. Throughput Analysis

This metric represents the average number of packets transmitted through the 802.11P
communication modules. Table 3 and Figure 4a illustrate the throughput analysis of
the DA-TRPED technique, showing that it outperforms other methods. In contrast, the
conventional ACO exhibits fluctuations in throughput rates as the vehicle count increases.
Interestingly, the proposed technique also shows a reduction in throughput as the number
of vehicles increases from 40 to 80. This can be attributed to the estimation of DPEs, which
facilitates the communication process and its efficiency.

Table 3. Comparative results of throughput analysis for network performance evaluation.

No. of Vehicles Distance (m) DA-TRPED Conventional ACO

20 0.5 27.23 18.12

40 1.0 28.32 16.87

60 1.5 28.45 14.23

80 2.0 26.53 14.89

100 2.5 27.23 15.24

4.2. Packet Delivery Ratio (PDR) Analysis

The packet delivery ratio (PDR) represents the rate of successfully delivered packets
regardless of the vehicles involved. It is a crucial metric that characterizes the performance
of the routing network, influenced by factors such as packet volume, transmission range,
and network topology. Table 4 and Figure 4b illustrate the results of the PDR analysis. The
results indicate that the proposed technique successfully transmitted a greater number of
packets, regardless of their volume. The introduction of PED estimation had a significant
impact on the cluster formation process, contributing to this improved performance.
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Table 4. Comparative results of packet delivery ratio (PDR) analysis for network performance
evaluation.

No. of Vehicles Distance (m) DA-TRPED Conventional ACO

20 0.5 94.21 74.21

40 1.0 95.27 74.12

60 1.5 94.71 75.65

80 2.0 92.21 78.12

100 2.5 94.85 79.63

4.3. Packet Drop Ratio Analysis

The packet drop ratio quantifies the rate of unsuccessful packet transfers within the
network. In comparison to the previous ACO method, the proposed technique achieved
a significantly lower packet drop ratio, as depicted in Table 5 and Figure 4c. Notably, a
substantial contrast is observed in the packet drop analysis. The increased distance between
vehicles’ placements can impact the packet transmission process. By using PED estimation
to position vehicles closer to reduce travel time, the proposed technique substantially
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decreased the drop ratio. Specifically, the drop ratio of the proposed technique is seven
times lower than that of AODV and two times lower than that of ACO.

Table 5. Comparative results of dropping ratio analysis for network performance evaluation.

No. of Vehicles Distance (m) DA-TRPED Conventional ACO

20 0.5 7.82 18.23

40 1.0 7.23 18.74

60 1.5 7.12 25.34

80 2.0 6.23 35.78

100 2.5 6.88 38.47

4.4. End-to-End Delay Analysis

End-to-end delay analysis measures the time taken for packets to traverse the network
and is based on calculating the mean delivery time for successfully transmitted packets.
This analysis accounts for scenarios where packet transmission, network topology, and
network latency exhibit their worst performance. The proposed technique demonstrated
superior results compared to other methods, as illustrated in Table 6 and Figure 4d.

Table 6. Comparative results of end-to-end delay analysis for network performance evaluation.

No. of Vehicles Distance (m) DA-TRPED Conventional ACO

20 0.5 50.12 203.1

40 1.0 65.14 254.12

60 1.5 53.12 312.44

80 2.0 75.12 270.14

100 2.5 68.12 211.11

4.5. Cluster Head Lifetime (CHL) Analysis

In our study, we analyzed cluster head (CH) epochs using the TR-PED technique,
enabling us to investigate how rapid changes in vehicle positions influence the topology of
the vehicular system. These positional changes have the potential to impact the lifetimes of
both cluster heads (CHs) and cluster members (CMs). As observed in Table 7 and Figure 5a,
when the network has a wider coverage area, it extends the CHs’ lifetimes, thus ensuring
continuous network connectivity for the CMs. Furthermore, this prolonged CH lifetime
results in a decreased frequency of vehicle entries and exits.

Table 7. Comparative results of cluster head lifetime (CHL) analysis for network performance
evaluation.

No. of Vehicles DA-TRPED Conventional ACO

20 120 185

40 147 180

60 125 177

80 155 173

100 151 156
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4.6. Cluster Member Lifetime (CML) Analysis

Table 8 and Figure 5b clearly illustrate that an increase in cluster head lifetime (CHL)
results in corresponding enhancements in cluster member lifetime (CML), thereby ensuring
uninterrupted network connectivity.

Table 8. Comparative results of CML analysis for network performance evaluation.

No. of Vehicles DA-TRPED Conventional ACO

20 174 220

40 164 214

60 155 280

80 176 187

100 164 176

4.7. Count of Cluster Formation Analysis

The number of clusters plays a crucial role in shaping the functionality of VANETs.
The results, shown in Table 9 and Figure 5c suggest that maintaining fair-flow connectivity
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within the network supports both cluster heads (CHs) and cluster members (CMs) while
simultaneously reducing the overall cluster count.

Table 9. Comparative results of cluster formation analysis for network performance evaluation.

No. of Vehicles DA-TRPED Conventional ACO

20 5 7

40 6 9

60 8 12

80 13 14

100 15 16

In a recent study, ECBLTR, an enhanced cluster-based lifetime VANET protocol was
investigated to evaluate the impact of network sizes and routing protocols on packet
delivery ratio and packet loss, average end-to-end delay, and overhead transmission [42].
ECBLTR showed an efficient selection method of CHs through the fuzzy system and an
increase in network lifetime compared with CBLTR. Our proposed DA-TRPED technique
outperforms the traditional ACO method in terms of packet delivery ratio, dropout rate,
latency, and cluster formation.

A small opposite trend is observed when the count of vehicles becomes 60. This
is due to the estimation of the dynamic parameter, which brings little network changes.
This innovative approach effectively addresses severe congestion problems by optimizing
route selection and cluster head assignment during peak hours. Additionally, it leads to a
gradual reduction in aggregate distances traveled by vehicles under specific circumstances.
However, some limitations are defined in the usage of network cycling and to prevent the
search from falling into a local optimum point and global searching potentials.

5. Conclusions

Designing effective routing protocols and network management for VANETs is a
challenging task due to the dynamic nature of mobility and data delivery. This challenge
highlights the importance of developing dynamic parameters for routing protocols and
clustering. While ACO has been used in various ways to optimize solutions, it has often
failed to adequately address dynamic constraints. This study introduces a heuristic-based
clustering algorithm integrated with an improved ant colony optimizer, resulting in a
model that establishes a scalable and stable topology for VANET systems. The proposed
model begins by employing a novel approach to select an intelligent initial node and
optimizing the search space. Additionally, it enhances the convergence speed of the
traditional ACO by adjusting the evaporation factor. The TR-PED algorithm, introduced
in this study, accurately estimates the distances between deployed vehicles, ensuring
robust VANET connectivity. A comprehensive comparison with the conventional ACO
highlights the potential of the proposed approach. The results demonstrate improved
simulated performance in terms of packet delivery, packet dropout, delay, and throughput.
These innovative design concepts effectively address the challenge of local search space
limitations and ultimately achieve reliable, scalable, and efficient vehicle-to-vehicle (V2V)
communication. As a future work, the proposed technique can be extended to the concept
of cellular automata which helps to select the optimal route by detecting malicious activities.
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Appendix A

Table A1. Notations and their representations utilized in this study.

Notations Representations

N Nodes

Nsum Sum of nodes presented in the network

Transrang Defined transmission range

∆Tmod Degrees of modification

K Maximum count of iterations

k Current iteration

f1 Deviation assessment of clusters in t

f2 Summation of distance between CMs and CHs

ft Eminency of ant tour

Weigh1, weigh2 Weights allocated between f1 and f2, i.e., 0.5

Abs Absolute value

ED Euclidean distance

|CMi| Sum of CMs in cluster

|k| Interval of the clusters

ϑ
(t+1)
ij

Pheromone trail value in iteration k

δ Evaporation rate of pheromone

Heur Heuristic value

TRmax Maximum range of transmission

ρ‘ Road facility level, 0.1

γ Traffic variable; it is constant, 0.25

TDensity Density level of traffic

Tthreshold Threshold level of traffic scenario

LDensity Density of resident vehicle

VNeigh Count of sensed neighbor’s vehicle

Dis f ront Distance between vehicles and vehicles in front

Disback Distance between vehicles and vehicles behind

CL Count of lanes in roads
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