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Abstract: The potential impacts of climate change on water resources in the Upper Indus Basin
of Pakistan, a region heavily reliant on these resources for irrigated agriculture. We employ state-
of-the-art global climate models from the CMIP6 project under the SSP245 scenario to evaluate
changes in river runoff using the Soil and Water Assessment Tool (SWAT). Our findings indicate that
temperature fluctuations play a crucial role in streamflow dynamics, given that the primary sources
of river runoff in the Upper Indus Basin are snow and glacier melting. We project a substantial
increase of approximately 18% in both minimum and maximum temperatures, precipitation pattern
increases of 13–17%, and a significant rise in streamflow by 19–30% in the future, driven by warmer
temperatures. Importantly, our analysis reveals season-specific impacts of temperature, precipitation,
and streamflow, with increasing variability in projected annual changes as we progress into the
mid and late 21st century. To address these changes, our findings suggest the need for integrated
strategies and action plans encompassing hydroelectricity generation, irrigation, flood prevention,
and reservoir storage to ensure effective water resource management in the region.

Keywords: climate change; CMIP6 models; SWAT modeling

1. Introduction

Global climate change is having a significant impact on water distribution networks in
many regions of the globe. Watershed management failures, such as extensive deforestation,
poor land use management, and unsustainable agricultural methods, are responsible for the
worst scenarios [1]. Currently, environmental circumstances are very worrisome and need
appropriate watershed policies for long-term sustainability. All climatic processes are un-
questionably increasing in intensity [2,3]. Floods, warmer temperatures, and droughts are
illustrations of extreme events that show the situation’s severity. According to climate mod-
els, global temperatures will rise due to an increase in mean near-surface air temperature [4].
This may significantly improve the hydrological cycle variability, including variations in
the precipitation, evapotranspiration, and flow rate. Freshwater resources are enormously
important for human civilization and ecosystems, yet they are susceptible and may be
damaged by global climate change [5–7]. In addition, the huge contradiction between
the supply and demand of freshwater resources provides a significant need to forecast
hydrological responses to climate change and to manage water resources appropriately.
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Presently, one of the most pressing issues in the field of water quantity management
is climate change. Keeping the acknowledgments of the Fifth Assessment Report of the
Intergovernmental Panel on Climate Change in 2014 (IPCC AR5, 2014), temperatures might
elevate by 3.7 ◦C by 2100. Global warming is triggering changes to watershed management
across the globe. Thus, the impacts on water resources due to climate change are of greater
concern for future water management and to respond effectively to the worst scenarios [8,9].
Many researchers such as [10–12] have used IPCC AR5 for the future projection and evaluation
of future climate change [13]. Generally, global circulation model (GCM) is used for the climate
change scenarios in many regions of the world. In addition, statistical or dynamic downscaling
methods are essential for the evaluation of GCMs because of their high spatial resolutions
which need proper assessment [14,15]. The Coupled Model Inter-Comparison Project (CMIP)
was initiated in 1995 under the World Climate Research Program (WCRP) to assess the changes
in climate scenarios through a multi-model context from the past to the future [13]. CMIP6 is
the latest edition of CMIP, in which climatic projections are based on shared socioeconomic
paths (SSP). Broadly, SSPs are updated and revised versions of the representative concentration
pathways (RCPs), in which anthropogenic drivers are further improved for the assessment
of future scenarios along with socio-economic development [16]. Furthermore, evaluation of
the updated and revised phase of CMIP is necessary to make proper sustainable resources to
challenge worse scenarios.

Inter-model comparison Project Phase 5 (CMIP5) models have greatly accompanied in
determining climate change scenarios [17]. Previous researchers such as [18,19] used CMIP5
models to predict future drought risk and water availability. However, CMIP5-based GCMs
reveal substantial uncertainty in future summer monsoon precipitation projections [20].
Numerous CMIP5-based GCMs failed in South Asia to capture monsoon precipitation;
at the very outset of monsoon and large-scale variability in the future climate [21,22]. In
CMIP6, the main aims are the advancement and improvement of the parametrization
and representation of the climate change projections. Recent researchers such as [23,24]
have stated that the assessment of the CMIP6-based general circulation model (GCM)
apprehended efficient results as compared to CMIP5-based GCMs during the evaluation of
the Indian summer monsoon.

A combination of the representative concentration pathway (RCP) and alternative
techniques has been offered in the CMIP6 climate model for modeling future emission
scenarios. A number of innovative combinations of SSP scenarios have been developed
for use in CMIP6. These scenarios are based on updated versions of the SSP scenarios
from CMIP5 (SSP119, SSP370, SSP434, SSP245, and SSP585). SSP scenarios encompass
socioeconomic elements such as population growth, economy, urbanization, and other
factors [13]. Wider equilibrium climate sensitivity with an expanding temperature range of
1.5–4.5 ◦C is one of the improvements to CMIP6 scenarios. CMIP6 models were projected
to enhance capabilities and minimize uncertainty over the earlier CMIP5 and CMIP3
models [25]. SSP245 and SSP585 predict that by the end of the 21st century, radiative
forcing will have stabilized at 4.5 and 8.5 W m−2, respectively. The SSP245 scenario is
subjective for most countries pursuing sustainable growth. The SSP585 scenario, on the
other hand, emphasizes the worst-case scenario (a fossil fuel-based economy) as well as the
repercussions of unconventional energy development. [26].

Currently, various tools are available to evaluate the impacts on watersheds mainly
due to alterations in river runoff and base flow. However, most of the hydrologic methods
have similarities within the watersheds, corresponding catchments, and hydrological
modeling [27]. Among all, the most appealing and conceptual approach for the evaluation
of watersheds is to use the Soil and Water assessment tool (SWAT) model [28]. Moreover, the
SWAT model is widely used around the globe for the evaluation of hydrological processes
and also for environmental and ecological variations at any catchment scale [29]. The SWAT
model allows interconnection among variant physical processes [30].

The Upper Indus Basin of Pakistan supplies water to one of the world’s largest
irrigation systems. For the past several decades, the region has been experiencing imminent
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threats from climate change. The runoff in the Upper Indus Basin depends on a host of
factors, including the melting of seasonal snowpack, glacier melting, and precipitation [31].
The erratic changes in maximum and mean temperature during summer and especially
in winter have intensified the glacier melting and consequently river flow, adding to
the woes of the indigenous community living in the Upper Indus Basin [32]. Mountain
ecosystems are widely acknowledged to be the most sensitive to climate change [33].
These vulnerabilities are anticipated to be exacerbated by disproportionate warming in
mountain areas, notably in Gilgit Baltistan, which is one of the world’s most mountainous
and glaciated countries outside of the Polar Regions. This study mainly focuses on using
CMIP6-based GCMs for the projection of future climate change and their impacts on river
runoff using the SWAT model. The main objectives of this research include: utilizing CMIP6-
based Global Climate Models (GCMs) within the Soil and Water Assessment Tool (SWAT)
for streamflow projection; investigating the impacts of climate change on streamflow; and
assessing the overall changes in projected precipitation, as well as maximum and minimum
temperatures, and their effects on streamflow in the upper reaches of the Indus Basin.

2. Study Area Description, Data Collection and Methods
2.1. Study Area Description

The study area is chiefly focused on Gilgit region, which is the upper region of the
Indus River. Indus River Basin is communal among four countries such as Afghanistan,
China, India, and Pakistan with a total area of 1.1 × 106 Km2 [34] and it is extended between
32.48◦ to 37.07◦ N and 67.33◦ to 81.83◦ E [35]. Gilgit Baltistan’s districts are particularly
vulnerable to climate change and have very different terrain and geology. Every year,
communities in these areas face a variety of environmental threats. District Ghizer is
situated in the far northwestern portion of Gilgit Baltistan, bordering Afghanistan via the
Wakhan strip to the northwest and China to the north. It is rich in cultural, linguistic, and
environmental diversity. The region also hosts one of the largest pools of flora and fauna
adding to its diversity. However, climate change has been causing several issues for the
region, such as water insecurity, changes in land cover, displacement of population, and
loss of natural habitat for the last few decades [36]. Moreover, the warming in the upper
regions of Indus Basin tends to be from 0.3 ◦C to 0.7 ◦C higher in future even if the level
of global warming is kept to 1.5 ◦C raising the vulnerability of the region to its worst [37].
The seasonal snow cover varies from 95% in winter to 5% in summer [38]. The cryosphere
is the major land type, with a sparse cover of plants. Intensive farming is often practiced
across the area during agricultural operations. Gilgit Baltistan Basin area is 45,400 km2 and
its elevation ranges from 547 m (lowest) to 8060 m (highest) as shown in Figure 1.
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2.2. Data Collection

SWAT model is a data-intensive model that requires inputs such as DEM, land use,
soil map, and hydroclimatic data. National Aeronautics and Space Administration (NASA)
provided the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER)
Global Digital Elevation Model. The ASTER GDEM has a resolution of 30 m × 30 m.
Figure 1b shows how digital elevation model (DEM) data are utilized in the SWAT model
to delineate watersheds. To locate hydrologic response units (HRUs), the SWAT model
employs a land use and soil map. The United States Geological Survey (USGS) provided
land use data from the Moderate Resolution Imaging Spectroradiometer (MODIS) with
a spatial resolution of 500 m. In addition, the Food and Agriculture Organization (FAO)
provided a worldwide soil map. Figures 2 and 3 show the land use and soil types in further
detail. Furthermore, for its analysis, SWAT requires daily precipitation and temperature
(minimum and maximum), for their simulations. For the years 1982 to 2013, daily mete-
orological data for study area (Table 1) were obtained from the Pakistan Meteorological
Department. Due to the scarcity of consistent, long-term meteorological data in the study
area, we were forced to use only five stations. A broader network of stations would provide
a more comprehensive understanding of precipitation and temperature variability. This
study attempted to address temperature effects in the higher parts of the basin, so the
model’s sensitivity may not fully represent the entire basin due to this constraint. The
solar radiation, humidity, and wind speed data were incorporated in SWAT model from
Climate Forecast System Reanalysis (CFSR) source. A weather generator module inte-
grated with SWAT generates daily humidity, solar radiation, and wind speed data based
on precipitation and temperature. However, solar radiation, humidity, and wind speed
data are not directly produced by this module. Rather, it depends on these parameters as
functions of precipitation and temperature. Furthermore, hydrological data are necessary
for completing an uncertainty analysis following a SWAT model simulation in order to
compare the model’s results to observed data. For the years 1982 to 2013, hydrological data
(discharge monthly data) were obtained for Doyian station at Astore River from Pakistan
Water and Power Development Authority.
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Table 1. Meteorological station in the study area.

Station Name Latitude Longitude Elevation (m)

Bunji 35.6667 74.6333 1372
Gilgit (P.B.O) 35.9167 74.3333 1460

Chilas 35.4167 74.1 1250
Hunza 36.3167 74.65 2156
Astore 35.3333 74.9 2168

2.3. Methodology
2.3.1. Bias Correction of GCMs

Bias correction procedures use a transformation algorithm to change the performance
of climate models. Biases between historical climate variables that are observed and those
that are simulated can be used to set parameters for a bias correction algorithm. This
algorithm is used to correct simulated historical climate data that are not accurate. Since
the correction algorithm and its parameters for current climate conditions are thought to be
valid for future climate conditions as well, they are thought of as “stationary”. Thus, the
same correction method is used to correct future climate data. However, how well a bias
correction algorithm operates under conditions other than those used for parametrization is
uncertain. A good performance during the evaluation period does not mean that the same
thing will happen in the future. Teutschbein and Seibert [39] produced a comprehensive
explanation and suggested that a method that works well for the present is more likely to
perform well in the future than a method that performs poorly for current scenarios.

Climate models are often compared to observed data using various approaches to
reduce uncertainty if they show very little or no relation to observed data. GCMs are
adjusted via transformation algorithms in bias correction approaches to relate GCM outputs
to observable data. Moreover, the foremost aim of the biases is to correlate observed data
with the simulated data and to follow the same trend with deep statistics for the future
projections of the GCMs in that particular region [40]. Currently, climate model data for
hydrologic modeling (CMhyd) are used to make climate models more credible. This tool
is very easy to use in evaluating GCMs in any study area [41]. In addition, CMhyd tool
includes biasing methods such as linear scaling (additive and multiplicative), temperature
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variance scaling, precipitation power transformation, precipitation local intensity scaling,
delta change correction (additive and multiplicative), and precipitation and temperature
distribution mapping. Figure 4 illustrates a flowchart of the data processing and assessment
in the CMhyd tool. In this study, linear scaling (additive and multiplicative) produced the
best results for the evaluation of GCMs of all bias correction approaches, and the same
strategy was used [42]. Overlapping daily observed data (baseline period from 1985 to
2013) is required for historical data correction under the transformation algorithm while
using CMyd tool. Following the correction of historical data, the same procedure is used
for the correction of future data.
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2.3.2. Description of SWAT Model

SWAT is a physical-based hydrological model developed by the United States De-
partment of Agriculture in the 1990s. To examine the hydrology of any watershed, it
works in collaboration with geographic information systems [43,44]. SWAT model requires
DEM data for watershed delineation, land use and soil map for defining HRUs, and daily
meteorological (precipitation and temperature) data for simulations [45,46]. For simulation,
the SWAT model manages to make use of the water balance Equation (1). The flowchart
shows the SWAT model process in Figure 5.

SWt = SWo + ∑t
i=o (Rday − Qsur f − Ea − Wseep − Qgw)i (1)

whereas:

SWt = final soil moisture content, mm;
SWo = initial soil moisture content of the i-th day, mm;
t = time, d; Rday = precipitation of the i-th day, mm;
Qsurf = surface runoff of day i, mm;
Ea = amount of evapotranspiration on day i, mm;
Wseep = value of seepage of water from the soil into deeper layers i, mm;
Qgw = return flow amount on day i, mm.
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2.3.3. SWAT Model Calibration and Validation

Usually, after SWAT modeling, the simulated results are evaluated in SWAT-CUP
(SWAT Calibration and Uncertainty Procedures) to remove any uncertainty in the parame-
ters and select the best fittings. Due to its suitability and efficiency in fitting the parameters,
most researchers use SWAT-CUP automatic calibration with the Sequential Uncertainty
Fitting program algorithm (SUFI-2) for uncertainty analysis [47]. SWAT-CUP has vari-
ant uncertainty models such as Generalized Likelihood Uncertainty Estimation (GLUE),
Parameter Solution (ParaSol), Markov Chain Monte Carlo (MCMC), and Particle Swarm
Optimization (PSO). For better results, the SWAT-CUP model uses 2/3 of the data for
calibration and 1/3 of the data for validation. Pakistan is a data-scarce country. Long
and consistent historical streamflow records are available at Doyian station, which is lo-
cated at Astore River. Therefore, Doyian station was selected for model calibration. We
utilized SWAT-CUP (SWAT Calibration and Uncertainty Procedures) with the Sequential
Uncertainty Fitting program algorithm (SUFI-2) for this calibration process. SWAT-CUP
model is calibrated using monthly data from 1985 to 1999 and validated from 2000 to 2010.
In addition, calibration is a technique for establishing the best fit between observed and
simulated data in order to obtain the best values for representative functions. Statistical
analysis methods that are most typically utilized are Nash–Sutcliffe efficiency (NSE) [48],
coefficient of determination (R2) [49], percent bias (PBIAS) [50], and root mean square error
to the standard deviation ratio (RSR) [51] for evaluating the climatic data sets, as well
as for evaluating the performance of the model. NSE in Equation (2) is a standardized
statistical indicator having a range of values from 0 to 1. Close to 1 value implies a suitable
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fit between the modeled and the observed data. R2 in Equation (3) shows the ability of
the model in comparison with observed data. PBIAS in Equation (4) estimates the model
values, which may be lower (underestimated) or higher (overestimated), values close to
zero are the most accurate model simulation, and RSR in Equation (5) is another statistical
indicator for model performance in which the most optimum value is zero. The model
efficiency is always tested in the validation period in which the calibrated parameters
remain fixed, and changes are made in the input data to assess the representative functions;
their ranges are given in Table 2.
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where X and Y are the modeled and observed streamflow,
__
X and

__
Y are the mean modeled

and observed streamflow, and N is the pairs of data [52].

Table 2. Statistical indicators for model performance evaluation [53].

Performance
Rating NSE R2 RSR PBIAS (%)

Very good 0.75 < NSE ≤ 1 0.75 < R2 ≤ 1 0 ≤ RSR ≤ 0.5 −10 < PBIAS < 10
Good 0.65 < NSE ≤ 0.75 0.65 < R2 ≤ 0.75 0.5 < RSR ≤ 0.6 ±10 ≤ PBIAS < ±15

Satisfactory 0.5 < NSE ≤ 0.65 0.5 < R2 ≤ 0.65 0.6 < RSR ≤ 0.7 ±15 ≤ PBIAS < ±25
Unsatisfactory NSE ≤ 0.5 R2 ≤ 0.5 RSR > 0.7 PBIAS ≥ 25

2.3.4. Climate Change Forecasting

In climate change scenarios, uncertainty arises due to limitations such as the selection
of future climate models, insufficient physical understanding of various self-connections,
and computational capabilities [54]. Efficient corrections are needed in order to make good
choices in various climate change situations. In this study, various GCMs were utilized
for the projection of future climate change, which were downloaded from World Climate
Research Programme webpage (https://www.wcrp-climate.org/ (accessed on 5 January
2023)). The biased corrected GCMs data were divided into four sections: (1974–1993),
(1994–2013), (2014–2033), and (2074–2094). The description of each CMIP6-GCM is de-
scribed in Table 3.

Table 3. Overview of the CMIP6-GCMs adopted for this study.

Modeling Center Model Institute ID Resolution (km)

Commonwealth Scientific and Industrial Research Organization,
Australian Research Council Centre of Excellence for Climate

System Science, Australia
ACCESS-CM2 ACCESS 192 × 144

Centro Euro-Mediterraneo per i Cambiamenti, Italy CMCC-CM2-SR5 CMCC 288 × 192
Geophysical Fluid Dynamics Laboratory, United States GFDL-ESM4 GFDL 288 × 180
Geophysical Fluid Dynamics Laboratory, United States GFDL-CM4 GFDL 360 × 180

Institute for Numerical Mathematics, Russia INM-CM4-8 INM 180 × 120

https://www.wcrp-climate.org/
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Table 3. Cont.

Modeling Center Model Institute ID Resolution (km)

Institute for Numerical Mathematics, Russia INM-CM5-0 INM 180 × 120
Norwegian Climate Centre, Norway NorESM2-LM NorESM2 144 × 90
Norwegian Climate Centre, Norway NorESM2-MM NorESM2 288 × 192

The Taiwan Earth System Model version 1 TaiESM1 TaiESM1 100 × 138
Met Office Hadley Centre, United Kingdom UKESM1-0-LL UKESM1 192 × 144

3. Results and Discussion
3.1. Model Calibration and Validation

In this research, the SWAT model was used to conduct a comprehensive analysis based
on observed daily precipitation and temperature data spanning from 1982 to 2013. We also
incorporated observed mean monthly discharge data for the same time frame to evaluate
the model’s accuracy. A long and consistent historical streamflow record is available at
Doyian station located at Astore River. Therefore, the Doyian station was selected as
the focal point for model calibration. Monthly calibration (1985–1999) and validation
(2000–2010) results are shown in Figure 6, a three-year warm-up phase (1982–1984) was
utilized to establish the initial soil water conditions. Sensitivity analysis was required
to identify the factors responsible for the good match between simulated and observed
streamflow data. Table 4 describes the 16 most effective model-calibrated parameters. The
model’s accuracy in predicting watershed conditions was assessed using R2, NSE, PBIAS,
and RSR. Table 5 reveals that statistical indicators during the calibration phase are notably
higher than those during the validation period. The model’s performance may not be as
accurate in the validation phase because it may not generalize well to new or unknown
data when these calibrated parameters are checked using validation data, which represents
different time periods. Monthly simulated results are statistically significant, confirming
that the SWAT model can effectively simulate the hydrological processes in the study area.
Figure 6 shows the observed and simulated monthly streamflow at the outlet station during
the calibration and validation period. A visual comparison of the simulated and observed
manual streamflow reveals that the model fits and performs well over the study area. In
both the calibration and validation periods, the model shows a relatively high P-factor
and an R-factor that is above 0.7, suggesting that the model performs well in simulating
hydrological processes. For calibration (P-factor = 0.86, R-factor = 0.82) and for validation
(P-factor = 0.85, R-factor = 0.71).

Table 4. Parameters sensitive to streamflow, their fitted values, and initial ranges.

Parameter Description Fitted Value Ranges

CN2.mgt SCS runoff curve number. 63.1 (35, 98)
ALPHA_BF.gw Baseflow alpha factor (days). 0.83 (0, 1)
GW_DELAY.gw Groundwater delay (days). 409.12 (0, 500)

GWQMN.gw
Threshold depth of water in the shallow

aquifer required for return flow to
occur (mm).

2118.01 (0, 5000)

SURLAG.hru Surface runoff lag time. 12.52 (0.05, 24)
SLSOIL.hru Slope length for lateral subsurface flow. 84.69 (0, 150)
EPCO.hru Plant uptake compensation factor. 0.45 (0, 1)

SOL_K(..).sol Saturated hydraulic conductivity. 666.74 (0, 2000)
SFTMP.bsn Snowfall temperature. 7.12 (−20, 20)
SMTMP.bsn Snow melt base temperature. 17.60 (−20, 20)

SNO50COV.bsn Snow water equivalent that corresponds
to 50% snow cover. 0.79 (0, 1)

CH_K2.rte Effective hydraulic conductivity in main
channel alluvium. 76.36 (−0.01, 500)

ESCO.hru Soil evaporation compensation factor. 0.94 (0, 1)
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Table 4. Cont.

Parameter Description Fitted Value Ranges

LAT_TTIME.hru Lateral flow travel time. 34.14 (0, 180)

CNOP{. . .mgt SCS runoff curve number for moisture
condition. 16.84 (0, 100)

SNO_SUB.sub Initial snow water content. 92.63 (0, 150)

Table 5. Statistical indicators for model calibration and validation that govern the streamflow.

Calibration (1985–1999) Validation (2000–2010)

R2 NSE PBIAS RSR R2 NSE PBIAS RSR

0.82 0.77 13.5 0.48 0.71 0.68 14.2 0.57
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3.2. Temporal Patterns of Precipitation

In this study, a smoothing curve was used to identify trends or patterns in meteorolog-
ical parameters. These curves draw insights from complex data and aid in decision-making.
The Loess, local polynomial regression, was used to estimate and plot the smooth curve.
The blue line in Figure 7 is actually the smooth line that represents a fitted or smoothed
line that summarizes the relationship between two variables. The gray shaded area around
the smooth line is the confidence interval. It is a graphical representation of the range of
values within which the true population parameter is likely to fall with a certain level of
confidence. The red data points that are located outside the gray shaded area fall outside the
range of values that the model predicts with the given confidence level. This may indicate
that these points are outliers or do not conform to the expected pattern as described by the
smooth line.

Precipitation patterns behaved differently in each season, as seen in Figure 7, which
displays the differences in precipitation in each season from 1985 to 2013. Spring and
summer have shown a rising tendency throughout the course of the period, with the
majority of the fluctuation occurring during the spring season. Winter and autumn seasons,
on the other hand, have a plummeting trend throughout the period. The highest amount of
mean monthly precipitation, 7.37 (mm), was recorded in the spring, while summer had
the least, 3.55 (mm). In addition, Table 6 contains a summary statistic of mean seasonal
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precipitation data for the period (1985–2013). Moreover, in Figure 8, the distribution of data
points from various GCMs shows a high frequency of occurrence within the range of 0 to
2.5 (mm). High peaks of almost 12 (mm) can be seen in the NorESM2-LM model. Mean
annual precipitation based on the SSP245 scenario is depicted in Table 7, which suggests
that precipitation has a decreasing trend in the historical period, and then in the 2014–2033
and long-term (2074–2094) evaluation it seems that mean annual precipitation would
increase, i.e., 1.57 (mm), which is 0.25 mm greater than the baseline period of 1.32 (mm).

Table 6. Summary statistics of average seasonal precipitation (mm) from 1985 to 2013.

Statistics Winter Spring Summer Autumn

Min. 0 0.01 0.07 0
1st Quartile 0.42 1.14 0.495 0.165

Median 1.08 1.92 0.77 0.38
Mean 1.4 2.4 0.89 0.69

3rd Quartile 1.96 3.31 1.14 0.64
Max. 5.6 7.37 3.55 5.74

Standard Deviation 0.65 1.08 0.5 0.29

Sustainability 2023, 15, x FOR PEER REVIEW 11 of 22 
 

level. This may indicate that these points are outliers or do not conform to the expected 
pattern as described by the smooth line. 

Precipitation patterns behaved differently in each season, as seen in Figure 7, which 
displays the differences in precipitation in each season from 1985 to 2013. Spring and sum-
mer have shown a rising tendency throughout the course of the period, with the majority 
of the fluctuation occurring during the spring season. Winter and autumn seasons, on the 
other hand, have a plummeting trend throughout the period. The highest amount of mean 
monthly precipitation, 7.37 (mm), was recorded in the spring, while summer had the least, 
3.55 (mm). In addition, Table 6 contains a summary statistic of mean seasonal precipitation 
data for the period (1985–2013). Moreover, in Figure 8, the distribution of data points from 
various GCMs shows a high frequency of occurrence within the range of 0 to 2.5 (mm). 
High peaks of almost 12 (mm) can be seen in the NorESM2-LM model. Mean annual pre-
cipitation based on the SSP245 scenario is depicted in Table 7, which suggests that precip-
itation has a decreasing trend in the historical period, and then in the 2014–2033 and long-
term (2074–2094) evaluation it seems that mean annual precipitation would increase, i.e., 
1.57 (mm), which is 0.25 mm greater than the baseline period of 1.32 (mm). 

Table 6. Summary statistics of average seasonal precipitation (mm) from 1985 to 2013. 

Statistics Winter Spring Summer Autumn 
Min. 0 0.01 0.07 0 

1st Quartile 0.42 1.14 0.495 0.165 
Median 1.08 1.92 0.77 0.38 
Mean 1.4 2.4 0.89 0.69 

3rd Quartile 1.96 3.31 1.14 0.64 
Max. 5.6 7.37 3.55 5.74 

Standard Deviation 0.65 1.08 0.5 0.29 

  
Figure 7. Mean monthly precipitation patterns over the period (1985–2013) for (a) Winter, (b) 
Spring, (c) Summer and (d) Autumn. 
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(c) Summer and (d) Autumn.

Table 7. Mean annual precipitation (mm) variations of baseline and GCMs under SSP245 scenario.

Data Set Historical
1974–1993

Baseline
1994–2013

20’s
2014–2033

80’s
2074–2094

Observed - 1.32 - -
ACCESS-CM2 1.39 (+4%) 1.34 1.35 (+1%) 1.57 (+17%)

CMCC-CM2-SR5 1.3 (2%) 1.27 1.32 (+4%) 1.44 (+13%)
GFDL-ESM4 1.32 (3%) 1.28 1.31 (+2%) 1.51 (+18%)
INM-CM4-8 1.35 (−4%) 1.41 1.44 (+2%) 1.57 (+11%)
INM-CM5-0 1.4 (+4%) 1.35 1.38 (+2%) 1.51 (+12%)
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Table 7. Cont.

Data Set Historical
1974–1993

Baseline
1994–2013

20’s
2014–2033

80’s
2074–2094

NorESM2-LM 1.4 (3%) 1.36 1.43 (+5%) 1.51 (+11%)
NorESM2-MM 1.38 (+7%) 1.29 1.34 (+4%) 1.51 (+17%)

TaiESM1 1.35 (−1%) 1.37 1.39 (+1%) 1.52 (+11%)
UKESM1-0-LL 1.37 (+1%) 1.35 1.38 (+2%) 1.55 (+15%)

GFDL-CM4 1.4 (+4%) 1.35 1.4 (+4%) 1.53 (+13%)
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3.3. Temporal Patterns of Temperature

In our study, temperature exhibits significant variation throughout the 1985–2013
period in the upper regions of the Indus Basin. Specifically, mean monthly maximum and
minimum temperatures reveal diverse trends, with a noticeable increase during the sum-
mer months but a sharp plunge during the winter season. Moreover, the mean maximum
temperature in spring and autumn shows a steady decline, while the mean minimum
temperature exhibits a consistent upward trend throughout the entire period. In Figure 9,
summer temperatures tend to rise, whereas winter temperatures tend to fall. This phe-
nomenon leads to increased glacier melting during the summer due to higher temperatures
and amplified snowfall during the winter, subsequently contributing to heightened stream-
flow during the summer season. For further insight, Table 8 provides a summary of
the temperature data for the period of 1985–2013, revealing that the highest temperature
recorded was 39.7 ◦C, while the lowest temperature plummeted to −6.7 ◦C. It is essential
to note that these temperature trends have future implications, as illustrated in Table 9
under the SSP245 scenario. This trend is critical, as it may exacerbate the challenges associ-
ated with watershed management and water resource sustainability in the Upper Indus
Basin. Figure 10 further supports this observation, depicting the variance and dispersion
of projected mean monthly temperature (both maximum and minimum) data. While the
seasonal trends exhibit minimal variation, there is a progressive rise in the total anticipated
temperature, reaching almost 18% in the Upper Indus Basin.
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Table 8. Summary statistics of temperature (max and min) in ◦C over the period (1985–2013).

Statistics Winter Spring Summer Autumn

Max Min Max Min Max Min Max Min

Min. 7.7 −6.7 14.8 2.5 30.7 10.6 10.6 −1.5
1st Quartile 10.5 −2.9 20 6.1 33.8 14.4 14.4 1.3

Median 12 −1.5 24 9.2 35.2 16.3 16.3 5.9
Mean 11.8 −1.4 24.2 8.7 35.1 16.2 16.2 6.1

3rd Quartile 13 0.4 27.3 11.2 36.2 17.8 17.8 11.7
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Table 8. Cont.

Statistics Winter Spring Summer Autumn

Max Min Max Min Max Min Max Min

Max. 19.1 4.1 34.9 13.5 39.7 20.4 20.4 14.2
Standard Deviation 2.0 2.4 5.1 2.8 3.5 2.4 3.0 5.0

Table 9. Mean annual temperature (max and min) in ◦C variations of baseline and GCMs under
SSP245 scenario.

Data Set
Historical
1974–1993

Baseline
1994–2013

20’s
2014–2033

80’s
2074–2094

Max Min Max Min Max Min Max Min

Observed - - 23.5 17.8 - - - -
ACCESS-CM2 21.8 14.9 23.4 16.3 24.5 19.8 26.7 20.4

CMCC-CM2-SR5 21.7 15.4 23.2 17.8 23.9 19.2 26.9 21
GFDL-ESM4 22 16.2 23 16.9 24.4 18.2 26.7 19.3
INM-CM4-8 22.1 15.6 22.8 16.3 23.5 17.5 27.8 19.5
INM-CM5-0 22.1 15.7 22.7 17.2 24.1 18.6 26.1 20.9

NorESM2-LM 21.7 15.8 22.9 16.6 24.2 18.1 27.6 19.1
NorESM2-MM 21.7 15.9 22.7 17.3 23.9 17.9 27.7 20.1

TaiESM1 21.6 15.5 23.2 17.5 24.5 18.5 26.9 20.7
UKESM1-0-LL 22 15.9 21.6 17.7 23.2 18.9 25.5 20.5

GFDL-CM4 21.8 15.4 22.3 16.9 24.5 18.8 26.3 19.6
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3.4. Temporal Patterns of Streamflow

Streamflow has a diverse connection with climate change, as in Table 10 it can be per-
ceived that the in-summer season streamflow reaches its peak due to warmer temperatures
in the upper regions of the Indus Basin. Similarly, in the winter season, the river runoff
becomes the least due to lower temperatures. Figure 11 illustrates the seasonal fluctuation
in river runoff over the 1985–2013 period. The winter season has varied substantially
over time; it had a rising trend until 1993 before it began to decline. The summer season
has a diversified pattern, with an increasing tendency. In addition, there have been no
major changes in the spring and autumn seasons, with modest increases in spring and
decreases in autumn. Table 11 portrays the increasing pattern of streamflow in the future,
which suggests that high temperatures can contribute to alleviating river runoff, and high
temperatures can give rise to more glacier melting in the upper region of the Indus Basin.
In addition, Figure 12 shows the predicted streamflow under the SSP245 scenario, which
illustrates the fluctuation and dispersion of numerous models, streamflow is densely satu-
rated between 20 to 170 m3/s in almost all models. Higher peaks of more than 770 m3/s are
observed in the future by ACCESS-CM2 and UKESM1-0-LL. These findings emphasize the
strong linkage between climate change and streamflow in the Upper Indus Basin, particu-
larly the role of temperature in driving seasonal variations. The projected future changes
have profound implications for water resource management and the need for adaptive
measures to sustainably manage the region’s water resources.

Table 10. Summary statistics of mean seasonal streamflow (m3/s) over the 1985–2013 period.

Statistics Winter (m3/s)
Spring
(m3/s) Summer (m3/s) Autumn (m3/s)

Min. 19.4 19.9 137.8 31.2
1st Quartile 30.1 33.6 258.2 52

Median 33.7 60 345.5 67.27
Mean 34.5 103.6 361.7 87.6

3rd Quartile 38.27 164.8 446.7 105.4
Max. 55.9 389.4 738.4 348.6

Standard Deviation 6.7 112.2 220.6 85.8
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Table 11. Mean annual streamflow (m3/s) variations of baseline and GCMs under SSP245 scenario.

Data Set Historical
1974–1993

Baseline
1994–2013

20’s
2014–2033

80’s
2074–2094

Observed - 146.5 - -
ACCESS-CM2 135.7 (−8%) 147.5 160.2 (+9%) 174.8 (+19%)

CMCC-CM2-SR5 133.3 (−7%) 143.7 161.2 (+12%) 177.1 (+23%)
GFDL-ESM4 134.1 (−5%) 139.9 159.4 (+14%) 181.5 (+30%)
INM-CM4-8 132.5 (−9%) 145.5 156.9 (+8%) 173.6 (+19%)
INM-CM5-0 129.9 (−12%) 147.3 160.8 (+9%) 179.4 (+22%)

NorESM2-LM 135.1 (−6%) 142.6 162.3 (+14%) 183.1 (+28%)
NorESM2-MM 128.5 (−12%) 146.1 159.6 (+9%) 179.9 (+23%)

TaiESM1 133.9 (−7%) 141.3 163.5 (+16%) 181.3 (+28%)
UKESM1-0-LL 131.7 (−11%) 148.3 160.1 (+8%) 180.7 (+22%)

GFDL-CM4 134.6 (−6%) 143.7 157.3 (+9%) 179.6 (+25%)
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4. Discussion
4.1. Climate Change Impacts on Streamflow in URIB

In a Central Himalayan watershed, predicted streamflow rose throughout the mon-
soon and post-monsoon seasons but dropped during the dry season, according to [55,56].
Snowmelt accounts for over 34% of total streamflow in this region, while glacier melt
accounts for 26%. Both studies indicate that the Upper Indus Basin is particularly sen-
sitive to temperature fluctuations [57,58]. In Refs. [59,60], both studies used numerous
GCMs to anticipate future climatic changes from dry and cold to wet and warm. Tempera-
ture and precipitation are expected to increase, which predicts increases in annual runoff
(7.57–32.12%) by 2100. The hydrological regime is primarily influenced by snow and glacier
melt [61].

Khattak, Babel and Sharif [62] previously identified an uneven pattern of precipitation
fluctuation in the southern upper regions of the Indus Basin (URIB) between 1967 and
2005. Bocchiola and Diolaiuti [63] confirmed comparable precipitation variations over
URIB. An upward tendency in the spring and summer and a downward trend in the
winter and autumn was found in this research. Precipitation is rising over time, which
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is in line with [64]. Aresta, Dibenedetto and Quaranta [65] used a stochastic rainfall
model for hydrological impacts, which predicted that precipitation would increase by
27% seasonally and 18% mean annual changes. According to the studies given above, we
may expect a rise in precipitation in the future. Our findings align with [65,66], which
underscores the sensitivity of the Upper Indus Basin to temperature fluctuations, with
significant implications for streamflow. In this region, snowmelt and glacier melt contribute
substantially to total streamflow, and our study reaffirms that these sources are particularly
sensitive to temperature changes. Future temperature increases are anticipated in the URIB
area under two alternative scenarios (A2 and A1B). Furthermore, ref. [67] utilized PRECIS
RCM data to show that raising projected temperatures in the Indus Basin had comparable
impacts. The hydrological regime, heavily influenced by snow and glacier melt, is set to
undergo a transformation, necessitating adaptive water management strategies.

4.2. Importance of Watershed Management

Climate change is expected to have significant repercussions not just for the upper
regions of Pakistan, but also for the downstream urban and rural areas, which rely heavily
on mountain water sources for residential, agricultural, and industrial purposes. Seasonal
fluctuations in precipitation and temperature may affect the agricultural calendar in the
future. The hydrological regime of the upper regions of the Indus Basin is currently
supplying water to the rest of the country. Changes in water quantity and quality will have
disastrous effects on social and economic processes throughout the country. This study
established that streamflow is very sensitive to temperature fluctuations. As the primary
source of streamflow in the UIRB is snow and glacier melting, this is very harmful because
it may reduce the overall glacial volume in the long term and may result in natural disasters
in that area [68,69]. Water management methods may help reduce the effects of severe
weather situations like floods and droughts by storing water. Agriculture, hydroelectric,
industrial, and domestic uses will all take advantage of the stored water. Plantations are
also advised in the region to reduce the rising trend in air temperature since streamflow is
more sensitive there [70,71]. Our water comes from mountains, and we need to understand
more about them. Improved scientific education and information sharing are necessary for
managing water resources [31].

The Indus River is critical to Pakistan’s economic growth and food production, con-
tributing around 25% of the country’s gross domestic product and providing 90% of the
water used in agricultural production. According to the World Bank’s study (2020–2021),
a 32% decline in water by 2025 will result in about 70 million tons of food shortfall in the
country. This highlights the interconnection among water–energy–food and emphasizes the
need to address the pressing issue of water–energy–food in the Indus Basin. To tackle water
scarcity in the Indus Basin, transboundary collaboration among basin nations is necessary
to foster yearly spending of USD 10 billion by 2050. However, by adopting transboundary
level collaborative policies, this cost might be decreased to a much lower USD 2 billion per
year. Such collaborative measures benefit the downstream regions to enjoy lower costs of
food and energy, and increased water availability, while upstream regions benefit from criti-
cal new energy investments, demonstrating the significant benefits of fostering cooperation
in the region’s water–energy–food nexus [72]. Our findings emphasize the importance of
watershed management and water storage techniques to mitigate the impact of extreme
weather events. Collaboration and information sharing, as well as the adoption of the
water–energy–food nexus concept, are crucial for sustainable water resource management
in the face of climate change challenges.

The “water wars” narrative has been relaunched in the past ten years, which is mainly
due to climate change. The findings of the current study suggested that climate change
will impact streamflow, which might increase the possibility of conflicts and disputes over
the shared water resources in the region. In this context, the idea of “water diplomacy”
can play a vital role in bringing sustainability to the transboundary water resources of
the region. Water diplomacy can decline the potential regional water-related conflicts and
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promote peace and harmony in the face of climate change. The competition for freshwater
resources will increase in the region, owing to economic development, population growth,
and climate change, which has increased the risk of potential “water wars” in the region.
Water diplomacy is the only way to mitigate and manage these risks [73].

5. Conclusions

This study, centered on the Upper Indus Basin of Pakistan, has shed light on the
pressing issues posed by climate change in a region crucial for water resources and the
well-being of its indigenous communities. To address these concerns, we employed state-
of-the-art CMIP6-based GCMs within the SWAT framework, with the primary objectives of
projecting streamflow, assessing the implications of climate change on river runoff, and
evaluating the changes in precipitation and temperature patterns.

The following are the study’s major findings:

(1) The SWAT model delivers statistically significant outcomes during calibration
(NSE = 0.77, R2 = 0.82, RSR = 0.48, and PBIAS = 13.5) and validation (NSE = 0.68,
R2 = 0.71, RSR = 0.57, and PBIAS = 14.2).

(2) Under the SSP245 scenario, the SWAT model was used to figure out how climate
change would affect streamflow. It has been found that streamflow could rise by
19–30% under different scenarios.

(3) Upper regions of the Indus Basin are very susceptible to temperature, and future
changes are expected to be drastic, with maximum and minimum temperatures
intensifying by almost 18%.

(4) Precipitation has an increasing pattern through the period, which might contribute
very little to streamflow, and precipitation will increase by 11–17%.

(5) GCMs based on CMIP6 under SSP245 scenarios have been illustrated to be effective
in predicting future climate change in the study area. A calibrated model has been
used for the simulations of the (1974–1993), (1994–2013), (2014–2033), and (2074–2094)
periods and all of them exhibited an increase in average annual streamflow.
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