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Abstract: The main causes of surface water pollution with phosphate ions are various human
activities. Monitoring the content of phosphorus compounds in surface waters is important for the
management of water bodies. Phosphorus is an essential element for the life of flora and fauna, but
in excessive amounts it can have a harmful effect on the environment. The inflow of phosphorus
compounds into the Styr River (Western Ukraine) occurs as a result of the discharge of cooling
water from the Rivne NPP’s cooling water system. This article has three purposes: (1) The inflow
of phosphorus compounds to the Styr River occurs with the discharge of cooling water using 1-
hydroxyethylidene-1,1-diphosphonic acid (HEDP); (2) phosphorus compounds (phosphate ions,
HEDP, and total phosphorus in surface waters of the Styr River) are monitored and analyzed, and
the analysis of the quality of river water is carried out in accordance with environmental standards
for the content of phosphorus compounds in the zone of influence of the Rivne NPP; (3) in terms
of phosphorus content, the quality of the water of the Styr River, after the discharge of the Rivne
NPP’s cooling water, is characterized as “satisfactory” and belongs to Class III. A seasonal trend of
changes in the content of phosphate ions and total phosphorus was found, and the concentration of
HEDP in the water of the Styr River depends on the technological dosage mode during the corrective
treatment of the Rivne NPP.

Keywords: nuclear power; phosphates; 1-hydroxy ethylidene-1,1-diphosphonic acid; ecosystem;
return water; discharge

1. Introduction

Sustainability and phosphorus compounds in river water are important topics related
to environmental conservation and the responsible management of natural resources [1].
Efforts to monitor phosphorus compounds in river water can be part of a sustainable
solution that can help minimize environmental impacts [2]. Addressing phosphorus issues
in river water often requires monitoring its supply with water discharge from industrial
anthropogenic sources [3]. In summary, the management of phosphorus compounds in
river water is essential for sustainability [4]. It involves addressing sources of pollution,
implementing sustainable practices, and working together to influence technological and
anthropogenic factors [5].

Atomic energy is a safe and stable source of electricity production. For the operation of
an atomic power plant (NPP), it is necessary to ensure cooling of its elements and systems,
which are powered by large amounts of water that then discharge into a water body [6,7]. In
the cooling systems of nuclear power plants, heating, evaporation, and concentration of the
cooling water components occur [8,9]. To ensure the water–chemical regime, nuclear power
plants use corrective treatment with phosphorus-containing reagents [10]. According to the
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existing regulations [11], the discharge limits for phosphorus compounds from different
NPPs range from 0.6 to 100 t/year; significant discharge limits for phosphorus compounds
for NPPs are primarily due to the large amount of water used for cooling.

Water is an important resource for the functioning of any type of industry. Rapid
urbanization, industrialization, and intensification of industrial production have led to a
deterioration of surface water quality worldwide [12–14]. A high level of pollution entering
the environment can make water unsuitable for use, and an excess of nutrient biogenic
elements can cause eutrophication of water bodies and even the death of fish [15,16].
Phosphorus is an important biogenic element, but due to the significant volumes of its
anthropogenic input, the natural phosphorus cycle has undergone changes in recent years.
The greatest environmental load from anthropogenic phosphorus input is observed in rivers,
which is why the reduction of the environmental risk of river pollution with phosphorus
compounds is an actual problem [17].

Phosphorus flows into rivers from point sources and diffuse sources, which may con-
tain organic and inorganic forms of this element [18,19]. Diffuse sources are contributions
from the leaching of geological rocks and land use, while point sources include industrial
discharge. In surface waters, the most common forms of phosphorus are its inorganic com-
pounds in the form of phosphate and polyphosphate (PO4

3−), while organic phosphorus is
encountered as a result of the life activities and decomposition of aquatic organisms, as
well as anthropogenic factors that contribute to phosphorus discharge [20,21].

Inorganic forms of phosphorus compounds in natural waters are represented by 42%
compounds with magnesium (MgPO4

−), 29% hydrogen phosphate ions (HPO4
2−), 15%

sodium hydrogen phosphates (NaHPO4
−), and 12% hydrogen phosphates and calcium

phosphate (CaHPO4, CaPO4
−) [22].

Organic forms of phosphorus compounds in natural waters include phosphonates,
myo-inositol hexakisphosphates, and diesters of orthophosphate. Phosphonates exhibit
processes of biodegradation, complexation, and sediment adsorption in the surrounding
environment due to their structural similarity to phosphate esters. Phosphonates often
act as enzyme inhibitors [23]. Up to 80% of soluble phosphonates undergo complete
biodegradation in surface waters through the cleavage of the C-P bond [24], with the end
products of decomposition being hydrocarbons and phosphate ions. The most common
anthropogenic phosphorus compounds entering aquatic ecosystems are phosphonate in
hydrocarbons and phosphate ions. The most widely used phosphonate in industry is
1-hydroxyethylidene-1,1-diphosphonic acid (HEDP) [25].

Organic and inorganic forms of phosphorus compounds in surface waters can trans-
form into each other. Phytoplankton cells absorb phosphates released during the oxidation
of accumulated organic phosphorus [26]. It is interesting that in different parts of the
globe, in various types of ecosystems, the phosphate content in water has diverse effects on
phytoplankton parameters. Thus, in the coastal waters of India, phosphorus has less of an
effect on phytoplankton diversity compared to nitrate content in water [27]. Similar results
were obtained in the coastal waters of China, where the number and species diversity of
phytoplankton depend on the phosphate content in the water much less, compared to the
temperature factor and the nitrate content [28]. The study of the river–lake system revealed
that for the number and diversity of lake phytoplankton, the C:N ratio is an important
regulatory factor, while in rivers the C:N:P ratio is the main factor [29]. In surface waters,
inorganic forms of phosphorus compounds account for an average of up to 50% of the total
amount, but the ratio between organic and inorganic phosphorus can vary widely [30].

In small rivers in Ukraine (river length up to 100 km), the concentration of inorganic
phosphorus forms varies from trace concentrations to 0.7 mg/dm3, while in medium (river
length from 100 km to 500 km) and large rivers (river length over 500 km), it ranges from
0.07 to 0.50 mg/dm3 [31]. The lowest phosphorus content (0.02–0.1 mg/dm3) is observed
in August–September. Particularly high concentrations were recorded in some rivers of
the eastern region of Ukraine, reaching [32]. Due to natural mechanisms of phosphonate
elimination, the prolonged release of bioavailable phosphate from phosphonates into
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natural waters is ensured, thus not excluding eutrophication processes [33]. The regulation
of phosphorus discharge into wastewater in Ukraine is carried out in accordance with [34],
while in EU countries, phosphorus content is regulated according to [35].

In general, analysis of current river water quality studies shows that nutrient input
to rivers is significantly negative due to climate change [36–38]. An important tool for
solving this problem is forecasting water quality, including possible scenarios of phosphate
content changes [39,40]. However, numerous biological, hydrological, and other factors
in river ecosystems complicate prediction [41]. Therefore, modern scientists often use
simple mathematical models, such as coring, to analyze the formation of the regime of
nutrients in river water. Such approaches allow the possibility of recording which natural
or anthropogenic factors are the most important causes of the presence of nutrients in river
water [42].

Given the importance of ensuring the ecological safety of surface waters, there is
great interest in determining anthropogenic pollution of water bodies with phosphorus.
The purpose of our research was to assess the pollution of the Styr River by phosphorus
compounds originating from the return waters of the Rivne Nuclear Power Plant (Rivne
NPP) as a result of anti-scale correction of phosphonate treatment. The information and
analysis of such monitoring are important for planning and implementing the necessary
water resource management strategies. Considering the specifics of the operation of the
nuclear power plant (the formation of large volumes of return water), it is necessary to
constantly focus on the quality of surface water in order to prevent water pollution in
reservoirs and the deterioration of the environment in general.

2. Materials and Methods

The research was conducted on the process water of the Rivne Nuclear Power Plant
(Rivne NPP) and the surface water of the Styr River. The Rivne NPP consists of four
VVER-type nuclear reactors and is located in Ukraine, Eastern Europe. The cooling system
of the NPP is an open-type cooling system with water cooling in cooling towers (Figure 1).
The basin scheme and the impact zone of the Rivne NPP discharge are indicated in Figure 1.
The hot cooling water flows from the condenser through the cooling tower where it is
cooled by evaporation, and the cold cooling water is returned through the process and
reheated. The CCS cooling water concentration cycles are controlled by blowdown, which
is sent to a reservoir; water losses due to evaporation and blowdown are replenished with
additional water taken from the reservoir (Figure 1). Corrective reagents are used for water
treatment, in particular phosphonate treatment with HEDP implemented at the Rivne
NPP [33].

The cooling water consumption for power units No. 1 and 2 (VVER-440) is
91,000 m3/hour for each power unit, while for power units No. 3 and 4 (VVER-1000), it
is 188,900 m3/hour each. The intake and discharge of cooling water at the Rivne NPP
are carried out in the Styr River. The Styr River is not navigable, with a channel width of
40–60 m, a depth ranging from 0.8 to 2 m, and a flow velocity of 0.4–0.7 m per second. The
dynamics of water consumption from the Styr River for the Rivne NPP range from 50 to
73 million m3/year, with discharge ranging from 12 to 18 million m3/year, and it does not
exceed the established water use limits. Since 2015, due to the established aeration and
nourishment regime, there has been a tendency to reduce water intake and discharge from
the Rivne NPP (Figure 2).
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The hydrochemical composition of the Styr River is formed under conditions of
excessive moisture and the influence of widespread carbonate rocks. The river is also fed by
artesian waters from a karstified limestone layer, which leads to an increased concentration
of calcium ions (Ca2+) and bicarbonate ions (HCO3

−) in the river water. Eutrophication is
observed in the Styr River in the warm season on sections of the shoreline with slow flow
(Figure 3).
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Figure 3. Eutrophication phenomenon with algae and vegetation growth in the Styr River (May 2023).

The assessment of the quality of the Styr River water based on the content of phospho-
rus compounds was carried out according to the existing regulations, and the classification
of surface waters in Ukraine and the European Union according to [43–47] are listed in
Table 1. The assessment of water quality included environmental assessment (EA), hygienic
assessment (HA), and water management assessment (WMA) for both domestic (DW) and
fisheries (FW) water use. The assessment of water quality was performed using a detailed
analysis method, which involved comparing the measured value of the parameter with
its standard. Water qualities corresponding to Classes I, II, and III were characterized as
“excellent”, “clean”, and “satisfactory”, respectively (Methodology, 2019). Within these
classes, the values of various forms of phosphorus indicated low levels of anthropogenic
influence and deviated only slightly from the values typical for the mass of surface water
under reference conditions; concentrations of chemical and physico-chemical parameters
did not exceed environmental quality standards (Table 1). The methods [34,48] were used
to determine the ecological status of the Styr River in the area of influence of the Rivne
NPP discharge with the calculation using the software Microsoft Office Excel 2019 “River
Phosphorus Calculator” (http://www.wfduk.org/resources/rivers-phosphorus-standards,
accessed on 1 October 2023).

In the assessment of water quality, the results of monitoring from accredited labo-
ratories at the Rivne NPP (Certificate of Recognition of Measurement Capabilities No.
R-8/11-57-5 dated 22 December 2017) were used. The measurements were carried out us-
ing standardized methods [49,50] with the following metrological characteristics (Table 1),
which were verified under the State Metrological Supervision of Ukraine.

http://www.wfduk.org/resources/rivers-phosphorus-standards
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Table 1. Standards for surface water quality assessment and measurement methods used in the study
of phosphorus compound content.

Parameter

Ecological Indicator Measurement Methods

EA

Ukrainian EC
Cmin–Cmax (3),

mg/dm3 δ (4), %
HA

WMA
HA FW

DW FW

Phosphates, mg
PO4

3−/dm3 <0.015–0.10 mg
P/dm3 (I, II, III

Classes)

3.5 3.5 2.14 - 0.2–0.4 (2)

0.05–100 ± 15 (5)

± 10 (5)Pure phosphorus,
mg P/dm3 - - 0.7 - -

HEDP 1, mg/dm3 - 0.3 (1) 0.3 (1) 0.9 - - 0.06–4.0 ± 18

Notes: (1)—indicated minimum value for sodium salt; (2)—depending on the assignment; (3)—Cmin–Cmax—
measurement range; (4) δ—relative measurement error; (5)—from 0.05 to 0.5 inclusive, mg/dm3, δ = ±15%, above
0.5 to 100 inclusive, mg/dm3 δ = ±10%.

The spectrophotometric measurement method for phosphate concentration em-
ployed in the study is based on the reaction of phosphorus with ammonium molybdate
((NH4)6Mo7O24 × 4H2O) in the presence of stannous chloride (SbCl3 × 6H2O), resulting
in the formation of a blue-colored compound.

The measurement of HEDP concentration used in the study is based on the break-
down of the P-C bond of phosphonates using potassium persulfate and the conversion of
phosphonates into phosphates, followed by spectrophotometric measurement of the total
phosphorus concentration, determined as the sum of HEDP and phosphate ions, measured
using the measurement method (Table 1).

The assessment of the biogenic elements was carried out according to the methodol-
ogy [41], using C:P:N stoichemistry. Data analysis was performed using standard methods
of mathematical statistics with the assistance of software [51]. A density estimation of the
data series was conducted using the method of [52], and the seasonality of changes was
determined using the Probabilistic Neural Network (PNN) Classifier, which is applied to
identify the distribution pattern of variables in each group and assess the density function
of each group to determine classification characteristics for observation groups [53].

3. Results
3.1. Estimation of Phosphorus Input from Discharge

The water intake of the Rivne Nuclear Power Plant (NPP) from the Styr River should
not exceed 74 million m3/year under the established conditions [50]. The actual average
water intake is 50 million m3/year.

The discharge of technological water from the Rivne NPP into the Styr River should
not exceed 14 million m3/year under the conditions [54], and the actual average discharge
of return water is 11 million m3/year (Figure 4). The maximum allowable discharge of
phosphate ions for the Rivne NPP into the Styr River is set at 57.44 tons/year, and for
HEDP, it is 16.57 tons/year.

The actual discharge values of phosphate ions into the surface water of the Styr River
for the Rivne NPP ranged from 3.5 to 4.5 tons/year, with a discharge limit of 57.44 tons/year.
For HEDP, the range of actual discharge ranged from 5.3 to 15.8 tons/year, with a discharge
limit of 16.57 tons/year (Figure 4).
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The actual discharge of phosphorus compounds into the water of the Styr River for
the Rivne NPP does not exceed the prescribed discharge limits.

3.2. Results of Chemical Control of Phosphorus Compounds

In accordance with the applied control methods, inorganic forms of phosphorus (phos-
phates and polyphosphates) were measured. The results of chemical control were presented
in terms of (PO4

3−) and organic forms of phosphorus (HEDP) in terms of HEDP. The mass
concentration of total phosphorus was determined as the sum of organic and inorganic
forms of phosphorus in terms of phosphorus (P). The mean concentration of phosphate ions
with standard deviation (M ± m) in the water of the Styr River before the water intake by
the Rivne NPP was 0.275 ± 0.118 mgPO4

3−/dm3 and varied in the range (min–max) from
0.070 mgPO4

3−/dm3 to 0.535 mgPO4
3−/dm3. After the discharge of Rivne NPP’s CCS

wastewater, the mean concentration of phosphate ions was 0.296 ± 0.141 mgPO4
3−/dm3

and varied in the range from 0.080 mgPO4
3−/dm3 to 0.590 mgPO4

3−/dm3 (Figure 5).
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The mean concentration of HEDP in the water of the Styr River upstream of the Rivne
NPP intake is not determined by the applied measuring method (Table 1). During the
period of the study it was below the lower measuring range (0.05 mgHEDP/dm3) and
did not change. The mean concentration of HEDP in the water of the Styr River after the
discharge of the Rivne NPP’s CCS effluent was (M ± m) 0.12 ± 0.09 mgHEDP/dm3 and
varied in the range (min–max) from 0.05 mgHEDP/dm3 to 0.24 mgHEDP/dm3 (Figure 5).
The mean concentration of the total phosphorus in the water of the Styr River before the
Rivne NPP water intake was 0.104 ± 0.044 mgP/dm3 and varied in the range (min–max)
from 0.015 mgP/dm3 to 0.198 mgP/dm3. The mean concentration after the discharge of
the Rivne NPP’s CCS wastewater was (M ± m) 0.113 ± 0.052 mgP/dm3 and varied in the
range (min–max) from 0.015 mgP/dm3 to 0.226 mgP/dm3 (Figure 5).

The dynamics of changes in the concentration of phosphorus compounds in the water
of the Styr River is characterized by the coefficient of variation (CV). Its value is in the range
from 18.3 to 40.2 (Table 2). The monitoring of water quality by the content of phosphorus
compounds in the water of the Styr River before the water intake and after the discharge of
the effluent of the Rivne NPP’s CCS revealed an increase in their concentrations. This was
due to the discharge into the river of wastewater from the Rivne NPP with phosphate ions.

Table 2. Descriptive statistics of the content of phosphorus compounds in the water of the Styr River
after the discharge of reverse waters from the Rivne NPP.

Chemical Parameters Parameter (1)
Year

2019 2020 2021 2022

Phosphates, mg/dm3

M 0.264 0.303 0.291 0.327

±m 0.096 0.167 0.131 0.170

min 0.080 0.120 0.105 0.110

max 0.420 0.495 0.590 0.590

Cv 35.33 34.55 35.86 38.60

HEDP, mg/dm3

M 0.07 0.12 0.13 0.17

±m 0.03 0.08 0.15 0.10

min 0.05 0.08 0.08 0.07

max 0.09 0.18 0.24 0.15

Cv 18.50 30.51 40.20 33.30

Total Phosphorus, mg/dm3

M 0.097 0.118 0.116 0.120

±m 0.030 0.050 0.040 0.050

min 0015 0.051 0.051 0.046

max 0.145 0.209 0.226 0.215

Cv 18.30 30.32 35.23 34.76

Note: (1) M—arithmetic mean of the results; ±m—standard error of deviation; min, max—minimum and
maximum values in the sample; Cv—coefficient of variation.

3.3. Form Distribution and Seasonal Variability of Phosphorus Content

The arithmetic mean concentration of organic forms of phosphorus in the surface water
of the Styr River after the discharge of the Rivne NPP wastewater in terms of phosphorus
molar concentration in 2019–2022 was 0.52 µmol/dm3 with a trend of time changes from
0.842 µmol/dm3 to 7.02 µmol/dm3. Organic forms contribute up to 14% of the total
phosphorus compound content, while inorganic forms make up 86% (Figure 6).
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Seasonal fluctuations in the content of phosphate ions and total phosphorus in the
water of the Styr River show an increasing tendency in the warm season (Figure 7). This is
probably caused by the accumulation of phosphorus in the water during the intensification
of biological processes in the warm season. The dynamics of HEDP content do not depend
on the season and are determined by the technological dosing modes of phosphonate into
the cooling water (Figure 7).
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Figure 7. Seasonal fluctuations in the content of phosphorus forms in the water of the Styr River
within the influence zone of the Rivne NPP for the years 2019–2022.

The analysis of seasonal variability in the content of phosphorus forms was conducted
using the Probabilistic Neural Network (PNN) Classifier (Figure 8). As a result of selecting
the number of network layers and neurons, an optimal model was chosen with a network
structure consisting of two input parameters corresponding to organic and inorganic forms
of phosphorus (Figures 6 and 7). The first layer of the classifier consists of 48 cases, the
second layer has 13 neurons, and the third layer is the output layer classified according
to probabilistic membership into 10 categories, four of which can be classified as annual
seasonal fluctuations in phosphate ion data (Figure 8). It can be concluded that the dynamics
of HEDP content do not depend on the season and are due to the technological modes
of phosphonate dosing into Rivne NPP cooling water, in particular, the variability of
HEDP dosing.
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Thus, an increase in the content of phosphorus compounds in the warm season may
be associated with the development and death of a significant amount of phytoplankton,
and minimal indicators of phosphorus compounds in the cold season with a decrease in
phytoplankton life processes, as well as with anthropogenic pressure from agricultural
activities with the application of phosphorus-containing fertilizers [55]. Also, a large
amount of mobile phosphorus becomes gross (immobile) and settles to the bottom of water
bodies, and the increase in phosphate content in the warm season may also be associated
with the release of phosphorus from bottom sediments and decomposed phytoplankton
and higher aquatic plant components [56].

3.4. Correlation of the Content of Phosphorus Compounds

The assessment of row density using the Multivariate Kernel Density Estimation
method to detect correlations in the content of phosphorus forms is shown in Figure 9. The
correlation between the content values of total organic and inorganic phosphorus forms
is positive, with moderate significance between P/HEDP (r = 0.25) and PO4

3−/HEDP
(r = 0.20), and high between P/PO4

3− (r = 0.89).
The relationship between total phosphorus (P) and its inorganic (PO4

3−) and organic
(HEDP) forms has a linear correlation, statistically significant (p = 0.0011) at the high level
(r = 0.81), with a linear dependence defined by the equation in Figure 9. The dependence
equation, which determines the content of total phosphorus (P) as a function of its inorganic
(PO4

3−) and organic (HEDP) forms, can be used to follow the possible dynamics of changes
in the balance of phosphorus forms due to the influence of natural or anthropogenic factors,
or to predict the distribution of forms. The correlation of the values in the Styr River
water between the increase in total phosphorus (Ptotal(B-A) before/after the Rivne NPP
discharge and the total phosphorus (Ptotal(A) before the Rivne NPP water intake was
established (Figure 10). The dependence, which determines the increase of phosphorus
content depending on the phosphorus content before the water intake, has a linear inverse
correlation, statistically significant (p = 0.009) at the average level (r = 0.65) with the
dependence determined by the equation in Figure 10. The equation can be used to predict
phosphorus discharge from the CCS at the Rivne NPP in order to optimize the technological
processes of HEDP anti-scale treatment.
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3.5. Environmental Assessment of Water Quality by Phosphorus Content

The concentration of phosphorus compounds in the water of the Styr River does not
exceed the maximum permissible concentration for fishing and domestic use according to
Ukrainian standards, but in spring and summer it exceeds the established EU requirements
for the quality of fresh water that needs protection or improvement to support fish life
(Tables 1 and 2 and Figure 5).
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The assessment of the ecological status by the phosphorus content of the Styr River
water in the area of influence of the Rivne NPP effluent was carried out for samples before
and after the discharge of the Rivne NPP effluent in accordance with the quality criteria
applicable in Ukraine [34]. The P compliance with the Water Framework Directive [48],
which takes into account or does not take into account the total alkalinity of the water
(Table 3), was carried out based on of the average monthly monitoring results (Table 3), since
the values have seasonal variability. Water with high alkalinity values can increase [57] the
concentration of “Preference”, which defines the limits of each ecological status, effectively
providing weakening of the ecological standard. The extent of this effect will depend
largely on the rivers fed by the limestone aquifer, rather than on rivers fed by groundwater
with low alkalinity. The Styr is fed by carbonate limestone rocks, which is why the water
has high alkalinity values (more than mgCaCO3/dm3), according to the environmental
assessment of the ecological status of the Styr River. The Styr (Table 3) with alkalinity
values taken into account has better values than those without alkalinity.

Table 3. Ecological assessment of phosphorus compounds in Styr River water before/after discharge
of the Rivne NPP effluent for 2019–2022 according to the quality criteria of Ukraine (without alkalinity)
and Water Framework Directive P compliance (with alkalinity).

Month for
2019–2022

Water from the Styr River to the Rivne NPP
Water Intake

River Styr after Discharge of Return Water
from the Rivne NPP

Environmental Threshold
for Phosphorus

without Alkalinity

Environmental Threshold
for Phosphorus
with Alkalinity

Environmental Threshold
for Phosphorus

without Alkalinity
With Alkalinity

January III «satisfactory,
contaminated» «good» III «satisfactory,

contaminated» «good»

February III «satisfactory,
contaminated» «good» III «satisfactory,

contaminated» «good»

March IV «bad, dirty» «moderate» IV «bad, dirty» «moderate»

April IV «bad, dirty» «moderate» IV «bad, dirty» «moderate»

May V «very bad, very dirty» «moderate» V «very bad, very dirty» «moderate»

June IV «bad, dirty» «moderate» IV «bad, dirty» «moderate»

July IV «bad, dirty» «moderate» IV «bad, dirty» «moderate»

August III «satisfactory,
contaminated» «good» III «satisfactory,

contaminated» «good»

September III «satisfactory,
contaminated» «good» III «satisfactory,

contaminated» «good»

October III «satisfactory,
contaminated» «good» III «satisfactory,

contaminated» «good»

November II «good, clean» «good» II «good, clean» «good»

December III «satisfactory,
contaminated» «good» III «satisfactory,

contaminated» «good»

The ecological status of the Styr River water before and after the Rivne NPP effluent
discharge is the same according to different methodologies, and no impact of the Rivne
NPP effluent discharge on the Styr River water quality is observed. According to the quality
criteria of Ukraine [34], the water of the Styr River before and after the Rivne NPP effluent
discharge is characterized by a large change in the ecological status from II “good, clean”
to V “very bad, very dirty”, with a higher class and a tendency for pollution in spring and
summer, which may be due to agronomic activities in the coastal zones with the application
of phosphate fertilizers and intensification of natural biochemical processes in the warm
season. According to the compliance criteria of the Water Framework Directive [48],
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the water of the Styr River before and after the discharge of Rivne NPP wastewater is
characterized by two classes of ecological status: ‘moderate’ in the spring and summer
and ‘good’ for the rest of the year. This ecological status does not require improvement
measures, taking into account the current value of water alkalinity [56,57].

The C:P:N stoichemistry in 2019–2021 was on the border of the Redfield ratio triangle
with a slight shift in the balance towards an excess of carbon and a slight annual increase
in the nitrogen contribution in 2022 (Figure 11); no excess or accumulation of phosphorus
in the balance of biogenic elements C:N:P in the water of the Styr River before/after
the discharge of the Rivne NPP wastewater was recorded. The C:P:N stoichemistry in
water before/after the discharge from the NPP is comparable (Figure 11); there were
no changes in the balance of biogenic elements of the ratio C:N:P in terms of their total
content in 2019–2022 in the water of the Styr River before/after the discharge of the Rivne
NPP wastewater.
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There is an excess of carbon in C:P:N stoichemistry, which is due to the formation
of the hydrological regime of the Styr River with the feeding of castor limestone. In the
future, based on the balance of nutrients, it is necessary to manage and control the supply
of phosphorus, and the rather high values of HEDP discharge require the implementation
of measures to minimize its use in the Rivne NPP process cycle.

4. Conclusions

Analytical and experimental studies have shown that the actual values of phosphate
ions and HEDP discharge for the Rivne NPP do not exceed the permissible values. The
maximum actual discharge value (2019–2022) of phosphate ions was up to 10% of the
established discharge limit and HEDP up to 95% of the established discharge limit for
water bodies used for fisheries and domestic purposes in Ukraine. However, it exceeded
the EU standards, and did not exclude the possibility of eutrophication as “satisfactory”,
belonging to Class III. The concentration of phosphorus compounds in the water of the
Styr River within the impact zone of the NPP showed seasonal dynamics with a tendency
to increase during the warm period of the year. The analysis of phosphorus form dynamics
using the PNN Classifier confirms the seasonal variability of inorganic forms of phosphorus
concerning phosphate ions. A high, statistically significant correlation between the content
of total phosphorus and phosphate ions was established. A linear equation describing the
content of the total phosphorus, determined by both inorganic and organic forms, was
calculated and can be used for further monitoring of possible phosphorus cycling changes
influenced by the discharge from the Rivne NPP.

Overall, the research results indicate the absence of a negative impact of phosphorus
compounds in the reverse water from the Rivne NPP on the ecosystem of the Styr River.
However, the relatively high levels of HEDP discharge necessitate the implementation of
measures to minimize its use in the technological cycle of the NPP and the continuation
of water quality monitoring of the Styr river. It will be a perspective direction for further
research regarding the sustainable use of water resources in the region.
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