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Abstract: Plastic greenhouses (PGs) play a vital role in modern agricultural development by providing
a controlled environment for the cultivation of food crops. Their widespread adoption has the
potential to revolutionize agriculture and impact the local environment. Accurate mapping and
estimation of PG coverage are critical for strategic planning in agriculture. However, the challenge
lies in the extraction of small and densely distributed PGs; this is often compounded by issues
like irrelevant and redundant features and spectral confusion in high-resolution remote-sensing
imagery, such as Gaofen-2 data. This paper proposes an innovative approach that combines the
power of a full convolutional network (FC-DenseNet103) with an image enhancement index. The
image enhancement index effectively accentuates the boundary features of PGs in Gaofen-2 satellite
images, enhancing the unique spectral characteristics of PGs. FC-DenseNet103, known for its robust
feature propagation and extensive feature reuse, complements this by addressing challenges related
to feature fusion and misclassification at the boundaries of PGs and adjacent features. The results
demonstrate the effectiveness of this approach. By incorporating the image enhancement index into
the DenseNet103 model, the proposed method successfully eliminates issues related to the fusion
and misclassification of PG boundaries and adjacent features. The proposed method, known as
DenseNet103 (Index), excels in extracting the integrity of PGs, especially in cases involving small
and densely packed plastic sheds. Moreover, it holds the potential for large-scale digital mapping of
PG coverage. In conclusion, the proposed method providing a practical and versatile tool for a wide
range of applications related to the monitoring and evaluation of PGs, which can help to improve the
precision of agricultural management and quantitative environmental assessment.

Keywords: full convolutional network; image enhancement index; plastic greenhouse extraction

1. Introduction

Ever since the advent of the first plastic-sheet-covered greenhouses in the 1950s [1–3],
this innovation has drastically transformed global agriculture, significantly enhancing
the quality and volume of crops. According to estimates, there were over 30,000 square
kilometers of PGs in existence in 2016 [4]. A PG is a type of structure made of transparent
plastic material that allows for the artificial control of temperature, humidity, lighting, and
other factors within the greenhouse [5–8]; this can create an ideal growing environment for
plants, allowing for the cultivation of seasonal fruits and vegetables at different times of
the year [9]. Therefore, PGs are often used as the base for intensive vegetable production
and are widely distributed in urban areas [2]. They serve as the primary source of fresh
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vegetables for urban residents. The mapping and monitoring of the coverage of PGs are
of great significance for estimating vegetable production, strategic planning of agricul-
tural development, macroeconomic vegetable price regulation, and environmental impact
research [10].

Remote-sensing (RS) imagery is widely used for PGs’ mapping and monitoring, as it
can provide spatial and temporal information on the distribution of PGs, such as extracting
it from medium- [2,11–13] or high-resolution remote-sensing imagery [14–16]. Compared
with medium-resolution remote-sensing imagery, high-resolution remote-sensing imagery
can provide more detailed information on the shape, area, texture structure, and number
of PG objects and is thus more suitable for the accurate identification and extraction of
PGs [3]. Numerous methods have been employed to map plastic greenhouses (PGs) using
high-resolution remote-sensing imagery, including object-based classification and semi-
supervised machine learning approaches such as support vector machine (SVM) [17],
random forest (RF) [17], and decision tree (DT) classifiers [18]. However, these traditional
methods often face challenges when it comes to accurately delineating the fine boundaries
of PGs [19,20].

In recent years, deep learning techniques [21], particularly deep convolutional neural
networks (CNNs) [22,23], have been widely utilized in various fields, including semantic
segmentation [24] and object detection [25] of remote-sensing images. CNNs can automati-
cally and efficiently extract hierarchical features from initial inputs, surpassing traditional
methods in many vision tasks [26,27]. Semantic segmentation, which is a pixel-level clas-
sification task that aims to assign each pixel to a component class, has rapidly advanced
since the introduction of fully convolutional networks (FCNs) [28,29]. Several state-of-
the-art (SOTA) semantic segmentation frameworks, including Unet [30,31], SegNet [32],
PSPNet [33], and the DeepLab family [34], have been proposed based on FCN to enhance
the segmentation performance. Many researchers use FCN-based methods to perform
semantic segmentation and land-use classification in remote-sensing images. For example,
Song Tingqiang et al. proposed an improved multi-temporal semantic segmentation model
(MSSN) for PGs’ extraction using Gaofen-2 (GF-2) data, targeting seasonal effects on veg-
etable plastic greenhouses and the problem of spatial information loss [35]. Shi Wenxi et al.
proposed an automatic identification method for plastic greenhouses based on ResNet and
transfer learning [36], which applied weights obtained from the ImageNet image dataset to
ResNet, improving the accuracy compared to methods such as SVM. Although previous
related studies have achieved certain effectiveness in the extraction of PGs, the issue of
fusion and misclassification between the boundaries of PGs and adjacent features remains,
especially in areas where sheds are small and dense.

In this paper, the objective is to explore a method for effectively extracting PGs, which
ensures the integrity of the extracted boundaries, especially for small and densely packed
PGs. To achieve this goal, we took the following steps: (1) Presenting an image enhance-
ment index for GF-2 satellite images, aimed at effectively enhancing the boundary features
of PG objects; (2) Integrating the full convolutional network (FC-DenseNet103) with the
image enhancement index to extract PGs from satellite images. The FC-DenseNet103 offers
strong feature propagation capabilities and reuses a large number of critical features. Map-
ping and monitoring PG coverage are of paramount significance for estimating vegetable
production, strategic agricultural development, macroeconomic regulation of vegetable
prices, and environmental impact research. This work contributes to the field of PG map-
ping, addressing the challenges associated with small, densely distributed PGs, thus aiding
in these important aspects of agricultural and environmental management.

2. Materials and Methods
2.1. Study Areas

This paper selected two regions located within the Guangdong-Hong Kong-Macao
Greater Bay Area (GBA) as the study area (as shown in Figure 1). Among them, the area
used for model training is located in Doumen District, Zhuhai City, as shown in Figure 1
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(c); the area used for model accuracy validation is located in Xinhui District, Jiangmen
City, as shown in Figure 1 (b). These two regions are under a subtropical monsoon climate
with weather characterized by abundant sunshine, ample heat, plenty of rainfall, and
high humidity, all of which are favorable for agricultural production. The growth of
crops requires specific seasons, suitable temperature, humidity, light, carbon dioxide
concentration, etc. PGs can alleviate the limitations of the natural environment to some
extent, thereby improving crop productivity. As a result, in the last few decades, PGs
have become increasingly popular, covering approximately 20% of the total cultivated area.
Based on the field survey, it was found that transparent plastics are the most commonly
used materials for the roofing of PGs in Zhuhai City and Jiangmen City. They are important
bases for intensive vegetable production in the Greater Bay Area and are closely related to
the vegetable supply for urban residents in the Greater Bay Area.

Sustainability 2023, 15, x FOR PEER REVIEW 3 of 14 
 

2. Materials and Methods 

2.1. Study Aeras 

This paper selected two regions located within the Guangdong-Hong Kong-Macao 

Greater Bay Area (GBA) as the study area (as shown in Figure 1). Among them, the area 

used for model training is located in Doumen District, Zhuhai City, as shown in Figure 1 

(c); the area used for model accuracy validation is located in Xinhui District, Jiangmen 

City, as shown in Figure 1 (b). These two regions are under a subtropical monsoon climate 

with weather characterized by abundant sunshine, ample heat, plenty of rainfall, and high 

humidity, all of which are favorable for agricultural production. The growth of crops re-

quires specific seasons, suitable temperature, humidity, light, carbon dioxide concentra-

tion, etc. PGs can alleviate the limitations of the natural environment to some extent, 

thereby improving crop productivity. As a result, in the last few decades, PGs have be-

come increasingly popular, covering approximately 20% of the total cultivated area. Based 

on the field survey, it was found that transparent plastics are the most commonly used 

materials for the roofing of PGs in Zhuhai City and Jiangmen City. They are important 

bases for intensive vegetable production in the Greater Bay Area and are closely related 

to the vegetable supply for urban residents in the Greater Bay Area. 

 

Figure 1. The study area: (a) the Guangdong-Hong Kong-Macao Greater Bay Area (GBA); (b) the 

model accuracy validation region; and (c) the model training region. 

2.2. Gaofen-2 Satellite Images 

In this study, Gaofen-2 (GF-2) satellite images were used to construct a dataset for 

extraction of the PGs. The GF-2 satellite was launched on 19 August 2014, and the a�rib-

utes of GF-2 are listed in Table 1. The GF-2 satellite has the advantages of high positioning 

accuracy, fast a�itude maneuvering capability, large observation width, high radiation 

quality, high dynamic low-noise imaging, etc. Therefore, GF-2 satellite images are widely 

used in various fields at a large scale in China, including agricultural resource surveys, 

land-use changes, and environmental monitoring. The data product used in this study is 

a mosaic of cloud-free Gaofen-2 images acquired in multiple periods in 2017. 

  

Figure 1. The study area: (a) the Guangdong-Hong Kong-Macao Greater Bay Area (GBA); (b) the
model accuracy validation region; and (c) the model training region.

2.2. Gaofen-2 Satellite Images

In this study, Gaofen-2 (GF-2) satellite images were used to construct a dataset for
extraction of the PGs. The GF-2 satellite was launched on 19 August 2014, and the attributes
of GF-2 are listed in Table 1. The GF-2 satellite has the advantages of high positioning
accuracy, fast attitude maneuvering capability, large observation width, high radiation
quality, high dynamic low-noise imaging, etc. Therefore, GF-2 satellite images are widely
used in various fields at a large scale in China, including agricultural resource surveys,
land-use changes, and environmental monitoring. The data product used in this study is a
mosaic of cloud-free Gaofen-2 images acquired in multiple periods in 2017.

2.3. Methods

In the realm of deep learning models explored in this study, the initial emphasis is
on the FC-DenseNet103 algorithm. FC-DenseNet103 stands out as a potent image seg-
mentation tool, boasting a distinctive feature propagation capability and efficient reuse
of numerous crucial features, thereby demonstrating its remarkable proficiency in target
object extraction. Furthermore, the analysis extends to a comparative evaluation against
other established algorithms, including Encoder Decoder, FRRN-B, SVM, and RF. In the fol-
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lowing sections, this paper delves into the intricate workings of each algorithm, providing
a detailed account of their respective parameter settings.

Table 1. Attributes of the GF-2 satellite images [37,38].

Parameters Panchromatic Images Multispectral Images

Spatial resolution 1 m 4 m

Spectral range 0.45–0.90 µm

0.45–0.52 µm
0.52–0.59 µm
0.63–0.69 µm
0.77–0.89 µm

Revisit period 5 days 5 days
Image width 631 km 631 km

Average orbit altitude >45 km >45 km

2.3.1. FC-DenseNet103

In this study, a method was proposed which combines a fully convolutional network
(FC-DenseNet103) with an image enhancement index. The image enhancement index effec-
tively accentuates the boundary features of plastic greenhouses (PGs) in high-resolution
Gaofen-2 satellite images, enhancing the distinct band response characteristics of PGs.
FC-DenseNet103, known for its robust feature propagation and the ability to reuse criti-
cal features extensively, forms the backbone of the proposed method. The results of this
research indicate that incorporating the image enhancement index into the DenseNet103
model effectively mitigates issues related to the blending and misclassification of plastic
greenhouse (PG) boundaries and adjacent features, ultimately enhancing the integrity of
PG extraction. The proposed method leverages the synergy of image enhancement and
deep learning techniques to tackle the challenges associated with plastic greenhouse (PG)
extraction, leading to more accurate and refined results.

DenseNet is used not only for data classification but also for image super resolution
and image segmentation. The advantages of DenseNet are the elimination of the gradient
vanishing problem and enhanced feature propagation. A large number of features are
multiplexed, which can effectively reduce the parameters of the model. The DenseNet
network is designed with densely connected blocks, resulting in a narrower architecture
with fewer parameters. This design optimizes the efficiency and effectiveness of feature
transfer, allowing for more effective and complete utilization of features while reducing the
issue of gradient disappearance. As a result, the network exhibits exceptional capability in
feature extraction. Fully Convolutional DenseNet103 (FC-DenseNet103) [39] is an extension
of a densely connected convolutional network (DenseNet) [40], which contains 103 con-
volutional layers. FC-DenseNet103 is primarily utilized for label-based feature extraction
and semantic segmentation. The key process involves incorporating down-sampling and
up-sampling functions behind the dense block. As shown in Figure 2, the structure of the
FC-DenseNet103 model network consists primarily of Full Convolution DensNet (including
Dense Blocks and Transition Down Blocks), Bottleneck Blocks, Dense Blocks add Transition
Up Blocks, and Pixel-Wise Classification layer. The dense module/Dense Blocks (as shown
in Figure 3) performs convolutional operations, while concatenation combines the outputs
of each layer in the dense module.

As shown in Figure 4, the specific structural details of the building blocks in the
Full Convolutional Densenet (the layers used in the model, Transition Down (TD), and
Transition Up (TU)) are as follows: the dense block part is composed of Batch Normaliza-
tion, ReLU activation, Convolution2D, and Dropout; the downward transition module
is composed of Batch Normalization, ReLU activation, Convolution2D, Dropout, and
MaxPooling2D layers; and Transition Up is derived from Deconvolution2D convolution
transposition. Model parameters: learning rate of 0.001 and RMSprop of 0.95.
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2.3.2. Image Enhanced Index

The GF-2 satellite images can undergo data fusion processing by combining the
1 m resolution panchromatic band with the 4 m resolution multispectral band, resulting
in a 1 m resolution multispectral imagery. In this study, an image enhancement index
is introduced to enhance the neural network model’s ability to extract key information
features of PGs and improve the accuracy of PG extraction. This index is calculated
from the green band and blue band of GF-2 satellite imagery, as shown in Figure 5. In
previous studies, the normalized green–red difference index (NGRDI) has often been
utilized for enhancing high-resolution remote-sensing images, achieving an improvement
in the accuracy of deep learning methods in extracting regular land features from remote-
sensing imagery [41,42]. PGs display a discernible difference in reflectance in these two
bands. The image enhancement index (NGRDI) is calculated as follows [41,42]:

Index = 255 ∗ (Gband − Bband)/(Gband + Bband) (1)

where Index is the normalized green–red difference index (NGRDI), and 255 is fixed
parameter of image in int 8 format; Gband denotes green band of GF-2 satellite imagery and
Bband denotes blue band of GF-2 satellite imagery.
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In this study, taking into careful consideration the available computational resources,
DenseNet103 was selected for its capacity to effectively extract PGs while maintaining a
manageable computational load. Furthermore, the integration of the DenseNet103 with
image enhancement indicators significantly enhances model accuracy and mitigates the
risk of excessive reliance on extensive training datasets. Through this synergy with the
image enhancement index, the proposed method maximizes the utility of existing data,
showcasing its ability to extract PGs even in densely structured regions, all while keeping
demands on computational resources and data requirements in check. This strategic
amalgamation effectively addresses critical aspects concerning computational costs and
data needs.

2.4. Previous Models
2.4.1. Encoder Decoder

Encoder-Decoder [34] is a common model framework in deep learning models. Nu-
merous typical deep learning models are developed with an encoding-decoding frame-
work [43]. Such as, there is the unsupervised algorithm auto-encoding which employs an
encoding-decoding structure. The purpose of the encoder is to convert the input sequence
into a fixed-length vector, while the decoder is responsible for transforming the previously
generated fixed vector back into an output sequence. The Encoder-Decoder model has a
distinctive feature in that it is an end-to-end learning algorithm. However, the model is
prone to the problem of gradient disappearance, and for complex target objects, it can be
challenging to transform the input sequence into a fixed-length vector that preserves all
relevant information.

2.4.2. FRRN-B

Full-resolution residual networks (FRRNs) [44] are networks with superior training
properties that consist of two processing streams. The first stream, called the residual
stream, continuously adds residuals to the computation. The second stream, called the
pooling stream, applies a series of convolution and pooling operations directly to the input
to obtain the result. The FRNN network is composed of a series of full-resolution residual
units (FRRUs), each of which has two inputs and two outputs. Suppose zn−1 is the residual
input of the previous n-1 FRRUs and yn−1 is their pooling input, thus the output can be
calculated as follows:

zn = zn−1 + H(yn−1, zn−1; Wn) (2)
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yn = G(yn−1, zn−1; Wn) (3)

where Wn is the parameter of the function G, H. A reasonable configuration of the functions
G, H are required to combine the two streams: if G = 0, it corresponds to the removal of
the pooled inputs, i.e., FRRUs for RU structures; if H = 0, it is the removal of the residual
structures, i.e., FRRUs for traditional feedforward networks structures. Full-resolution
residual network with 1/2 Pooling (FRRN-B) is that it is a network architecture based on
the full-resolution residual network (FRNN), which includes a 1/2-resolution pooling layer
between the encoder and decoder. Compared to the original FRNN, FRRN-B has a reduced
input resolution, but it is restored to the desired resolution using bilinear interpolation
at the output. This network has been applied in various fields, such as image semantic
segmentation, and has shown excellent performance.

2.4.3. Support Vector Machine

The support vector machine (SVM) [45] is a supervised machine learning algorithm
that serves as a generalized linear classifier. It is particularly useful for binary classification
tasks, where it identifies a decision boundary that maximizes the margin between the two
classes in the feature space. The basic model of the SVM was proposed by Cortes and
Vapnik in 1964. The SVM employs a hinge loss function to calculate the empirical risk
and integrates a regularization term into the solution system to optimize the structural
risk. As a sparse and robust classifier, it is designed to minimize the empirical risk while
avoiding overfitting by striking a balance between the empirical risk and the regularization
term. The SVM is particularly effective in pattern recognition and classification, as it
can increase the separation between classes and reduce the expected prediction error.
Furthermore, the computational complexity of the SVM is determined by the number of
support vectors rather than the dimensionality of the sample space, which helps avoid
the curse of dimensionality and allows it to perform well in high-dimensional problems
with small sample sizes. However, the SVM has some limitations. It can be challenging to
train with large sample sizes, and it is sensitive to missing data, parameter tuning, and the
choice of kernel function.

2.4.4. Random Forest

The random forest (RF) [46,47] classifier is an ensemble classifier that generates mul-
tiple decision trees using randomly selected training samples and subsets of variables.
During classification, the random forest aggregates the results of these decision trees
through voting or averaging to obtain the final classification result.

The RF algorithm can be used for the classification of discrete values, unsupervised
learning clustering, and outlier detection, among other applications. It has also been exten-
sively utilized in various scenarios, such as reducing the dimensionality of hyperspectral
data, identifying the most relevant multi-source remote-sensing and geographic data, and
classifying specific target classes. However, it has been found to be susceptible to overfitting
in some noisy classification or regression problems. Furthermore, in datasets with different
feature attributes, the attribute with more feature subdivisions tends to exert a greater
impact on the output value of the random forest, which can result in biased outcomes.

In the experiment, eCognition 9.0 software was used for implementing the SVM and
random forest (RF) methods. For the SVM model, the default parameters of the eCognition
software were employed. Specifically, the SVM model used the radial basis function (RBF)
kernel and was finetuned with the default settings, including the regularization parameter
(C) and the kernel parameter (γ). For the random forest model, 50 trees were utilized, and
the maximum depth of the tree was determined by expanding nodes until all leaves were
pure or until all leaves contained fewer than two samples.
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2.5. Method Evaluation

When evaluating the model performance, this paper used the metrics of accuracy,
F1-score, and intersecting over union (IoU), which are widely used for assessing the accu-
racy of image semantic segmentation. The accuracy, precision, and recall can be expressed
as follows [48,49]:

Accuracy = (TP + TN)/(TP + FN + FP + TN) (4)

Precision =
TP

TP + FP
(5)

Recall =
TP

TP + FN
(6)

where TP denotes a true positive where both the prediction and the reference are positive;
TN denotes a true negative where both the prediction and the reference are negative; FP
denotes a false positive where the prediction is positive and the reference is negative; and
FN denotes a false negative where the prediction is negative and the reference is positive.

F1-score and IoU are derived as follows [48,49]:

F1− score =
2 ∗ Precision ∗ Recall

Precision + Recall
(7)

IoU =
TP

TP + FP + FN
(8)

3. Results

In this study, two traditional machine learning models (SVM and random forest), three
deep learning models (Encoder Decoder, FRRN-B, and DenseNet103), and the proposed
method (DenseNet103 add image enhancement index) were employed for extracting the
PGs. The three metrics of accuracy, F1 score, and IoU were used to evaluate the extraction
accuracy of extraction PGs under different methods. To evaluate the model’s performance
in extracting PGs, the visualization results of three regions in Jiangmen city were selected
(as shown in Figure 6).

Figure 7 shows that the boundaries of PGs extracted by SVM and random forest
methods are fuzzy and unclear and multiple greenhouses are even merged. Additionally,
other ground objects have also been identified as PGs, resulting in misclassification. The ex-
traction results of the Encoder-Decoder, FRRN-B, and DenseNet103 models show a gradual
improvement in detail level. Particularly, the DenseNet103 model can achieve the extraction
of most of PGs, even those distributed in areas with extremely high reflectivity. However,
there are still small parts that are incompletely extracted. The image enhancement index
can effectively highlight the boundary features of regular objects in GF-2 satellite images,
strengthen the distinct band response characteristics of PG, and further improve the com-
pleteness and accuracy of PGs extraction and boundary definition. The results from three
different regions using the Encoder-Decoder (Index), FRRN-B (Index), and DenseNet103
(Index) models after fusing the image enhancement index show a gradual improvement
in the completeness of PGs extraction and clearer boundary definition. Among them, the
DenseNet103 (Index) model performs the best, achieving the extraction of PGs in the small
area with a clear boundary definition.

Table 2 presents the classification accuracies of PGs using various methods. In
terms of accuracy, the SVM, random forest, Encoder-Decoder, FRRN-B, DenseNet103,
and DenseNet103 (Index) models achieved accuracy values of 0.911, 0.964, 0.983, 0.986,
0.987, and 0.989, respectively. Similarly, in terms of F1 score and IoU performance, the SVM,
random forest, Encoder-Decoder, FRRN-B, DenseNet103, and DenseNet103 (Index) models
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achieved F1 score values of 0.647, 0.795, 0.895, 0.909, 0.921, and 0.934, and IoU values of
0.691, 0.811, 0.896, 0.909, 0.920, and 0.932, respectively.
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Table 2. The classification accuracies of plastic greenhouses using different methods.

Methods SVM Random
Forest

Encoder
Decoder FRRN-B DenseNet103 DenseNet103

(Index)

Accuracy 0.911 0.964 0.983 0.986 0.987 0.989↑
F1 score 0.647 0.795 0.895 0.909 0.921 0.934↑

IoU 0.691 0.811 0.896 0.909 0.920 0.932↑

4. Discussion

The network structure used in this research not only has a small number of parameters,
which is effective in extracting the deep features of PGs, but moreover, on the basis of
full convolution, it can also break through the door barriers between different layers by
skipping connections to realize the reuse of features. However, there still exist some pretzel
phenomena in extracting object boundaries and patch edges. The current limitations in
plastic greenhouse (PG) detection and extraction methods involve challenges in accurately
delineating fine boundaries, dealing with variability in PG characteristics, coping with
dense vegetation cover, and addressing biased datasets [3,50]. The proposed research
overcomes these limits by introducing a novel approach that combines a deep learning
model (DenseNet103) with an image enhancement index. This innovative strategy effec-
tively highlights boundary features, enhances semantic segmentation, and improves the
robustness of PG detection. While some evaluation metrics may not outperform accuracy,
the approach significantly improves fine feature extraction and offers a promising solution
to enhance the accuracy and applicability of PG mapping and monitoring methods.

Post-processing image enhancement helps to improve the classification results based
on fully convolutional networks, but the assignment of weights still depends on the actual
application. In the experimental results, the semantic segmentation accuracy of models
such as Encoder Decoder or FRRN-B is also relatively high [51]. The vegetation coverage
in the test data is believed to also impact the results. Moreover, there are various shapes
and sizes of agricultural greenhouses in real life, and some of the spectral features are not
obvious enough, thus increasing the difficulty of semantic segmentation. The detection
of small plastic greenhouses poses a unique challenge due to their relatively diminutive
size [52]. To address this challenge, a range of strategies have been implemented, including
parameter optimization, careful selection of training data, and the application of post-
processing techniques. These efforts are geared towards ensuring the accuracy of detection
methods for small greenhouses. Furthermore, it is recognized that distinct greenhouse
roof shapes can influence the visual characteristics of satellite images. Consequently, this
paper has probed into strategies to adapt the proposed method to these varied conditions,
thereby upholding performance stability.

Interestingly, the improved DenseNet103 (Index) model provides a high-precision
semantic segmentation architecture that enhances the recognition and extraction of bound-
aries compared to other models. By using the DenseNet103 (Index) model, deep features
can be learned, and useful feature information can be extracted. By fusing it with the image
enhancement index, the completeness of the agricultural shed extraction can be further
improved. Comparatively, the two evaluation factors, F1 score and IoU, do not perform
as well as accuracy on the DenseNet103 (Index) model in terms of results. The analysis
suggests that this may be due to the influence of obvious features such as dense vegetation
cover and some other objects occluding the tops of the agricultural canopies. In the dataset,
the bias in the training and validation datasets may also have caused a bias in the extracted
classification results. However, it does not affect the overall effect of the DenseNet103
(Index) model, which can be used in the future in the field of semantic segmentation to
realize the recognition and extraction of multi-scale and multi-level fine features.

In the context of this research, it becomes evident that the contemplation of future
prospects and broadening the horizons of this work hold great significance. It envisions
several compelling avenues for further exploration and enhancement. A particularly excit-
ing opportunity lies in extending the reach of the proposed method to encompass a broader
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geographical scope, most notably within the Greater Bay Area. This expansion would fur-
nish a comprehensive understanding of the extensive distribution and dynamics of plastic
greenhouses across the region. Additionally, there is eager anticipation for the evolution
of more sophisticated image enhancement techniques, poised to refine the methodology
and enhance its versatility across a spectrum of scenarios. Furthermore, the integration
of multi-source remote-sensing data, coupled with the adoption of cutting-edge deep
learning architectures, opens promising avenues for methodological refinement [19,53].
For example, the proposed method should extract the digitization footprint of PGs from
multi-temporal remote-sensing images.

In addition, PGs can alter the reflectance of solar radiation in localized areas, thereby
modifying the temperature and microclimate of those specific regions and influencing
the ecosystem. The proposed method can accurately extract the digitization footprint
of PGs from multi-temporal remote-sensing images. Using the proposed method, it is
possible to monitor changes in PGs during different periods, providing precise surface
input parameters for regional ecological modeling. Additionally, it provides valuable data
support for monitoring and predicting micro-ecological environments, thereby serving the
sustainable development of the ecological environment.

5. Conclusions

This paper meticulously analyzed the performance of various machine learning and
deep learning models, consisting of two machine learning models, three deep learning
models, and the innovative DenseNet103 method enhanced with an image enhancement
index. The primary objective of this research was to achieve precise extraction of plastic
greenhouses (PGs), with a particular emphasis on concentrated the PG areas located within
the cities of Zhuhai and Jiangmen. The experimental results unequivocally demonstrate
the exceptional capabilities of the proposed DenseNet103 (Index) model. By integrating
the image enhancement index, this model adeptly captures crucial feature information,
resulting in a significant enhancement in classification accuracy and in the integrity of
object extraction. In summary, the proposed method excels in the extraction of PGs,
especially in scenarios characterized by small and densely distributed PGs. The proposed
method’s robustness and accuracy position it as a promising solution for large-scale digital
mapping of plastic greenhouse coverage. The implications of this study extend to various
applications, including accurate estimation of the area and quantity of PG. It holds immense
value in the field of agricultural management, as relying on more accurate estimations
of greenhouse area and quantity data can enhance the precision of agricultural resource
allocation, optimize crop production, and contribute to achieving the overall objective
of ensuring food security. In conclusion, the proposed method provides a practical and
versatile tool for a wide range of applications related to the monitoring and evaluation
of PGs; it can thus help with improving the precision of agricultural management and
quantitative environmental assessment.
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