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Abstract: Worldwide energy demand is constantly increasing. This fact, in combination with the ever
growing need to reduce the energy production footprint on the environment, has led to the adoption
of cleaner and more sustainable forms of energy production. Renewable Energy Sources (RES) are
constantly developing in an effort to increase their conversion efficiency and improve their life
cycle. However, not all types of RES are accepted by the general public. Wind Turbines (WTs) are
considered by many researchers as the least acceptable type of RES. This is mostly because of how
their installation alters the surrounding landscape, produces noise and puts birds in danger when
they happen to fly over the installation area. This paper aims to apply a methodology which, by
using Rational Basis Function Neural Networks (RBFNN), is capable of investigating the criteria
used for the installation locations of WTs in a transparent way. The results from the Neural Network
(NN) will be combined with protected areas and the Land Fragmentation Index (LFI), in order to
determine possible new installation locations with increased social acceptance and, at the same time,
increased energy production. A case study of the proposed methodology has been implemented for
the entire Greek territory, which is considered one of the most suitable areas for the installation of
wind farms due to its particular geomorphology.

Keywords: renewable energy; wind farms; geographical information systems; radial basis function
neural networks

1. Introduction

Over the past decades, Renewable Energy Sources (RES) have been widely developed
in many countries worldwide. In the European Union (EU), energy production through
Wind Farms (WF) increased by more than 400% during the period of 2004–2015 and the
corresponding electricity generated through photovoltaic rose from 7.4 TWh (Terawatt-
hour) in 2008 up to 157.5 TWh in 2021 [1,2]. More specifically, the wind power capacity
installed in the EU at the end of 2021 was 187,780.7 MW (Mega Watt) and the electricity
production from wind power in 2020 and 2021 was 384.899 TWh [3], which is about the
22% of the gross final energy consumption, while the target for 2030 that was set by the EU
for electricity production from WFs exceeds 30% [4].

An equivalent rise in WF installation and production has taken place in Greece over
the past few years. The electricity production from WFs in 2021 increased to 10,483 TWh
from 9310 TWh in 2020, a very important increment which places Greece in 11th position
among the 27 members of the EU. It is noteworthy that, in countries, such as Germany,
France, Sweden, Denmark, Belgium and Ireland, with higher electricity production from
wind power than Greece, a decrement is observed in the corresponding values [3].
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Many countries have decided to switch from fossil fuels to RES primarily for eco-
nomical and environmental reasons. Megura and Gunderson [5], Chiari and Zecca [6],
Braungardt et al. [7] and Zecca and Chiari [8] have highlighted the positive impact of fossil
fuel usage on global warming, and it has been estimated that the mean temperature of the
world will be increased by 1.2 °C in 2100 in comparison with 2000, due to the carbon dioxide
emissions in the production of electricity from fossil fuels. On the other hand, according to
Tutak and Brodny [9], Poudyal et al. [10], Pietrosemoli and Rodríguez-Monroy [11] and
Meza et al. [12] the consumption of electricity produced by RES has a positive effect on a
country’s economic development and in solving the problem of the energy crisis.

Despite the increase in electricity production from RES in the EU, the total energy
produced is still insufficient to meet demands and, thus, the EU imports most of its energy
from other countries. This high dependency seen in Europe is one of the biggest factors of
uncertainty. Furthermore, according to De Rosa et al. [13] the largest percentage of energy
imports comes from Russia, from which 45% of coal, 40% of natural gas and 27% of crude
oil were imported in 2019. Consequently, it is necessary to minimize the energy produced
from fossil fuels, as well as energy imported from other countries, to limit environmental
pollution, reduce production costs and ensure energy security. This could be achieved by
installing more renewable energy sources in a way that maximizes their efficiency and
minimizes their negative impacts [14,15].

With this goal in mind, the EU is currently revising old legislation in order to accom-
plish carbon neutrality, with the aim of offsetting carbon emissions and carbon absorptions.
Because energy efficiency and renewable energy investments could help in reducing emis-
sions, EU members agreed to balance carbon emissions and absorptions until 2050 by
increasing the production of electricity from renewable sources even more [16].

In order to successfully allocate WFs in the previously mentioned factors, various
methodologies and techniques have been developed and implemented. Most of the stud-
ies analyze a set of criteria in order to determine how each one affects the allocation.
Multiple-Criteria Decision-Making (MCDM) has been widely used to classify the regions
and locate the most suitable for WF installation. Konstantinos et al. [17] created a site
hierarchy using the Technique for Order Preference by Similarity to Ideal Solution (TOPSIS)
to compare alternative sites with both the positive and the negative optimal solutions.
Gorsevski et al. [18] separate the criteria into two independent groups: environmental
and economic. They also use a Spatial Decision Support System (SDSS) to display an
environmental layer solution, an economic layer solution and a combined suitability layer
in a map. Salvador et al. [19] implemented a method known as Bayesian Best Worst Method
(BBWM) that models the problem with a probabilistic approach. According to the BBWM
method, the weights for each criterion are calculated by measuring their inter-correlation.

Tegou et al. [20] combined MCDM analysis with a Geographic Information System
(GIS) to evaluate a series of constraints and criteria and derive wind farm suitability maps.
Similarly, Saraswat et al. [21] and Bennui et al. [22] use MCDM and GIS to identify suitable
areas for WT installation by evaluating technical, social, environmental and economic
criteria. Xu et al. [23] proposed a methodology based on MCDM and GIS to tackle the WF
site selection issue by taking into account two major factors, i.e., biodiversity conservation
and production safety.

Shorabeh et al. [24] integrate Geographic Information System-based Multicriteria
Evaluation (GIS-MCE) and Ordered Weighted Averaging (OWA) to identify optimal site
locations for WF installation at various risk levels. Al-Yahyai et al. [25] implement MCDM,
GIS and OWA in order to derive a WF land suitability index and classification by con-
sidering economical, social, environmental and technical criteria. Lastly, Höfer et al. [26]
emphasize the importance of social acceptance criteria in evaluating the suitability of
potential sites by implementing MCDM.

One of the most important stages of MCDM is the assignment of weights to the criteria.
There is a plethora of techniques that have been used for this purpose, such as the Analytic
Hierarchy Process [17,20,22,23,25–27], the Weighted Linear Combination [18], the Simple
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Additive Weighting [28], the Fuzzy Analytic Hierarchy Process [21] and the Best Worst
Method [19,24,29].

It should be noted that discrepancies exist in the weights that each study determines
for the selected criteria and this may be due to the different characteristics in the study areas
or the different approaches and methodologies that are implemented. In addition, there are
dissimilarities in the criteria selection among the studies. Some of the most common criteria
along with their descriptions and the corresponding studies are presented in Table 1.

Table 1. The criteria used for the wind turbine allocation.

# Criterion Description Studies

C1 Airports The distance from the closest airport. [18,21,22,29–37]
C2 Roads The distance from the road network. [17–48]

C3 Protected areas The distance from the closest protected area
(such as the Natura 2000 areas). [19,24,26,27,30,31,33–36,38,39,43,44,48]

C4 Wind potential The wind speed as it was computed or predicted
on a particular high above the current location. [17–29,31,32,35,37–39,41–44,46–51]

C5 Elevation The elevation of the location. [21,22,24,28,30–32,35,36,41,42]
C6 Slope The slope of the surrounding area. [17,20,23–30,32,34–39,41–44,47,48]
C7 Coastline The distance from the coastline. [19,50]
C8 Rivers The distance from the closest river. [19,21,22,24,29–36,42,44,49,50]
C9 Residential The distance from the closest residential area. [17,19,21–27,29–38,41–44,46–48,51]

The criteria that were applied in the current study in order to define the characteristics
of the locations are listed and described in Table 1. Following extensive research in previous
studies related to WF allocation, it was found that the criteria described in Table 1 are the
most important and most frequently appearing. Furthermore, it should be noted that these
criteria may change over time. As new research emerges, new results could be integrated.

In order to overcome the dissimilarities in the criteria selection and the conflicting
weight values in various study areas, a different approach to the proposed methodolo-
gies is suggested. For this reason, we propose the application of an Artificial Neural
Network (ANN), which is a Machine Learning (ML) algorithm. ANNs could acquire prior
knowledge and characteristics from already installed WF locations.

By using this approach, the methodology will be unaware of the study area selection
procedure as well as the criteria used and their weight coefficients. The ability of ANNs
to learn from new data and enhance their output is another crucial feature. Therefore,
information from recently installed WTs can be embedded into them by implementing a
new training stage.

In this work, a methodology for locating the most optimal places for WF installation,
which takes advantage of the characteristics of the already installed WTs, is proposed. By
using this approach, an algorithm is implemented to find WF installed area patterns by
extracting their characteristics. In the first step of the methodology, the WTs are clustered
into groups based on the characteristics of their surrounding areas. Consequently the
extracted characteristics are used to train and test a Neural Network (NN) that outputs the
suitability of a potential location for WF installation. A case study was implemented by
using the characteristics of the WT locations in Greece and optimal areas were suggested
for WF production in the entire Greek territory.

The main advantage of the proposed methodology is that it does not take into account
the weight coefficients for the criteria used in order to determine the installation locations.
Furthermore, it is adjustable in case of setting the criteria changes. In addition, the structure
of the algorithm allows the ex post inclusion of new data, which is a very important
property as the available data are not static and may be enriched by newly installed WTs.

The novelty of the proposed methodology is its capability to extract information from
the already installed WTs. In contrast to other studies that define weights to selected criteria
in order to evaluate a location, our study implements machine learning algorithms that are
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capable of learning from the characteristics of the locations of WFs that are already installed.
Furthermore, the proposed algorithm includes information from the surrounding areas of
the already installed WFs, allowing it to extrapolate the suitability of larger areas and not
only to specific locations. Additionally, the multicriteria decision analysis approaches are
often biased by the researcher applying the analysis. By encompassing the results from
most available research, we propose a method which can effectively address the issue of
subjectivity caused by the researcher.

This work may help policy makers by providing significant insights regarding the
suitability of potential areas for WF investment. Additionally, they can represent the
extracted information on a map to better understand the output. Finally, the algorithm not
only gives the suitability of a place, but also predicts clusters of areas in which WFs belong.

2. Materials and Methods
2.1. Study Area and Data Retrieval

The area selected for the case study of the proposed methodology is Greece, a coun-
try that is considered to be suitable for WF investment due to its particular geomor-
phology and meteorological conditions. Lalas et al. [52], Katsoulis and Metaxas [53],
Voivontas et al. [54] and Oikonomou et al. [55] have analyzed the special conditions of the
winds in Greece and concluded that a plethora of sustainable WFs could be developed.

According to the Regulatory Authority For Energy [56] (RAE), which is an independent
regulatory authority, the main scope of which is to supervise the domestic energy market
in Greece, 10961 WTs were evaluated and licensed for installation, production or operation,
more specifically there are

• 2407 WTs with a license for operation;
• 647 WTs with a license for installation;
• and 7907 WTs with a license for production.

The locations of the WTs, as described above, are available from the RAE geoportal in
World Geodetic System (WGS) 84 and can be retrieved in shape files. The locations of the
WTs can be seen in the map in Figure 1.

Consequently, concerning the computation of the characteristics, the following data
were retrieved from the WGS84 coordinate system from https://geodata.gov.gr (accessed
on 21 July 2022) [57], a web page that provides the following open geospatial data and
services in Greece:

• The locations of 74 airports in Greece, as a shape file;
• 68,447 km of the road networks of Greece, as a shape file;
• The protected areas of Greece, as a shape file that contains polygons representing

nature reserve areas, aesthetic forests, controlled hunting areas, national parks, natural
monuments and landmarks (protected as strict nature reserve), wildlife refuges and
protected forests, with a total area of 38,034.6 km2;

• The wind potential of Greece, except the island of Crete, in a wind speed map with
a resolution 150 m × 150 mm, as estimated by the “centre for renewable energy
sources and saving” at 40 m high in m/s. The wind potential of the island of Crete
was downloaded in raster format from “The Global Wind Atlas” [58], a web-based
application;

• The elevation contour lines of Greece with contour intervals of 80 m, as a shape file;
• 10,817.2 km of the length of rivers of Greece, as a shape file;
• The locations of 13,548 residential areas of Greece, as a shape file.

https://geodata.gov.gr
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Figure 1. The locations of WTs in Greece.

Additionally, the coastline of Europe was retrieved as a shape file from the European
Environment Agency [59].

2.2. Radial Basis Function Neural Networks

Radial Basis Functions (RBF) are functions that are symmetric around a point p, called
the center, and its output depends on the distance between the input and the center p.
Therefore, a RBF is a function r of the following Equation (1):

r(x) = f (∥x− p∥), (1)

where f is an arbitrary function with real values and ∥·∥ is a norm, usually the Euclidean
distance. The most common RBF used is the Gaussian function, which is defined by the
Equation (2), is as follows:

ϕ
(
xi, xj

)
= e
−

d
(

xi, xj
)2

2σ2 , (2)

where d is the Euclidean distance and σ is a parameter of the function called width, which
is usually selected to be the standard deviation of the Euclidean distances that are going to
be imported in the RBF [60,61].

Radial Basis Function Neural Networks (RBFNN) are NNs that consist of three layers:
the input layer, one hidden layer called the radial basis layer and the output layer. Each
neuron pi of the radial basis layer corresponds to a point pi ∈ Rn, called a prototype. If
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x = (x1, x2, · · · , xn) ∈ Rn is an input vector of the RBFNN, then the value of the neuron
pi is ϕi(x, pi), where ϕi is a RBF function, and may be a different one for each neuron pi.
The output layer may consist of one or more neurons yj, and their values are given by
Equation (3):

yj =
k

∑
i=1

wijϕi(x, pi), (3)

where k is the number of the radial basis layer’s neurons, wij is the weight that corresponds
to i-th neuron of the radial basis layer and j-th neuron of the output layer and ϕi(x, pi) is
the value of the i-th neuron of the radial basis layer. The output vector can be calculated in
terms of matrix multiplication using Equation (4) and the structure of the RBFNN can be
seen in Figure 2. 

y1
y2
...

ym

 =


w1,1 w1,2 · · · w1,k
w2,1 w2,2 · · · w2,k

...
...

. . .
...

wm,1 wm,2 · · · wm,k

 ·


ϕ1(x, p1)
ϕ2(x, p2)

...
ϕk(x, pk)

 (4)

Figure 2. The structure of an RBFNN.

RBFNNs can be used for function approximation, classification or interpolation and
can solve problems that cannot be solved with classical multilayer NNs. RBFNNs behave
with high effectiveness due to the existence of the RBF layer, which is a non-linear layer
that computes the similarity between the input vector and each prototype. Especially in
classification problems, the neurons of the output layer represent each category and their
value is the probability of the input case corresponding to the category. Moreover, values
close to zero in every output layer neuron indicate that the case does not correspond to any
category [62–65].

An approach to RBFNNs that improves their performance and accuracy is to include
more hidden layers; the hidden layes in this case are thus

• One RBF non-linear layer and;
• An arbitrary number of linear layers.

This is a multilayer perceptron with an extra layer and the RBF layer as the first hidden
layer. Extended studies on RBF neural networks have been carried out by Zhao et al. [66],
Jiang et al. [67] and Wen et al. [68].
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The training of an RBFNN consists of two stages. During the first of these, the scope
is to choose the optimal prototypes that can be achieved using several techniques and
methods like genetic algorithms [69], an extended Kalman filter [70] or clustering [71–73].
The second stage of the training is related to the determination of the weights between the
hidden layer and the output layer that minimize an objective function like the common
Mean Squared Error. This can be achieved using the same methods as a typical NN, such
as the gradient descent, Newton method and more [74].

2.3. Z-Score Normalization

Normalization is a procedure that takes place in data preparation and its purpose
is to transform the values to the same scale, so that they can be imported in machine
learning algorithms such as NNs. Data normalization improves the efficiency of a model
and reduces the difficulty of its training, thus it can be trained much faster. Z-score
normalization transforms the values so that their mean will be equal to zero and their
standard deviation will be equal to one. Z-scores are computed using Equation (5):

x′ =
(x− µ)

σ
, (5)

where x is the initial value, µ is the mean of the values, σ is their standard deviation and x′

is the normalized value [75].

2.4. K-Means Clustering Algorithm

K-Means is an unsupervised clustering algorithm which has been widely used in
various methodologies and techniques. It attempts to locate k centroid points (prototypes)
that divide the set of points in a way that each one corresponds to the nearest centroid and
minimizes the within-cluster variances, which are given by Equation (6):

k

∑
j=1

∑
xi∈Cj

∥∥xi − cj
∥∥2, (6)

where C = {c1, . . . , ck} is the set of centroids, xi are the points to be clustered and Cj is the
j-th cluster [76,77].

2.5. Hausdorff Distance

The Hausdorff distance is a metric that computes the distance between two sets of
points, such as polygons [78]. Let A and B be two sets of points, then the Hausdorff distance
from A to B is equal to the maximum distance among all points of A to the nearest point of
B and is expressed using Equation (7):

dh(A, B) = max
a∈A

{
min
b∈B
{d(a, b)}

}
, (7)

where d is the Euclidean distance. Typically, the distances dh(A, B) and dh(B, A) are not
equal. The Hausdorff distance DH is defined by Equation (8) as the maximum of these
distances, thus

DH(A, B) = max{dh(A, B), dh(B, A)}. (8)

2.6. The Model

In this section, the steps of the proposed methodology will be described. Python
programming language and QGIS, a free and open source Geographic Information System
(GIS), were used for the implementation of the model. More specifically, the NN was
built using scikit-learn, an open source ML library for Python. Furthermore, various
computations and map generations were created in both python and QGIS. The workflow
of the model can be seen in Figure 3.
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Figure 3. Methodology diagram.

Firstly, the input of the model consists of a set of points representing the locations of
WTs, as described by Equation (9):

WT = {(xi, yi), i ∈ N, 1 ≤ i ≤ N} (9)

where xi, yi are the coordinates of the points and N is the number of the points. Conse-
quently, the points inWT were clustered geospatially into 158 groups represented by a set
of polygons given by Equation (10):

C(WT ) =
{

Cj, 1 ≤ j ≤ 158
}

(10)

where C(WT ) is the geospatial clustering proposed in [79] and Cj are the polygons. The
algorithm that was used for the clustering was developed in an antecedent study and is
described briefly in [79]; its scope is to group nearby locations of WTs in order to study the
areas where there is a development of WFs. The polygons are presented in Figure A6.

In the next step, the characteristics presented in Table 1 were computed for each poly-
gon. All distances were computed using the ellipsoidal distance after the transformation
of the coordinates to the World Geodetic System (WGS) 84—European Petroleum Survey
Group (EPSG) 7030 coordinate system. Particularly for the computation of the distances
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from the airports, the road network, the coastline and the rivers, the minimum distance
between them and each polygon was determined. For the computation of the distances
from the residential areas, the mean value of the 50 minimum distances to the correspond-
ing polygon was determined, due to the fact that the set of the residential areas is very
dense. The distance between each polygon and the set of protected areas (nature reserve
areas, national parks, etc.) was computed using the Hausdorff distance, as it is a metric
between two polygons. The wind potential was determined as the mean wind speeds that
are within the corresponding polygon. Finally, the elevation and the slope were determined
according to the mean value and the standard deviation, respectively, of the contour lines’
values that lie within the corresponding polygon.

Therefore, for each polygon, a nine-dimensional (9D) vector of the Equation (11)

(X1, X2, . . . , X9) (11)

that consists of the nine criteria, was determined. In the next step, the set of these vectors
were normalized using the z-scores and were clustered into four groups using the k-
means clustering algorithm. The map with the four groups of polygons can be seen in
Figure A7. Thus, the areas of the WTs were separated into four groups by comparing their
characteristics and, as a result, the WTs were grouped into four clusters depending on the
polygon to which they belong.

Moving on to the next step, the criteria described in Table 1 were also determined for
each point. Thus, a 9D vector for each point of the Equation (12)

(x1, x2, . . . , x9) (12)

was determined and, consequently, each vector was normalized using z-scores.
Subsequently, a RBFNN with 9 neurons in the input layer and 4 neurons in the output

layer was developed. Each neuron of the first layer corresponds to a criteria and each
neuron of the output layer corresponds to a cluster. The prototypes that correspond to
the RBF layer were randomly chosen in such a way that each polygon will contain exactly
one prototype, thus a set of 158 prototypes was determined. An additional hidden layer
containing 100 neurons was defined in order to increase the accuracy of the NN. The
structure of the proposed RBFNN is presented in Figure 4 and the data that are imported
to each layer can be seen in Figure 5.

Figure 4. The structure of the proposed RBFNN.
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Figure 5. The data that are imported to each layer of the RBFNN.

The radial basis function, which is used as the activation function of the RBF layer,
was the Gaussian RBF presented in Equation (13)

ϕ
(

xi, xj
)
= f

(
d
(
xi, xj

))
= e−0.5·d(xi ,xj)

2
, d

(
xi, xj

)
> 0. (13)

and its graph can be seen in Figure 6a. The parameter σ was set to one, as the Euclidean
distances were normalized using z-normalization before they were input in RBF; thus, their
standard deviation is equal to one [60,61].

The activation function of the hidden layer was the Rectified Linear Unit Function
(RELU) defined by Equation (14)

f (x) = max(0, x) (14)

and its graph can be seen in Figure 6b [80].
After the definition of the structure of the RBFNN, the NN was trained and tested by

importing the couples of input-outputs that have the form of the following Equation (15)
x1
x2
x3
...

x9

←→


y1
y2
y3
y4

 (15)

where xi, 1 ≤ i ≤ 9 are the values of the criteria and yi, 1 ≤ i ≤ 4 indicates whether the
input point belongs to cluster i and takes values according to Equation (16).
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yi =

{
1, if the input belongs in i-th cluster
0, otherwise

(16)

(a) (b)

Figure 6. The activation functions of the neurons. (a) Gaussian RBF ϕ(x) = e−0.5·x2
. (b) The activation

function of the hidden layer f (x) = max(0, x).

The set of the locations, along with the normalized 9D vectors of their characteristics,
was separated randomly into a training set (70%) and a testing set (30%). The function that
was used for separating the input set was “train_test_split” from the scikit-learn PYTHON
library [81]. Consequently, the training of the NN was carried out according to a stochastic
gradient-based optimizer proposed by Kingma, Diederik and Jimmy Ba [82]. The testing
set, which consists of 30% of the input data, did not take part in the training stage and was
used for the evaluation of the NN.

Moving onto the next phase of the algorithm, the potential locations for WF devel-
opment will be selected. In the current study, the protected areas and the areas defined
by the polygons, where WTs already exist, were excluded by the accepted areas. The
exclusion of the protected areas from installing WTs is really important due to environ-
mental factors. Salkanović [83], Tsarknias et al. [84], Sotiropoulou and Vavatsikos [85] and
Gkeka-Serpetsidaki and Tsoutsos [86] have highlighted the ways that the protected areas
may be affected, like pollution during the installation phase or bird disturbance due to the
noise during the operation phase. Moreover, the areas with WFs already installed were
excluded due to the scope of this study, the aim of which is to find new areas that could be
optimal for WF development and that have not already been impacted by them.

Consequently, a set of points was randomly selected within the accepted areas and
the values of the criteria were computed for each point. In addition, the computed values
were normalized using the transformation exported by the normalization implemented
into the training set of points. The data can be represented using a matrix of the form in
Equation (17) 

x1
1 x2

1 · · · xN
1

x1
2 x2

2 · · · xN
2

...
...

. . .
...

x1
9 x2

9 · · · xN
9

 (17)

where N is the number of the potential points and xj
i is the value of the i-th criterion for

the j-th point. Finally, in order to express the probability that the input point will belong
in the corresponding cluster, the values of the output layer’s neurons were established by
importing the matrix from Equation (17) into the RBFNN.
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2.7. Landscape Fragmentation Indicator

The Landscape Fragmentation Indicator (LFI) is a metric that describes landscape
patterns and measures specific characteristics such as landscape division, cohesion, distance
to a similar patch class and more. Llausàs and Nogué [87] analyze the strengths and the
limitations of the approaches that were made to determine an indicator of landscape
fragmentation. The European Environmental Agency (EEA) computes LFI as the number
of meshes per 1000 km2 and defines five fragmentation zones, as described in Table 2. The
LFI zones in Greece were retrieved as a TIFF file by the EEA website [88] and can be seen
in Figure 7.

Table 2. Landscape Fragmentation Indicator zones.

Fragmentation Range

Very low 0–1.5
Low 1.5–10

Medium 10–50
High 50–250

Very high >250

Figure 7. The map of Landscape Fragmentation Indicator zones in Greece.

Zones indicated with “very low” and “low” fragmentation are considered to be areas
where biodiversity and the environment have not been affected by exogenous factors;
thus, investments such as WF development are not proposed in these areas according to
Kati et al. [89].

3. Results

Firstly, the characteristics of the polygons C(WT ), described in Table 1, were com-
puted and normalized using the z-score formula. Consequently, the k-means clustering
algorithm was implemented in the set of polygons and four clusters were extracted. The
centroids of these clusters can be seen in Table 3 for both normalized and non-normalized
coordinates. The corresponding map of the clustered polygons can be seen in Figure A7.
Moreover, the number of polygons and the number of WTs for each cluster can be seen in
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Table 4. Note that 57 WTs do not belong in any polygon, since they were characterized as
outliers in the the geospatial clustering procedure.

Table 3. Centroids of k-means clustering for normalized and non-normalized coordinates.

Characteristics Cluster #1 Cluster #2 Cluster #3 Cluster #4
z_Score Original z_Score Original z_Score Original z_Score Original

C1 (km) −0.2578 22.699 −0.4686 18.976 0.258 31.81 0.7848 41.112
C2 (km) −0.3723 1.191 0.3450 10.359 2.7229 40.749 −0.2872 2.28
C3 (km) −0.1509 0.283 0.194 0.328 2.4703 0.623 −0.4952 0.239
C4 (m/s) −0.3157 5.796 0.9890 8.713 1.0378 8.822 −0.5111 5.359
C5 (m) −0.207 603.765 −0.7529 347.456 −1.3246 78.701 1.3174 1320.787
C6 (m) 0.1722 169.084 −0.4690 102.621 −0.9519 52.570 0.3145 183.832

C7 (km) −0.3673 6.213 −0.5712 1.111 −0.617 0.035 1.2783 47.398
C8 (km) −0.4673 4.589 0.9 55.94 2.2996 108.45 −0.4757 4.273
C9 (km) −0.4281 6.132 0.3366 13.896 2.8962 39.881 −0.2231 8.213

Table 4. The number of polygons and the number of WTs for each cluster.

Cluster Polygons WTs

#1 73 6919
#2 34 1151
#3 10 186
#4 41 2648

Outliers 57

Moving onto the next step, the characteristics of Table 1 were computed for the points
that correspond to the locations of the WTs. Consequently, the computed values were
normalized using the z-score formula. Histograms and density curves for each variable
are presented in Figure 8. Discrete curves with different colors can be seen for all points
and for points of each cluster; the blue solid line represents the whole set of points, while
the dashed lines represent the values for each cluster (red line for cluster #1, blue line for
cluster #2, black line for cluster #3 and yellow line for cluster #4). Furthermore, the mean
value and the standard deviation for each characteristic of all the locations can be seen in
Table 5 and the mean value and the standard deviation for each characteristic for every
location per cluster is presented in Table 6.

Table 5. The mean value and the standard deviation for each characteristic (all locations).

Characteristic Mean Value Standard Deviation

C1 (km) 34.84 17.87
C2 (km) 7.43 10.34
C3 (km) 18.16 27.82
C4 (m/s) 7.5 2.27
C5 (m) 823.82 499.89
C6 (m) 30.87 56.4

C7 (km) 21.23 25.37
C8 (km) 15.36 26.2
C9 (km) 2.53 1.41
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Table 6. The mean value and the standard deviation for each characteristic (locations per cluster).

Characteristics Cluster #1 Cluster #2 Cluster #3 Cluster #4
Mean
Value

Standard
Deviation

Mean
Value

Standard
Deviation

Mean
Value

Standard
Deviation

Mean
Value

Standard
Deviation

C1 (km) 31.7 14.77 26.71 15.63 29.61 15.94 46.92 20.53
C2 (km) 5.19 4.31 20.61 20.82 41.57 13.57 5.10 3.44
C3 (km) 14.35 16.99 44.69 54.57 94.12 49.69 11.09 12.68
C4 (m/s) 7.57 2.04 9.89 2.55 9.49 1.66 6.15 1.63
C5 (m) 684.44 351.09 363.09 306.55 133.76 133.47 1440.78 324.79
C6 (m) 31.11 55.63 18.66 43.38 34.85 13.5 37.61 63.48

C7 (km) 12.4 13.58 2.56 2.41 0.65 0.69 53.95 26.74
C8 (km) 8.47 7.92 59.09 45.37 112.86 19.32 7 3.85
C9 (km) 2.41 1.23 2.84 2.23 1.67 1.2 2.79 1.34

(a) (b)

(c) (d)

Figure 8. Cont.
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(e) (f)

(g) (h)

(i)

Figure 8. Histograms and density curves for each characteristic. Separate lines for the whole
set of points and for each cluster. (a) Distance from airports. (b) Distance from road network.
(c) Distance from protected areas. (d) Wind speed. (e) Elevation. (f) Slope. (g) Distance from coastline.
(h) Distance from rivers. (i) Distance from residential areas.
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Consequently, the prototypes that correspond to each neuron of the neural network’s
RBF layer were determined. The selection of the prototypes was carried out randomly
by choosing one point of WT from each of the 158 polygons. Therefore, 158 prototypes
were selected, one from each polygon. A map that presents the locations of the prototypes
along with the corresponding polygon can be seen in Figure 9 and a sample of their values
is presented in Table 7. As a result, the RBF layer of the proposed RBFNN consists of
158 neurons.

Figure 9. The locations of the RBF layer’s prototypes.

Table 7. A sample of the prototype vectors.

# C1 C2 C3 C4 C5 C6 C7 C8 C9

1 −1.147 −0.256 2.566 −0.507 −0.815 −0.627 1.027 −0.528 −0.547
2 −1.233 −0.6 −0.56 −0.28 −0.758 −0.497 0.483 −0.368 −0.545
3 −1.205 −0.68 0.596 −0.429 −0.056 −0.1 −1.163 −0.368 0.143
4 −0.206 −0.557 0.494 −0.186 0.143 −0.721 −0.95 −0.112 −0.544

...
...

156 2.081 −0.366 −0.515 −0.533 −0.947 0.755 −1.283 1.073 2.487
157 −0.945 −0.454 2.704 −0.463 0.194 −0.323 0.406 0.753 −0.546
158 −1.068 −0.485 −0.208 −0.398 −0.386 0.488 −0.756 0.592 −0.547

In the next stage of the proposed methodology, multiple structures of NNs were
tested and the most efficient one was chosen. In order to train and test the NNs, a set
of 10,904 vectors, corresponding to the WTs that were not characterized as outliers, was
randomly separated into 7632 (70%) training vectors and 3272 (30%) testing vectors. A
sample of the input data (training and testing vectors) is presented in Table 8. An RBFNN
with no extra hidden layer and RBFNNs with one extra hidden layer, consisting of a number
of neurons that range from 1 to 200, were built and implemented using the “MLPClassifier”
class of the “schikit-learn” library of PYTHON. The validation score for the set of testing
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vectors for each NN was computed and the results can be seen in Figure 10a. The validation
score of the RBFNN with no extra hidden layer was about 0.7 and its value increases for
the RBFNNs with one extra hidden layer as the number of neurons raises. A stabilization
of the validation score, in values greater than 0.95, can be seen in RBFNNs with 70 neurons
and more in the extra hidden layer.

Table 8. A sample of the input vectors.

Input Output

# C1 C2 C3 C4 C5 C6 C7 C8 C9 #1 #2 #3 #4

1 −1.194 −0.358 2.502 −0.508 −0.336 −0.641 0.996 −0.527 −0.546 0 1 0 0
2 −0.097 −0.43 −0.385 −0.526 2.283 0.424 0.14 −0.207 −0.546 1 0 0 0
3 −0.101 −0.435 −0.206 −0.513 2.227 0.438 0.296 −0.047 −0.545 1 0 0 0
4 −0.103 −0.4 −0.25 −0.487 1.48 0.462 −0.048 0.112 −0.545 1 0 0 0

...
...

...

10902 0.441 −0.334 2.137 −0.184 0.17 −0.368 0.463 1.712 −0.543 1 0 0 0
10903 2.098 0.23 −0.412 −0.39 −0.381 1.246 −0.536 2.192 −0.547 0 0 0 1
10904 0.338 −0.661 0.827 −0.575 1.257 −0.523 0.025 −0.527 2.007 1 0 0 0

As a result, a RBFNN with 100 neurons in an extra hidden layer was chosen to be
trained. In order to evaluate if there was an overfitting problem, the validation score
and the current loss were computed for each iteration. For this purpose, the parameter
“early_stopping” of the class “MLPClassifier” was set to “True” and 10% of the training data
were automatically used for computing the validation score at the end of each iteration.
The values of the loss and the validation score for each iteration are presented in Figure 10b.
The validation score keeps improving throughout all the iterations and no decrement can
be seen. Similarly, the current loss lowers its values throughout the training. Therefore, it
can be assumed that no overfitting occurs.

(a) (b)

Figure 10. Validation score for RBFNN with no extra hidden layer and validation scores for RBFNN
with one hidden layer consisting of 1 to 200 neurons (a). The current loss and the validation score for
each iteration of the RBFNN with 100 neurons in one extra hidden layer (b).

Proposed Locations

At the last stage of the proposed methodology, 10,000 points, similarly distributed in
the land of Greece, were randomly selected. Points that are within protected areas and
points that are within polygons C(WT ) were excluded from the potential locations. As a
result, 7934 points remained as locations that are available for WF investment and were



Sustainability 2023, 15, 16938 18 of 31

tested for their compatibility. In order to input the potential locations into the RBFNN,
the characteristics of Table 1 were computed and the values were normalized using the
z-scores that were extracted from the corresponding values of the training set.

The locations that were evaluated as optimal for WF development by the RBFNN are
presented in Figure 11. A total of 1396 points were classified to cluster #1 and are presented
in red, 151 were classified to cluster #2 and are presented in blue, 3 were classified to cluster
#3 and are presented in black and 133 were classified to cluster #4 and are presented in
yellow. Consequently, the points that are within areas with LFI less than 10 were excluded
from the proposed locations as they are not preferable for WF development. Finally,
716 locations from cluster #1 and 88 locations from cluster #2 were exported by the RBFNN
and, simultaneously, they are within areas with LFI greater or equal than 10; these points
are presented in Figure 12. The number of the locations for each case can be seen in Table 9.

Table 9. The number of proposed locations per cluster, separated by LFI preferable and not
preferable values.

Cluster Proposed LFI < 10 (Not Preferable) LFI ≥ 10 (Preferable)

#1 1396 680 716
#2 151 63 88
#3 3 3 0
#4 133 133 0

Total 1683 879 804

Figure 11. The proposed locations per cluster.
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Figure 12. The proposed locations with LFI ≥ 10.

4. Discussion

Public acceptance of RES is questionable. Although many understand that energy
production from renewable sources can be a viable energy production solution, at the
same time, they request that this type of investment be installed as far away from their
communities as possible [90].

While the transition to renewable-energy-based systems is generally perceived as
positive, the local implementation of projects and the extension of the grid are often not
accepted by the public [91]. For this reason, social research has placed much of its focus on
understanding the social acceptance of renewable energy technologies [92].

So far, researchers have mostly focused on explaining phenomena related to the non-
acceptance or rejection of renewables, without, however, reaching a deeper analysis of the
different aspects of acceptance and support [93]. Social acceptance, described as the public’s
active or passive approval of a certain policy [91], is one of the most prominent barriers to
achieve renewable energy targets. At the same time, there is the risk of neglecting the active
participation of the public in the transition towards a renewable-energy-based system. In
addition, the existing studies examine public acceptance as the (static) position of a certain
(or more) factor(s) in relation to a specific RES project in one specific country, thus adopting
an approach that is based on cases.

Despite the significant advantages of renewable energy sources, the wider uncertainty
that surrounds the local effects of renewable energy plants has a negative effect on social
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acceptance. There can be a distinction between “general social acceptance” and “local social
acceptance”, with the first referring to social acceptance on a wider level that can also be
characterized as socio-political acceptance. The second type of acceptance refers to the
community level and is related to the siting of renewable energy projects.

In many countries of the European Union, the percentage of public acceptance of
renewable energy is high. That being said, it has also been observed that, when the
local community is affected directly by the construction of a renewable plant, the lack of
local acceptance increases, which may even result in the cancellation of entire projects.
There is an increasing number of case studies that focus on these phenomena. In other
cases, a diverse range of relational factors, which contribute to the formation of social
acceptance, are fundamental steps towards acceptance. Such factors were studied by
Segreto et al. [94], Wüstenhagen et al. [95] and Caporale and De Lucia [96] and involve
trust in authorities, information dissemination, public participation and economic benefits.

On the other side of the coin, research has pointed to the negative effects of renewable
projects on protected environmental areas, avian habitats, vulnerable ecosystems, but also
on the attractiveness and the recreational value of natural landscapes [97]. Such findings
have raised concerns about the spatial planning and environmental and social effects of
large-scale renewable projects. In this context, much research focuses on the optimization
of wind parks and the visual aspects of wind turbines as well as on their impacts on
ecosystems and nature preservation [98]. That being said, this kind of approach should
not be confused with the creation of broad base scenarios and the inclusion of nature
preservation as a criterion. Wind energy scenarios take into account only economic and
technical factors [99].

Moreover, the noise that is emitted by a wind turbine is a factor that negatively affects
social acceptance. The acoustic characterization of noise in environments close to WTs was
studied thoroughly by Ciaburro et al. [100]. The problem described has been even more
perceivable in recent years due to new technologies of WTs where taller and more powerful
towers are suggested. As a result, the landscape fragmentation index is an important factor
in WT allocation, due to the fact that areas with high LFI values can support the installation
of higher WTs that produce more noise. Additionally, the model proposed in the current
study has been designed in a way that can accept new variables when available, thus it can
be configured to be trained in a second stage with extra WT characteristics, such as their
height or the diameter of their rotor blade.

In conclusion, it may be argued that the European Union has prepared plans that
involve the deployment of renewable energy at a higher level. As social acceptance is a
critical barrier to RES deployment, governments ought to consider local acceptance and
create a framework that will increase the possibility of social acceptance, thereby reducing
opposition networks that often inhibit RES development. Trust in major factors continues
to be a social acceptance lever and it has been observed that the public needs to trust
local authorities and investors in order to accept RES projects. This trust should be built
through a transparent process and should extend to the entire chain from project planning
to development and implementation. Moreover, the provision of quality information and
public participation in the planning processes consists of an institutional factor of social
acceptance. Information provided to the public should be characterized by high technical
quality and include data related to the economic and environmental effects.

Therefore, extensive studies must be carried out for the proposal of installation loca-
tions which are acceptable to the general public.

Additionally, most of the studies which deal with the problem of RES installation use
a combination of criteria. Depending on the researcher’s point of view, these criteria may
include legislation, spatial characteristics (topography, elevation aspect, etc.), infrastructure
characteristics (road network, energy transfer network), meteorological conditions (wind
speed, wind direction, rain data, etc.), economic criteria (installation costs, maintenance
costs) and, finally, WT types, energy production capabilities and conversion efficiency.
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After evaluating the impact of each criterion on problem-solving, they are usually
combined using multicriteria decision analysis techniques and, subsequently, the results
are presented in a geographical information system. The results can be further evaluated
and refined by applying ranking methods like TOPSIS, which can create a ranking of the
proposed installation locations.

Although these approaches are sound, they include a number of drawbacks:

• The number of criteria used;
• The evaluation of the criteria and their weight coefficients;
• The addition or exclusion of criteria requires the entire methodology to be reapplied.

Additionally, almost all of the studies which propose installation locations do not take
into account (and are optimized for) the land fragmentation index (LFI) of the areas under
investigation or create exclusion zones based on protected areas (as these are defined by
the national and European legislations).

Hence, there is a need for developing a new unbiased methodology not only capable
of reading and internally incorporating the criteria used in all previous studies but, at
the same time, of understanding the social acceptance level, which is a key factor when it
comes to the installation of WTs.

This type of approach can be based on the usage of Machine Learning in order to
evaluate current installations on the grounds that, if they are already installed, then the
following parameters must be met:

1. The investment is acceptable to the locals;
2. The investment is compatible with the legislation;
3. The investment meets the other installation requirements (criteria).

The algorithm we have developed has as input the characteristics from all WTs across
Greece, which are spatially expressed in the form of installation locations and, based
on these, they are able to estimate new possible investment locations with two major
improvements. The first improvement is that protected areas (nature sites, etc.) are
automatically excluded from future locations and the second is that the LFI is taken into
account.

We believe that these two improvements, in combination with the unbiased under-
standing of the previously installation locations, will enhance the social acceptance of
WT. The ML algorithm will propose new investment positions which will not only be
outside protected areas (a constant request from the communities, which, however, is not
a requirement of the existing legislation) but it will also propose their installation in the
areas that are already the most fragmented. These heavily fragmented areas can include
the sides of motorways, railway tracks, energy transfer networks, etc.

Consequently, the k-means algorithm was applied to the set of polygons defining the
areas of the previously installed WTs in order to comprehend their characteristics. It was
found that these areas could be divided into four clusters. Clustering can be an important
tool for decision makers who can draw important conclusions about the characteristics of
the areas where WTs are installed. It is simple to identify the impacts, both positive and
negative, that the operation of WTs has on the wider area. This information can be used by
those in charge when selecting new locations for RES installation.

Cluster #1 contains the most areas and the most WTs compared to the other three
clusters. It is mostly found on the Greek mainland and the island of Crete and it consists of
semi-mountainous areas. It can be noticed that the areas of this cluster are both reasonably
close to residential areas and to airports. Therefore, there is an increased risk of negative
reactions from the residents of the wider area due to the visual impact and noise caused by
the WTs. In addition, it is possible that the WTs of this cluster affect the operation of the
airports. On the contrary, these areas are very close to the road network and at a relatively
low altitude, which significantly reduces installation costs.

Cluster #4 is located in areas that are relatively high in altitude, mainly on the Greek
mainland. Moreover, the areas of this cluster are closer to protected areas compared to the
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other clusters. Given that the majority of the protected areas are found in mountainous
regions, this was to be expected. Finally, they are quite far from the country’s airports, so
there is no risk of disturbance when the planes approach them.

Cluster #2 consists of island regions, mainly in the Dodecanese and the Cyclades.
Therefore, they are only a very short distance from the Greek coastline and are located at a
relatively low altitude. Their long distance from the road network is one of their drawbacks,
but it is offset by the high wind potential that is seen in these areas.

Cluster #3 consists of a very small number of WTs in areas located on small islands
in the Aegean. These wind turbines are located very close to the coastline and at almost
zero altitude. Compared to the other clusters, their distance from the road network is the
longest; however, the wind potentials of these areas have the highest values.

In the next step of the methodology, an RBFNN was trained in order to evaluate new
locations for WF investment. The results of the RBFNN-based algorithm’s application are
displayed in Figure 11. However, these results obviously need to be improved mainly
because the algorithm proposes as potential installation locations areas which are close
to tourist destinations, close to residential areas or inside protected areas. The suggested
locations are significantly improved when the results and findings are combined with the
LFI and the exclusion of protected areas (Figure 12). This improvement focuses on the
social acceptance of the proposed locations (by excluding protected areas) as well as the
installation on already highly fragmented areas. For example, on the island of Thassos, the
initial results included almost the entire island. However, the improved results include
only a section of the east part of the island. Similar results were obtained for the island
of Samothraki, the Pindos mountain range, etc. In all of the cases, the initial results were
heavily influenced by the legislation, spatial characteristics and meteorological conditions.
The inclusion of factors such as the exclusion of protected areas and the LFI, which are also
factors that drive social acceptance, resulted in locations which we believe can be used for
installation without negatively impacting local communities and the environment.

Following extensive research into related studies that were focused on the area of
Greece, it was found that there is no study that has implemented its proposed methodology
in the entire Greek territory; instead, they are limited in specific areas of Greece and they
develop their methodology only taking into account the particular characteristics of the
corresponding region.

Konstantinos et al. [17] developed a case study in the region of Eastern Macedo-
nia and Thrace, and, more specifically, in the Drama prefecture using MCDM and AHP.
The proposed locations extracted by their model are similar to the locations proposed
in the current study, especially the locations inside the red frames that can be seen in
Figure 13, where the locations of the two studies coincide. Nevertheless, the locations that
were proposed in the Drama prefecture are all in areas with low LFI values; they were thus
excluded by the proposed locations of our study in the last stage of the procedure.

Additionally, the locations proposed for WF development by
Latinopoulos and Kechagia [39] in the regional unit of Kozani, which is part of the prefec-
ture of Western Macedonia in Greece, coincide with the locations proposed by our study in
the current area (Figure 14). Even though Latinopoulos and Kechagia [39] include these
locations in their proposed area, they evaluate them with low and medium suitability.
Similarly, these locations have been excluded from the areas proposed by our study, due to
the fact that they are within areas with LFI values less than 10.

Obviously, the results from the aforementioned studies are similar to the initial results
presented here. However, by applying the LFI, we enhance these results by proposing the
installation of WFs on already highly fragmented areas.



Sustainability 2023, 15, 16938 23 of 31

Figure 13. Proposed locations in Drama prefecture.

Figure 14. Proposed locations in Kozani prefecture.

5. Conclusions

Although RES, and, in particular, WTs, are considered to be a liable and sustainable
method for energy production, there are many cases in which local communities present
negative reactions. The popular point of view—“not in my back yard”—is creating tidal ef-
fects wherever WF investment is considered. Although many of the previous studies which
deal with the problem of installation location optimization have provided acceptable results,
almost all of them fail to incorporate the LFI and the exclusion of protected areas. Both
of these parameters are what differentiates our approach from previous approaches. We
build on previous knowledge (in the form of the produced results) by applying the RBFNN
algorithm and, on the produced results, we incorporate the aforementioned parameters.
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Appendix A. Maps

In this section, the maps that represent the available data are presented. The protected
areas and the rivers of Greece can be seen in Figure A1. The airports and the residential
areas are presented in Figure A2 and the road network can be seen in Figure A3. The
wind speed of Greece can be seen in Figure A4 and the elevations can be seen in Figure A5.
Finally, the polygons of the clustered WTs that were retrieved from the study [79] are
presented in Figure A6 and the clusters of these polygons can be seen in Figure A7.
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Figure A1. Protected areas and rivers of Greece.

Figure A2. Residential areas and airports of Greece.
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Figure A3. Road network of Greece.

Figure A4. Wind speed of Greece [57] including Crete [58].
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Figure A5. Map of elevations in Greece.

Figure A6. Polygons of the clustered WTs according to the study [79].
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Figure A7. The clusters of the polygons that were retrieved from study [79].
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