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Abstract: Landslides pose a great threat to the safety of people’s lives and property within disaster
areas. In this study, the Zigui to Badong section of the Three Gorges Reservoir is used as the study
area, and the land use (LU), land use change (LUC) and band math (band) factors from 2016–2020
along with six selected commonly used factors are used to form a land use factor combination (LUFC),
land use change factor combination (LUCFC) and band math factor combination (BMFC). An artificial
neural network (ANN), a support vector machine (SVM) and a convolutional neural network (CNN)
are chosen as the three models for landslide susceptibility mapping (LSM). The results show that the
BMFC is generally better than the LUFC and the LUCFC. For the validation set, the highest simple
ranking scores for the three models were obtained for the BMFC (37.2, 32.8 and 39.2), followed by the
LUFC (28, 26.6 and 31.8) and the LUCFC (26.8, 28.6 and 20); that is, the band-based predictions are
better than those based on the LU and LUC, and the CNN model provides the best prediction ability.
According to the four groups of experimental results with ANNs, compared with LU and LUC,
band is easier to access, yields higher predictive performance, and provides stronger stability. Thus,
band can replace LU and LUC to a certain extent and provide support for automatic and real-time
landslide monitoring.

Keywords: landslide susceptibility mapping (LSM); land use/land use change (LU/LUC) factors; band
math (band) factor; artificial neural network (ANN); support vector machine (SVM); convolutional
neural network (CNN)

1. Introduction

Landslides are natural geological disasters that can cover large areas, cause serious
harm and have complex conditions; notably, they are a manifestation of geomorphological
evolution [1]. Located in the eastern part of Asia, China has complex geological structures
and is a country of extensive human activities that has suffered from landslides for a long
time [2–4]. According to data from the National Bureau of Statistics and the National Geo-
logical Disaster Bulletin, in the past ten years, from 2012 to 2020, a total of 84,846 geological
disasters (landslides, collapses, mudslides, ground subsidence, etc.), including 59,140 land-
slides, which account for 69.7% of all geological disasters, occurred in China. To date,
there have been a total of 4421 casualties from geological disasters, resulting in a direct
economic loss of RMB 41.26 billion [5], as shown in Figure 1. Scholars have conducted quali-
tative, semiquantitative, semiqualitative and qualitative research on landslide susceptibility
mapping (LSM) and have developed many applicable models. However, relatively little
research has been conducted on landslide factors, especially with the gradual deepening
of the understanding of landslide phenomena, and it has become necessary to add land
use (LU) factors to LSM studies. The accuracy of LU factors is extremely dependent on the
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quality of remote sensing (RS) images, the choice of classifier, and the subjective judgment
of the operator. Thus, LU factors can be unstable, which leads to unstable land use change
(LUC) factors. Therefore, this paper focuses on the influence of the band math (band) factor,
which is relatively stable and not subjectively influenced by the operator, on LSM.
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Scholars around the world use qualitative or quantitative methods for LSM analysis.
Qualitative methods rely on expert opinions and are highly subjective, while quantitative
methods focus on the relationship between various factors and landslide occurrence [6,7].
With the development of geographic information systems (GISs) and RS technologies in
recent years, as well as the continuous innovation and optimization of computer software
and hardware, machine learning algorithms (MLAs) have been widely used in LSM and
use different MLA models, such as logistic regression (LR) [8–10], artificial neural network
(ANN) [11–13], support vector machine (SVM) [14–18], Bayesian algorithm [19–21], random
forest (RF) [22,23], extreme gradient boosting (XGBoost) [24,25], k-fold cross-validation
(CV) [26,27] and ensemble learning [28] models. With the growth of deep learning, convolu-
tional neural networks (CNNs) have also been applied to LSM and provide good predictive
ability [29–32]. Although the above models have displayed good applicability in the field
of LSM, there is no single model that works best in all scenarios, so the performance of
each model needs to be compared in different situations [33]. The application of various
models in LSM is relatively mature, but research on landslide factors is relatively rare.

In recent years, with the gradual deepening of the understanding of the mechanisms
of landslide occurrence, scholars have gradually given more attention to LSM factors and,
in particular, have obtained a more profound understanding of the crucial role of human
engineering activities in the occurrence of landslides [34–36]; thus, LU factors have received
some attention from researchers [37–40]. Notably, the time factor was added to the LU
factor obtain the LUC factor, which has been gradually recognized by scholars and used in
LSM. Soma and Kubota et al. [41–43] used the LUC factor for LSM in multiple studies and
believed that it is an important factor in LSM. Meneses et al. [44] evaluated the impacts
of LU and LUC factors on landslide susceptibility zonation (LSZ) in a road network in
the Zêzere watershed in Portugal. Chen et al. [45] selected Zhushan town, Xuan’en, as
the study area and discussed the influence of LU and LUC factors on LSM. Although the
importance of LU/LUC factors in LSM has been gradually recognized, the LU/LUC factors
obtained from field geological surveys are characterized by poor timeliness. Moreover, it is
difficult to obtain high classification accuracy using a traditional RS classification algorithm
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based on statistics when the ground environment is complex [46], and the LU/LUC factors
obtained by using various classifiers through RS images rely heavily on operator experience,
professional knowledge and subjective judgment and often lack accuracy. With the rapid
development of RS technologies, various indices have been obtained through the band
math of RS image data and used by scholars in LSM research. Ma et al. [47] used QuickBird
RS images along the Yalu River estuary to combine principal component analysis (PCA),
the maximum likelihood method and band math, introduced the concept of stratification
and proposed a high-resolution land use RS classification method. Hassan [48] used the
normalized difference vegetation index (NDVI), normalized difference water index (NDWI)
and normalized difference building index (NDBI) to represent vegetation, water bodies
and built-up land categories, respectively, and applied unsupervised classification results
to show that the spectral features of the three land categories were easier to distinguish
in the obtained images than in the original images (in Arabic). Jawak et al. [49] used the
mean values of different spectral bands and spectral metrics such as the NDVI, NDWI and
NDBI for classification to determine the difference thresholds between different LU/LUC
categories. Yang [50] used the ENVI as a platform, applied the band math tool to obtain the
NDVI with outliers removed and established a mixed-pixel decomposition model based on
the principle of pixel dichotomy to estimate and optimize vegetation coverage. RS images
provide various indices through band math and spectral features, and they can be used to
simplify manual and tedious operations and reduce the influence of operator subjectivity
on LU/LUC division to a considerable extent.

In this paper, the Zigui to Badong section of Three Gorges Reservoir was selected as
the study area, and Landsat 8 data from 2015 to 2020 were used. The Landsat 8 satellites
were launched in 2013, and compared with other Landsat satellites, the RS images obtained
with the Landsat 8 satellites provide better image quality. The years 2015–2020 were rela-
tively late in the Landsat series, which is of guiding significance for the prediction of future
landslides. The LU, LUC and band factors were obtained by manipulation of Landsat 8 im-
ages. Then, the LU, LUC and band factors were combined with six commonly used factors
(altitude, slope, slope aspect, rainfall, terrain wetness index (TWI) and lithology), and the
resulting factor combinations were established using three models (ANN, SVM and CNN)
for LSM. The receiver operating characteristic (ROC) curve, specific category accuracy and
five statistical methods were used to evaluate and analyze the results. Finally, a simple
ranking method was used to comprehensively evaluate the prediction performance, and an
additional four sets of experiments were conducted with the ANN model to evaluate the
LSM results of three different factor combinations to improve the scientific basis, accuracy
and timeliness of LSM.

2. Study Area, Data and Software Introduction
2.1. Study Area

The geographic coordinates of the study area are 110◦18′–110◦52′ E longitude and
30◦01′–30◦56′ N latitude, extending from Badong County along the Yangtze River to Zigui
County, which includes two mountain ranges, resulting in obvious undulating terrain in
the study area [51], as shown in Figure 2. The main geological lithologies in the study
area include sandstone, shale and mudstone. The Yangtze River and its main stream run
through the entire study area from west to east, forming a complex water system network
located in a subtropical monsoon climate zone. The four seasons are distinct, and rainfall
is abundant. The average number of rainstorm days is approximately seven per year,
and the maximum daily rainfall reaches 200–250 mm. Heavy rain is one of the important
factors affecting the occurrence of geological disasters such as landslides and debris flows
in the study area [52]. Urbanization and infrastructure development activities have further
aggravated the occurrence of geological disasters in the study area [53]. The study area has
complex geological and topographic structures, high mountains, deep valleys, large terrain
slopes and little natural vegetation, and it is affected by heavy rainstorms and frequent
human engineering activities. These factors result in a high probability of landslides in
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China. Reservoir-type landslides are the most common geological disasters in the Three
Gorges Reservoir Area (TGRA), with the characteristics of group occurrence, simultaneity,
explosiveness and large extents [54].
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area; therefore, images of scenes in March 2017 and 2018 were selected. In the other years,
images from a scene in April were selected.

Table 1. RS image information from 2015 to 2020.

Landsat 8 Path/Row Date Acquired Overall Cloud Cover (%) Landsat 8 RS Image in Study Area

2015

125/39

14 April 2015 0.03
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2.3. Software

The software used in this paper included ENVI 5.3 (https://envi.geoscene.cn/) (ac-
cessed on 8 December 2021) for image processing, cropping, radiometric calibration, atmo-
spheric correction and image classification. ArcGIS 10.8 (https://www.esri.com/) (accessed
on 10 December 2021) was used for LSM. IBM SPSS Statistics 26 and IBM SPSS Modeler
18 (https://www.ibm.com/) (accessed on 11 December 2021) were used for ANN and
SVM modeling and data analysis, and PyTorch 1.7.1 (https://pytorch.org/) (accessed on
12 December 2021) was selected for CNN modeling.

3. Methods

The LSM flow chart is shown in Figure 3.

3.1. Factor Selection
3.1.1. Factor Correlation and Multicollinearity Analysis

To ensure the independence of each factor and the high accuracy and reliability of
the model, it was necessary to test the correlation of the LSM factors by using the Pearson
correlation coefficient (PCC). Generally, when the PCC is less than 0.5, the correlation
between factors is small. The variance inflation factor (VIF) and tolerance (TOL) were
used to test whether there was multicollinearity between variables [56]. When VIF < 5 and
TOL > 0.2, there is no multicollinearity problem among independent variables, and they
can be used for LSM [57].

https://envi.geoscene.cn/
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3.1.2. Relief-F Analysis

The main principle of Relief-F is random feature selection for the parameters that
cause landslides, and the weight value of each factor is calculated. The greater the weight
assigned to the factor is, the stronger the spatial prediction ability for landslide susceptibility
types is, and vice versa. A factor should be removed when the corresponding weight is 0
or a negative value is present, indicating no predictive ability [58,59].

3.1.3. PCA

In PCA, uncorrelated output bands are generated from highly correlated multiband
data by rotating the coordinate axis to isolate noise and reduce the dimension of the dataset.
The principal component bands with large eigenvalues contain more data information and
less noise than other bands, and those with smaller eigenvalues contain less information
and more noise [60,61]. The first principal component is usually associated with the largest
eigenvalues and the largest percentage of data variance, and as the dimension increases,
the image quality gradually decreases. Therefore, the first principal component of the
NDVI/NDWI/NDBI band is output as the band factor in this paper.
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3.2. LSM Model
3.2.1. ANN

An ANN is a type of machine learning technique that can be used to complete specific
tasks by simulating human thinking and has the ability to learn and generalize from
experience [62]. ANNs generally consist of three layers: an input layer (LSM factor), a
hidden layer and an output layer (LSM) [63]. “Self-learning” is achieved through forward
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propagation and back propagation. If the output result is quite different from the target
value, the weight value obtained by multiple cyclic training can be used to minimize the
loss function, establish a network with minimized loss and obtain an output value as close
as possible to the target value [64]. In this paper, a multilayer perceptron (MLP) ANN is
used for LSM. A schematic diagram of the ANN architecture is shown in Figure 4.

1 
 

Fig2 
 

 
 
 
 
 
4 
 
 

 
 Figure 4. ANN architecture diagram.

3.2.2. SVM

The first SVM was proposed by Cortes and Vapnik in 1995 [65]. In an SVM, the
binary classification problem is initially solved based on a linear discriminant function, and
the problem becomes linearly separable by mapping the sample points that are linearly
inseparable or difficult to separate in a low-dimensional space to a high-dimensional
space [66]. SVMs have many advantages, such as nonlinearity and requiring a small
number of samples. Considering the small number of landslides in the study area, an SVM
model was used to conduct a sensitivity analysis of landslides [67]. The SVM formula is:{

Min ‖w‖
2

2
st.((wTxi) + b)yi ≥ 1

(1)

where xi is a point on the hyperplane, yi is the classification label set, i = 1, 2, . . . , n is the
number of samples, w is the weight vector related to the direction of the hyperplane, b is
the deviation, and ||w|| is the 2-norm of w. In the relaxation of a hard-margin SVM, the
values at some points may not be greater than or equal to 1. Thus, Equation (1) can be
rewritten as Equation (2): Min ‖w‖

2

2 + C
n
∑

i=1
εi

s.t., ((wTxi) + b) · y1 ≥ 1− εi, εi > 0
(2)
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where εi is a positive slack variable and C is the penalty factor. A schematic diagram of the
SVM architecture is shown in Figure 5. The kernel is a radial basis function (RBF), and the
γ coefficient of this function is 0.1.

Sustainability 2023, 15, x FOR PEER REVIEW 8 of 31 
 

2

Min
2

.(( ) ) 1T
i i

w

st w x b y




 + ≥

 (1) 

where xi is a point on the hyperplane, yi is the classification label set, i = 1, 2,…, n is the 
number of samples, w is the weight vector related to the direction of the hyperplane, b is 
the deviation, and ||w|| is the 2-norm of w. In the relaxation of a hard-margin SVM, the 
values at some points may not be greater than or equal to 1. Thus, Equation (1) can be 
rewritten as Equation (2): 

2

1

1

2
. ., (( ) ) 1 , 0

n

i
i

T
i i i

w
Min C

s t w x b y

ε

ε ε
=


+


 + ⋅ ≥ − >

∑  (2) 

where εi is a positive slack variable and C is the penalty factor. A schematic diagram of 
the SVM architecture is shown in Figure 5. The kernel is a radial basis function (RBF), and 
the γ coefficient of this function is 0.1. 

 
Figure 5. SVM architecture diagram. 

3.2.3. CNN 
CNNs were derived from the deep machine learning method used for ANNs. A CNN 

adopts local connection and weight sharing mechanisms, which not only greatly reduce 
the number of network parameters but also enhance the generalization effect of the model 
[68]. In this paper, a one-dimensional CNN is used to evaluate landslide susceptibility, 
and the landslide data are converted into a one-dimensional vector representation. The 
basic structure of the CNN includes a convolution layer, an activation function, a pooling 
layer, a fully connected layer and an output layer. Several feature planes are included in 
a convolutional layer of the CNN, and each feature plane is composed of neurons ar-
ranged in a rectangle. Neurons in the same feature plane share weights (convolution ker-
nels), and the convolution kernels obtain reasonable weights through machine learning. 
This approach not only reduces the connections between layers of the network but also 

Figure 5. SVM architecture diagram.

3.2.3. CNN

CNNs were derived from the deep machine learning method used for ANNs. A CNN
adopts local connection and weight sharing mechanisms, which not only greatly reduce the
number of network parameters but also enhance the generalization effect of the model [68].
In this paper, a one-dimensional CNN is used to evaluate landslide susceptibility, and
the landslide data are converted into a one-dimensional vector representation. The basic
structure of the CNN includes a convolution layer, an activation function, a pooling layer,
a fully connected layer and an output layer. Several feature planes are included in a
convolutional layer of the CNN, and each feature plane is composed of neurons arranged
in a rectangle. Neurons in the same feature plane share weights (convolution kernels),
and the convolution kernels obtain reasonable weights through machine learning. This
approach not only reduces the connections between layers of the network but also reduces
the risk of overfitting. Pooling can also be seen as a special convolution and subsampling
process to simplify model complexity and model parameters [69]. The CNN architecture is
shown in Figure 6, and the one-dimensional CNN hyperparameters are shown in Table 2.

Table 2. One-dimensional CNN hyperparameters.

One-Dimensional CNN Hyperparameters Parameter Values

Convolution kernel size 1 × 4
Maximum pooling layer kernel size 1 × 2

Activation function Rectified linear unit
Optimizer Adam

Learning rate 0.01
Batch data size 2000
Training times 20
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3.3. Evaluation Methods
3.3.1. ROC Curve

The ROC curve originated in the military field, and each point on the curve is related
to the same signal stimulus. This method is also often used in LSM [70,71]. The horizontal
axis of the ROC curve represents the false-positive rate (FPR), or specificity, and the vertical
axis represents the true-positive rate (TPR), or sensitivity. The ROC curve is mainly used in
binary classification problems, and the results are divided into positive and negative classes.
There are four possible situations: (1) the result is a positive class, and the predicted positive
class is the true-positive (TP) class; (2) the result is a positive class, and the prediction is
a negative class, that is, a false-negative (FN) class; (3) the result is a negative class, and
the prediction is a positive class, that is, a false-positive (FP) class; and (4) the result is a
negative class, and the prediction is a negative class, that is, a true-negative (TN) class.
These four types of results are used to form the classification matrix of the ROC curve (as
shown in Table 3).

Table 3. Classification matrix of the ROC curve.

True
Prediction

Positive (P) Negative (N)

Positive (P) True Positive, TP False Negative, FN
Negative (N) False Positive, FP True Negative, TN

The ROC curve can be used to select the best threshold through comparisons of the
curves of different machine learning models. In addition, the ROC curves of various
models can be plotted in the same coordinate system. The area under the curve (AUC) is
enclosed by the ROC curve and the FPR, and it can intuitively reflect the advantages and
disadvantages of a given machine learning model.

3.3.2. Specific Category Accuracy

Yu et al. [72,73] proposed a specific category accuracy method to evaluate the accuracy
of landslide prediction in different areas, divided the study area into different levels of LSZ,
and calculated the prediction accuracy by calculating the proportion of landslide units in
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these LSZs. This method is widely used in multiple models. The Equation for calculating
the specific category accuracy is:

pi =
Ai
Bi
× 100% (3)

where i = 1, 2, . . . , S, S is the number of LSZ categories, Ai is the number of landslides
in the i-th LSZ category, Bi is the number of the i-th LSZ category, and Pi is the specific
category accuracy of the i-th LSZ category.

3.3.3. Statistical Methods

In addition to the above measures used to evaluate model accuracy, five statistical
methods were employed to evaluate the model: overall accuracy (OA), precision, recall,
the F-measure and the Matthews correlation coefficient (MCC) [74]. OA is the proportion
of all correct predictions to the overall sample, and the larger the OA value is, the higher
the overall correct prediction rate. Precision is the proportion of correct predictions that are
positive compared to the total number of positive predictions, and recall is the proportion
of correct predictions that are positive compared to the total number of positive cases. The
F-measure is the weighted harmonized average of precision and recall and commonly used
to evaluate classification models; when the F-measure is high, it indicates that the test
method is effective. The MCC is a correlation coefficient describing the correlation between
the actual classification and the predicted classification, with values in the range of −1 to 1;
a value of 1 indicates a perfect prediction, a value of 0 indicates that the predicted result is
not as good as a randomly predicted result, and a value of −1 indicates that the predicted
classification and the actual classification are completely inconsistent.

4. Experimental Results and Analysis
4.1. Dataset Preparation

(1) According to previous research results regarding LSM factors, six commonly used
factors were selected: altitude, slope, slope aspect, rainfall, TWI and lithology [75–79].
These factors are shown in Figure 7.

 

2 

7. 
 

 
 
8. 
 

 
 
9 
 

Figure 7. Landslide factors in the study area: (a) altitude, (b) slope, (c) slope aspect,
(d) lithology, (e) TWI and (f) rainfall.

(2) The selected Landsat 8 RS images were preprocessed based on cropping, radiomet-
ric calibration and atmospheric correction procedures with ENVI 5.3 to obtain RS image
data in the study area for this experiment. The data were then used to calculate LU and
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LUC factors. The SVM model was used to supervise the classification of ground objects
in the study area from 2015–2020. The objects were divided into four categories, namely,
water bodies, construction land, forest land and bare land (as shown in Figure 8), and the
overall accuracy (OA), user accuracy (UA), producer accuracy (PA) and kappa coefficient
were used to measure the classification accuracy of LU factor maps (as shown in Table 4).

 

2 

7. 
 

 
 
8. 
 

 
 
9 
 

Figure 8. (a–f) are the 2015–2020 LU factors in the study area.

Table 4. Classification accuracy index of LU factors.

Year LU Factor PA (%) UA (%) OA (%) Kappa
(%)

2015

Water body 99.71 99.07

99.19 98.76
Construction land 96.20 99.07

Forest land 99.97 99.66
Bare land 96.93 96.93

2016

Water body 97.95 99.24

96.79 95.04
Construction land 96.60 92.18

Forest land 98.98 96.29
Bare land 76.20 96.59

2017

Water body 100 98.55

98.07 97.28
Construction land 97.47 99.00

Forest land 97.92 97.58
Bare land 95.71 94.87

2018

Water body 99.88 99.76

96.46 94.09
Construction land 94.61 97.90

Forest land 97.62 96.67
Bare land 83.16 85.56

2019

Water body 99.62 98.69

98.64 97.90
Construction land 96.56 98.76

Forest land 99.90 99.04
Bare land 90.61 93.26

2020

Water body 99.75 98.15

97.87 96.60
Construction land 96.82 92.93

Forest land 99.71 99.76
Bare land 71.67 95.76
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The classification results showed that the kappa coefficient was greater than 90% from
2015–2020, indicating that the classification accuracy was good, with limited land type
misclassification.

(3) LU and LUC factors were extracted from the LU factor maps (as shown in Figure 9).
 

3 

 
 
14 
 

 
 
15 
 

Figure 9. (a–e) are the 2016–2020 LUC factors in the study area. W, C, F and B in the figure denote
water bodies, construction land, forest land and bare land.

(4) The formulas for the NDVI, NDWI and NDBI bands are shown in Table 5. From
these formulas, the results of the three indices from 2016–2020 were obtained, and the first
principal component with the largest amount of information was output with the PCA
method to obtain the band factor. The band factors are shown in Figure 10.

Sustainability 2023, 15, x FOR PEER REVIEW 14 of 31 
 

 
Figure 10. (a–e) are the 2016–2020 band factors in the study area. 

The value ranges of the factors in the study area are shown in Table 6. 

Table 6. The ranges of landslide factors. 

Category Subcategory Factor Unit Range 

Controlling factors 

Topography 

Altitude m 80.00–2000.00 
Slope - 0.00–78.42 

Aspect - 
(1) Flat, (2) North, (3) Northeast, (4) 

East, (5) Southeast, (6) South, (7) 
Southwest, (8) West, (9) Northwest 

Geology Lithology - 
(1) Hard rock, (2) Soft-hard alternation 

rock, (3) Soft rock 

Hydrological Topographic 
Wetness Index 

- 4.44–18.03 

Influencing factor 

Atmospheric 
precipitation 

Rainfall mm 964.019–1090.24 

Human engineering 
activities 

LU - 

(1) Water body (W) 
(2) Construction land (C) 

(3) Forest land (F) 
(4) Bare land (B) 

LUC - 
W→ * W, W→C, W→F, W→B, C→W, 
C→C, C→F, C→B, F→W, F→C, F→F, 

F→W, B→W, B→C, B→F, B→B 

Index 

PCA outputs the 
first principal 

component of NDVI, 
NDWI and NDBI 

- 0.00–1.00 

*: A→B means the object category changes from A to B. 

4.2. Training and Validation Sets 

Figure 10. (a–e) are the 2016–2020 band factors in the study area.



Sustainability 2023, 15, 2226 13 of 29

Table 5. Band math.

Name The Formula Instruction

NDVI (band5 − band4)/(band5 + band4) band 3 is the green band,
band 4 is the red band,

band 5 is the infrared, band 6 is the mid-infrared
band with a central wavelength of 1.61 µm

NDWI (band3 − band5)/(band3 + band5)
NDBI (band6 − band5)/(band6 + band5)

The value ranges of the factors in the study area are shown in Table 6.

Table 6. The ranges of landslide factors.

Category Subcategory Factor Unit Range

Controlling factors

Topography
Altitude m 80.00–2000.00

Slope - 0.00–78.42

Aspect -
(1) Flat, (2) North, (3) Northeast, (4)

East, (5) Southeast, (6) South, (7)
Southwest, (8) West, (9) Northwest

Geology Lithology - (1) Hard rock, (2) Soft-hard alternation
rock, (3) Soft rock

Hydrological Topographic
Wetness Index - 4.44–18.03

Influencing factor

Atmospheric
precipitation Rainfall mm 964.019–1090.24

Human engineering
activities

LU -

(1) Water body (W)
(2) Construction land (C)

(3) Forest land (F)
(4) Bare land (B)

LUC -
W→ * W, W→C, W→F, W→B, C→W,
C→C, C→F, C→B, F→W, F→C, F→F,

F→W, B→W, B→C, B→F, B→B

Index

PCA outputs the
first principal
component of
NDVI, NDWI

and NDBI

- 0.00–1.00

*: A→B means the object category changes from A to B.

4.2. Training and Validation Sets

There are five LSM calculation units: a slope unit, a grid unit, an area unit, a subwater-
shed unit and an unique condition unit [80]. Grid units are most commonly used in LSM,
and their advantage is that their pixels are used as calculation units to ensure that the area
of units is the same; thus, they are suitable for LSM models with large amounts of data [81].
Therefore, the grid unit was selected as the LSM calculation unit in this paper.

A buffer zone of 3 raster distances (90 m) at the boundary of the landslide surface was
used to eliminate the effect of inaccurate landslide surfaces on the LSM. Landslide locations
were randomly selected in a 70/30 ratio for training and validation of the models [82–84].
There were 425,258 computing units in the study area, which constituted the entire sample
set. There were a total of 202 landslide surfaces in the study area (25,884 calculation units),
and 70% of the landslide surfaces (141 and 17,432 calculation units) were randomly selected.
The landslide distribution data were labeled as 1. The remaining 30% of landslide surfaces
(61 and 8452 calculation units) and all nonlandslide calculation units in the study area were
labeled as 0. Landslide calculation units and the nonlandslide calculation units randomly
selected at a ratio of 1:1 were combined into a training set with a total of 34,864 calculation
units, and the remaining 30% of the landslide surfaces, encompassing 8452 calculation
units, were included in the validation set. The distributions of the training and validation
sets in the study area are shown in Figure 11.
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4.3. Experiment
4.3.1. Factor Analysis and Data Preparation

(1) Analysis of factor correlation and multicollinearity results

All the above factors were divided into three groups: six commonly used factors and
LU (named land use factor combination, LUFC), six commonly used factors and LUC
(named land use change factor combination, LUCFC), and six commonly used factors
and band (named band math factor combination, BMFC). These groups were imported
into SPSS Statistics 26 for PCC evaluation and to calculate the VIF for multicollinearity
assessment. With the 2016 data as an example, the heatmap of the PCC is shown in
Figure 12, and the VIF and TOL values are shown in Table 7.
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Table 7. TOL and VIF for the three factor combinations for 2016.

Factor
LUFC LUCFC BMFC

TOL VIF TOL VIF TOL VIF

Altitude 0.835 1.198 0.846 1.182 0.746 1.341
Lithology 0.768 1.302 0.765 1.307 0.756 1.323

Slope 0.971 1.030 0.972 1.029 0.965 1.037
Slope aspect 0.860 1.163 0.860 1.163 0.856 1.168

TWI 0.753 1.328 0.753 1.327 0.752 1.329
Rainfall 0.903 1.108 0.906 1.104 0.905 1.105

LU/LUC/band 0.938 1.066 0.953 1.049 0.830 1.205
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Figure 12 shows that the correlation between the factors was low, among which the
negative correlation between the TWI and slope was the largest (−0.461), but it was still
less than −0.5, indicating that the correlation between these two factors was weak and had
no adverse effect on the establishment of the LSM model. Table 5 shows that TOL was >0.2
and VIF was <5, indicating that there was no multicollinearity problem among the factors.

(2) Relief-F analysis

With the 2016 data as an example, the LUFC, LUCFC and BMFC factor combinations
were input into the Relief-F algorithm for analysis. The Relief-F results are shown in
Figure 13.
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After calculations, it was found that in the Relief-F algorithm, all factor weights were
greater than zero and could be used for LSM.

(3) Data preparation

Before inputting the factors into the model for modeling, it was necessary to normalize
continuous factors such as altitude, slope, rainfall and TWI. The purpose was to eliminate
the influence of different factor units on the LSM results, improve the speed of the gradient
descent method to find the optimal solution in the CNN model, and improve the accuracy
of the model.

4.3.2. Experimental Results

LUFC, LUCFC and BMFC were input into the ANN model to obtain the respective
landslide susceptibility index (LSI) values. The LSI is a continuous variable that ranges
from 0–1; the closer to 1 the LSI value is, the greater the probability of landslides, and vice
versa. The LSIs of the three factor combinations based on the ANN model are shown in
Figure 14.
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Figure 14. LSIs of the three factor combinations based on the ANN model: (a–e) show the LSM of the
ANN-based LUFC from 2016 to 2020; (f–j) show the LSM of the ANN-based LUCFC from 2016 to
2020; and (k–o) show the LSM of the ANN-based BMFC from 2016 to 2020.

To intuitively reflect the results of the LSI and increase comprehension, the LSI was
divided into five categories to generate LSZs, with values of 0–0.5, 0.5–0.75, 0.75–0.85,
0.85–0.95 and 0.95–1 denoting very low susceptibility areas, low susceptibility areas, mod-
erate susceptibility areas, high susceptibility areas and very high susceptibility areas,
respectively [72]. The LSZs of the three factor combinations were obtained, as shown in
Figure 15.

4.3.3. Evaluation of the Experimental Results

The ROC curves and AUC values of the ANN model based on the maps of the three
factor combinations are shown in Figure 16 and Table 8. The larger the AUC value was
(that is, the larger the area enclosed by the curve and the X-axis), the higher the accuracy of
the model [85–87].
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Figure 15. LSZs of the three factor combinations based on the ANN model: (a–e) show the LSM of
the ANN-based LUFC from 2016 to 2020; (f–j) show the LSM of the ANN-based LUCFC from 2016 to
2020; and (k–o) show the LSM of the ANN-based BMFC from 2016 to 2020.
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Table 8. AUC values of the ANN model based on the three factor combinations.

Year
Area Test Result

Variable (S) Area
Asymptotic 95% Confidence Interval

Lower Bound Upper Bound

2016
LUFC 0.856 0.852 0.860

LUCFC 0.849 0.845 0.852
BMFC 0.860 0.857 0.864

2017
LUFC 0.857 0.853 0.860

LUCFC 0.859 0.855 0.862
BMFC 0.859 0.856 0.863

2018
LUFC 0.853 0.849 0.856

LUCFC 0.864 0.860 0.867
BMFC 0.854 0.850 0.857

2019
LUFC 0.858 0.854 0.862

LUCFC 0.855 0.852 0.859
BMFC 0.863 0.859 0.866

2020
LUFC 0.851 0.848 0.855

LUCFC 0.847 0.843 0.851
BMFC 0.863 0.859 0.866
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Figure 16 and Table 8 show that the highest AUC value was observed for LUCFC in
2018 (0.864), and the highest AUC values in other years were as follows: 0.860 for BMFC
in 2016, 0.859 for BMFC and LUCFC in 2017, 0.863 for BMFC in 2019 and 0.863 for BMFC
in 2020.

The specific category accuracies of the very high susceptibility areas identified with
the ANN models based on the three factor combinations are shown in Table 9.

Table 9. The specific category accuracies of the very high susceptibility areas identified with the ANN
models based on the three factor combinations.

Year Factor
Category of Susceptibility

Very Low Low Medium High Very High

2016

LUFC (%) 0.74 5.54 7.71 11.42 17.01
LUCFC (%) 0.82 5.07 8.58 11.71 13.31
BMFC (%) 0.72 5.76 8.09 11.85 14.92

2017

LUFC (%) 0.72 5.31 8.97 11.13 15.81
LUCFC (%) 0.77 5.37 8.07 11.98 15.60
BMFC (%) 0.68 5.66 6.41 12.28 15.87

2018

LUFC (%) 0.73 4.77 10.11 11.41 14.36
LUCFC (%) 0.74 5.19 9.08 12.60 15.44
BMFC (%) 0.73 4.78 7.68 11.51 17.53

2019

LUFC (%) 0.72 5.70 8.74 10.97 15.48
LUCFC (%) 0.70 5.52 8.68 12.80 13.28
BMFC (%) 0.69 4.54 6.78 12.49 18.84

2020

LUFC (%) 0.79 5.42 8.44 11.79 13.27
LUCFC (%) 0.79 5.72 9.61 10.32 15.47
BMFC (%) 0.70 4.44 8.32 11.98 17.75

Table 9 shows that the highest specific category accuracy of very high susceptibility
areas (18.84%) was obtained for BMFC in 2019. In other years, the highest values (15.87% in
2017, 17.53% in 2018 and 17.75% in 2020) were also associated with BMFC, except in 2016,
when the highest value corresponded to LUFC (17.01%).

The results of the five statistical methods based on ANN models and the three factor
combinations are shown in Table 10.

Table 10. The results of the five statistical methods based on ANN models for the three
factor combinations.

Year Factor
Five Statistical Methods

OA (%) Precision Recall F-Measure MCC

2016
LUFC 83.85 0.0859 0.7041 0.1531 0.2425

LUCFC 84.18 0.0859 0.6742 0.1523 0.2398
BMFC 83.60 0.0857 0.7146 0.1530 0.2432

2017
LUFC 83.40 0.0847 0.7147 0.1515 0.2418

LUCFC 84.48 0.0853 0.6823 0.1517 0.2398
BMFC 82.51 0.0824 0.7338 0.1482 0.2398

2018
LUFC 82.77 0.0816 0.7127 0.1465 0.2370

LUCFC 84.08 0.0870 0.7034 0.1549 0.2441
BMFC 82.65 0.0813 0.7149 0.1459 0.2366

2019
LUFC 83.60 0.0854 0.7118 0.1526 0.2426

LUCFC 83.35 0.0852 0.7221 0.1524 0.2431
BMFC 82.81 0.0831 0.7263 0.1491 0.2402
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Table 10. Cont.

Year Factor
Five Statistical Methods

OA (%) Precision Recall F-Measure MCC

2020
LUFC 83.76 0.0836 0.6859 0.1491 0.2377

LUCFC 84.19 0.0856 0.6842 0.1522 0.2403
BMFC 82.97 0.0834 0.7220 0.1495 0.2404

Table 10 shows that the highest OA value was obtained for LUCFC in 2017 (84.48%),
the highest precision was obtained for LUCFC in 2018 (0.0870), the highest recall was
obtained for BMFC in 2017 (0.7338), the highest F-measure value was obtained for LUCFC
in 2018 (0.1549) and the highest MCC was obtained for LUCFC in 2018 (0.2441).

Tables 8–10 show that BMFC was associated with the highest AUC values in all years
except 2018, and BMFC displayed the highest specific category accuracy values of very
high susceptibility areas in all years except 2016. In general, the BMFC results obtained
with the ANN model were better than those for LUFC and LUCFC, indicating that the
band factor was more important in the ANN model than the LUC and LU factors.

5. Discussion
5.1. Analysis of ANN, SVM and CNN Results

To verify the extent to which the band factor plays an important role in LSM, two
other commonly used models, an SVM and a CNN, were selected for comparison. The
LSM results of these two models were analyzed using the ROC curve, the specific category
accuracy of very high susceptibility areas and five statistical methods.

The AUC values of the three models based on the three factor combinations are shown
in Table 11.

Table 11. The AUC values of the three models based on the three factor combinations.

Year Area Test Result Variable (S)
AUC

ANN SVM CNN

2016
LUFC 0.856 0.848 0.832

LUCFC 0.849 0.847 0.821
BMFC 0.860 0.849 0.832

2017
LUFC 0.857 0.853 0.806

LUCFC 0.859 0.851 0.798
BMFC 0.859 0.851 0.823

2018
LUFC 0.853 0.847 0.818

LUCFC 0.864 0.850 0.780
BMFC 0.854 0.854 0.832

2019
LUFC 0.858 0.849 0.828

LUCFC 0.855 0.846 0.770
BMFC 0.863 0.850 0.829

2020
LUFC 0.851 0.846 0.818

LUCFC 0.847 0.846 0.787
BMFC 0.863 0.849 0.833

Table 11 shows that for the SVM model, the highest AUC values from 2016–2020
(except in 2017) were all obtained for BMFC; among them, the highest AUC value was
obtained for BMFC in 2018 (0.854). For the CNN model, the highest AUC values from
2016–2020 were all associated with BMFC, and the highest AUC value was obtained for
BMFC in 2020 (0.833).

The specific category accuracies of very high susceptibility areas for the three models
based on the three factor combinations are shown in Table 12.
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Table 12. The specific category accuracies of very high susceptibility areas for the three models based
on the three factor combinations.

Year Factor
Very High Category of Susceptibility

ANN SVM CNN

2016
LUFC (%) 17.01 13.40 14.44

LUCFC (%) 13.31 14.22 7.46
BMFC (%) 14.92 12.84 11.82

2017
LUFC (%) 15.81 13.61 8.33

LUCFC (%) 15.60 13.88 8.57
BMFC (%) 15.87 13.98 15.95

2018
LUFC (%) 14.36 15.58 7.04

LUCFC (%) 15.44 14.54 7.75
BMFC (%) 17.53 15.26 12.23

2019
LUFC (%) 15.48 15.16 11.82

LUCFC (%) 13.28 13.78 3.36
BMFC (%) 18.84 13.48 10.61

2020
LUFC (%) 13.27 14.82 12.49

LUCFC (%) 15.47 14.60 9.07
BMFC (%) 17.75 13.04 12.33

Table 12 shows that for the SVM model, the highest specific category accuracy value
of very high susceptibility areas was obtained for LUFC in 2018 (15.58%), and the highest
values in other years were obtained for LUCFC (14.22%) in 2016, BMFC (13.98%) in 2017,
LUFC (15.16%) in 2019 and LUFC (14.82%) in 2020. For the CNN model, the highest specific
category accuracy value of very high susceptibility areas was obtained for BMFC in 2017
(15.95%), and the highest values in other years were obtained for LUFC in 2016 (14.44%),
BMFC in 2018 (12.23%), LUFC in 2019 (11.82%) and LUFC in 2020 (12.49%).

Statistical analyses of the results of the SVM and CNN models based on the three
factor combinations were performed, and the results are shown in Table 13.

Table 13. Statistical analysis of the results of the SVM and CNN models based on the three
factor combinations.

Model Year Factor
Five Statistical Methods

OA (%) Precision Recall F-Measure MCC

SVM

2016
LUFC 83.25 0.0814 0.6881 0.1456 0.2347

LUCFC 83.62 0.0829 0.6770 0.1477 0.2359
BMFC 83.52 0.0826 0.6868 0.1474 0.2363

2017
LUFC 83.39 0.0816 0.6840 0.1459 0.2347

LUCFC 83.69 0.0820 0.6746 0.1462 0.2344
BMFC 83.37 0.0841 0.7094 0.1503 0.2404

2018
LUFC 83.21 0.0806 0.6823 0.1442 0.2331

LUCFC 83.65 0.0818 0.6729 0.1458 0.2339
BMFC 83.44 0.0846 0.7113 0.1512 0.2413

2019
LUFC 83.32 0.0817 0.6875 0.1460 0.2351

LUCFC 83.66 0.0827 0.6819 0.1475 0.2361
BMFC 83.45 0.0829 0.6934 0.1481 0.2373

2020
LUFC 83.42 0.0819 0.6848 0.1463 0.2351

LUCFC 83.65 0.0826 0.6808 0.1473 0.2358
BMFC 83.45 0.0825 0.6893 0.1473 0.2363
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Table 13. Cont.

Model Year Factor
Five Statistical Methods

OA (%) Precision Recall F-Measure MCC

CNN

2016
LUFC 82.33 0.0736 0.6491 0.1322 0.2203

LUCFC 80.79 0.0658 0.6503 0.1195 0.2087
BMFC 75.34 0.0609 0.7553 0.1127 0.2052

2017
LUFC 82.34 0.0700 0.6113 0.1255 0.2120

LUCFC 81.64 0.0728 0.6022 0.1298 0.2158
BMFC 86.06 0.0783 0.5309 0.1364 0.2143

2018
LUFC 82.82 0.0701 0.5942 0.1255 0.2107

LUCFC 80.19 0.0623 0.6084 0.1130 0.2008
BMFC 82.79 0.0736 0.6296 0.1318 0.2186

2019
LUFC 79.47 0.0661 0.6782 0.1205 0.2110

LUCFC 72.27 0.0487 0.6677 0.0908 0.1817
BMFC 79.99 0.0699 0.7024 0.1271 0.2183

2020
LUFC 80.92 0.0665 0.6285 0.1202 0.2083

LUCFC 84.95 0.0687 0.4981 0.1207 0.1988
BMFC 83.83 0.0772 0.6210 0.1374 0.2229

Table 13 shows that for the SVM model, the highest OA value was obtained for LUCFC
in 2017 (83.69%), the highest precision was obtained for BMFC in 2018 (0.0846), the highest
recall was obtained for BMFC in 2018 (0.7113), the highest F-measure value was obtained
for BMFC in 2018 (0.1512) and the highest MCC was obtained for BMFC in 2018 (0.2413).
For the CNN model, the highest OA value was obtained for BMFC in 2017 (86.06%), the
highest precision was obtained for BMFC in 2017 (0.0783), the highest recall was obtained
for BMFC in 2016 (0.7553), the highest F-measure was obtained for BMFC in 2020 (0.1374)
and the highest MCC was obtained for BMFC in 2020 (0.2229).

For the ANN model, the highest AUC values (except in 2018) were all obtained for
BMFC, the highest specific category accuracy values of very high susceptibility areas were
all obtained for BMFC (except in 2016), and the OA, precision, F-measure and MCC values
of the LUCFC in the analysis of the five statistical methods were the highest among those
shown. For the SVM model, the highest AUC values were all obtained for BMFC (except in
2017), and the specific category accuracy values of very high susceptibility areas based on
LUFC, LUCFC and BMFC were highest between 2016 and 2020. Among the five statistical
methods, all the highest values were associated with the BMFC, except for the highest OA
value, which corresponded to the LUCFC. For the CNN model, the highest AUC values
between 2016 and 2020 were all obtained for BMFC, the highest specific category accuracy
values of very high susceptibility areas in 2017 and 2018 were obtained for BMFC, and the
highest five statistical methods were all obtained for BMFC. In general, LUFC, LUCFC and
BMFC from 2016–2020 had advantages and disadvantages with respect to the AUC values,
specific category accuracy values of very high susceptibility areas and the five statistical
methods based on the three models. However, generally, the results for BMFC were better
than those for LUFC and LUCFC, indicating that the band factor had a better impact on
LSM than did the LU and LUC factors.

5.2. Simple Quantitative Ranking Analysis

To more intuitively reflect the importance of the three factors, namely, LU, LUC and
band, in LSM, a simple ranking method was used to score different factor combinations.
The higher the score was, the better the prediction performance. In this study, the scoring
principles were as follows. The scores obtained for the AUC value, specific category
accuracy value of very high susceptibility areas and the five statistical methods (OA,
precision, recall, F-measure and MCC) for LUFC, LUCFC and BMFC, in order from highest
to lowest, were ranked as 3 points, 2 points and 1 point, respectively. The scores of the AUC
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value, the specific category accuracy value of very high susceptibility areas and the average
of the five statistical methods were added together, with the highest scores indicating the
best performance.

The scores of the three factor combinations based on the three models are shown in
Table 14.

Table 14. Performance comparison of three factor combinations based on three models.

The Score
ANN SVM CNN

LUFC LUCFC BMFC LUFC LUCFC BMFC LUFC LUCFC BMFC

AUC 8 9 15 9 6 13 11 5 15
Very high 9 7 14 6 11 13 11 7 12

Five statistical
methods’ AVG 11 10.8 8.2 11.6 11.6 6.8 9.8 8 12.2

Total 28 26.8 37.2 26.6 28.6 32.8 31.8 20 39.2

Table 14 shows that for the ANN model, the highest AUC score was obtained for
BMFC (15 points), the highest specific category accuracy score of very high susceptibility
areas was obtained for BMFC (14 points) and the highest average score of the five statistical
methods was obtained for LUFC (11 points). The highest overall score of the three was
obtained for BMFC (37.2 points). For the SVM model, the highest AUC score was obtained
for BMFC (13 points), the highest score for the specific category accuracy of very high
susceptibility areas was obtained for BMFC (13 points) and the highest average scores for
the five statistical methods were obtained for LUFC and LUCFC (11.6 points). The highest
comprehensive score among the three cases was obtained for BMFC (32.8 points). For the
CNN model, the highest AUC value (15 points), the highest specific category accuracy of
very high susceptibility areas (12 points), and the highest average value of the five statistical
methods (12.2 points) were all obtained for BMFC. Moreover, the highest composite score
of the three was obtained for BMFC (39.2 points). In summary, BMFC yielded the highest
scores for all three models. The LUFC and LUCFC results varied for the three models, and
the values were all lower than those for BMFC, which indicates that the band factor was
more important than the LUC and LU factors in the three models.

Notably, the band factor from 2016–2020 was obtained using the PCA algorithm by
outputting the first principal component of the NDVI/NDBI/NDW bands, that is, the
maximum amount of information. The PCA table for the bands from 2016–2020 is shown
in Table 15.

Table 15. PCA values for the three models.

Year PC Eigenvalue * Percentage **

2016
1st 0.8108 85.95%
2nd 0.1229 13.03%
3rd 0.0097 1.02%

2017
1st 1.1808 98.81%
2nd 0.0142 1.19%
3rd 0.0000 0%

2018
1st 0.6469 79.63%
2nd 0.1359 16.73%
3rd 0.0296 3.64%

2019
1st 0.8336 91.41%
2nd 0.0732 8.04%
3rd 0.0050 0.55%
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Table 15. Cont.

Year PC Eigenvalue * Percentage **

2020
1st 0.8336 87.68%
2nd 0.1062 11.16%
3rd 0.0110 1.16%

*: Eigenvalue represents the eigenvalues of the first, second and third principal components. **: Percentage
represents the percentage of information contained in the first, second and third principal components.

Table 15 shows that the information content values of the first principal component
of the PCA output fusion band from 2016–2020 were 85.95, 98.81, 79.63, 91.41 and 87.68%.
The smallest amount of information was conveyed by this component in 2018 (79.63%),
and according to the results in Tables 11–13. In some of the evaluation methods used
for the ANN model, BMFC yielded better results than LUFC and LUCFC. For the SVM
model, the highest AUC and the highest values of precision, recall, the F-measure and
the MCC among the five statistical methods were all obtained for BMFC. For the CNN
model, the highest AUC, the highest specific category accuracy of very high susceptibility
areas, and the highest values of precision, recall, the F-measure and the MCC among the
five statistical methods were all obtained for BMFC. In summary, even in 2018, when
information provided by the first principal component in PCA was the most limited, the
LSM results based on BMFC were the best for the three different models.

A simple ranking of the scores for LUFC, LUCFC and BMFC revealed that the highest
scores were obtained for BMFC in all three models, and the highest predictive ability for
BMFC was obtained for the CNN model, followed by the ANN model and then the SVM
model. Although the CNN model displayed good prediction ability for BMFC, it yielded
the worst results for LUCFC with a temporal dimension, and LUCFC did not provide
advantages in the three models; notably, the prediction ability for LUCFC was lower than
that for LUFC. The reason for this result may have been that the LUC in this study was
only obtained by detecting changes in the data at an interval of one year, and there was no
shorter time interval. Thus, the temporality of LUC was not reflected well.

5.3. Stability Analysis

To confirm the stability of the band factor, four groups of experiments were performed
using the ANN model. The ROC curve analysis results in 2016 are used as an example, and
the AUC values of the three factor combinations of the five groups of ANNs are shown in
Table 16. The stability results are shown in Figure 17.

Table 16. AUC values of the five groups of ANNs.

AUC
Factor Test Gruops ANN (A) ANN (B) ANN (C) ANN (D) ANN (E)

LUFC 0.856 0.852 0.882 0.855 0.854
LUCFC 0.849 0.856 0.874 0.848 0.853
BMFC 0.860 0.860 0.860 0.860 0.860

Figure 17 shows that the AUC value for BMFC was lower than those for LUFC and
LUCFC only in the third set of ANN experiments. The standard deviations of the three
factor combinations were 0.025 for LUFC, 0.022 for LUCFC and 0 for BMFC. In LSM, the
stability of BMFC was better than that of LUFC and LUCFC, indicating that the stability of
the band factor was better than that of the LU and LUC factors.

Research has shown that LU is only considered a dynamic factor when it changes over
decades or even centuries, and it is considered to be a static factor in a short period [88].
Intuitively, the experiments in this paper confirm that there is no significant difference
between the results of LUC and LU factors in LSM. Second, due to the variable quality of
RS images, the LU data obtained by manual classification and the LUC data obtained by
detecting changes in LU data over time are often incorrectly classified. Moreover, the setting
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of image data parameters, the selection of image processing software and the limitations of
modeling methods all influence the image classification accuracy [89], which in turn affects
the results of LSM. Considering these problems, the first principal component (band) of the
NDVI/NDWI/NDBI-based results obtained by using the PCA algorithm was added for
classification in this study. LU, LUC and band factors were introduced into different models
as independent variables for LSM analysis to verify the applicability of the three factors.
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Figure 17. AUC values for the five groups of ANNs.

6. Conclusions

In this paper, the Zigui to Badong section was used as the study area, and the LUFC,
LUCFC and BMFC were analyzed using three models. The ROC curve, specific category
accuracy and five statistical methods (OA, precision, recall, F-measure and MCC) were used
to evaluate the results of LSM. The predictive performance of each model was evaluated
with a simple ranking method. The results showed that in general, the results of BMFC for
the ANN model were better than those of LUFC and LUCFC, indicating that the band factor
was more important than the LU and LUC factors in the three models. The simple ranking
method verified that the score of BMFC for the three different models was higher than the
scores of LUFC and LUCFC, indicating that the predictive ability of the band factor in the
three different models was greater than that of the LU and LUC factors. Second, for the ROC
curve analysis results (AUC values) for 2016 based on five groups of ANN experiments,
as an example, the standard deviation of each factor combination was calculated, and the
stability of BMFC was better than that of LUFC and LUCFC, indicating that the stability of
the band factor was better than that of the LU and LUC factors. Therefore, compared with
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the LU/LUC factors, with variations in accuracy, the band factor is better in principle and
more stable.

Most existing landslide prediction models rely on human labor, which is limited by
timeliness and accuracy, while machine learning methods can be used to accurately predict
landslides in real time. According to the experimental results presented in this paper,
especially the LSM results of the three different models, BMFC yielded better results than
LUFC and LUCFC; that is, the band factor was better than the LU and LUC factors and can
replace them to a certain extent. Moreover, since the LU and LUC factors are influenced by
the subjectivity of the operator and are unstable, the corresponding prediction of landslides
has some limitations. The stability factor band, obtained by introducing band math, not
only results in better landslide predictions compared with those using the LU and LUC
factors but also greatly saves time and labor and machine costs, providing theoretical
support for automated landslide monitoring and the real-time evaluation of landslides.
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