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Abstract: With climate change causing increased extreme weather events, megacities worldwide
are experiencing unprecedentedly devastating floods and recurring flood damage. Investigating
global megacities’ increased disposition to flooding will aid in developing sustainable flood-risk-
management frameworks. Many studies have been conducted on the association between land-cover
types and flood consequences, but few on investigating urban expansion patterns’ correlation with
flood hazard and risk. This study examines the correlation between urban expansion patterns and
increased flood hazards. Twelve megacities throughout the world were selected for this study. After
exploring the possibility of the megacities having experienced flooding, we qualified their patterns
of urban expansion and their potential to influence the elements of flood risk. Our results revealed
that edge expansion and leapfrogging patterns had a strong positive correlation with statistical
significance with flood hazard, while infilling had a weak positive correlation that showed no
statistical significance with flood hazard. Further, we found that the megacities have all experienced
devastating floods in the past two decades. Flood risk frameworks need to account for the impact
of these patterns, and future urban planning designs and policies need to incorporate flood risk
frameworks that account for patterns of urban expansion.

Keywords: megacity; floods; urbanization; landscape patterns; urban flood hazard; urban sustain-
ability; change detection; land use and land cover

1. Introduction

Whether we like it or not, the global human population will continue to rise, land
use and land cover will continue to change, the rain will continue to fall, and floods will
not go away. With the recent events of catastrophic floods in urban and rural settings
globally, it is evident that much attention is required to ameliorate the detrimental effects
of flooding, especially with climate change having arrived. The authors of [1] showed that
flood risk is a global threat affecting the inhabitants of 188 countries. Between 2021 and 2022
alone, there has been severe flooding in the United States, China, Japan, United Kingdom,
Russia, France, Germany, Nigeria, Pakistan, India, and Bangladesh, to mention a few. These
events have led to the loss of lives, properties, infrastructural damage, and grounded
socioeconomic activities. Globally, it is now evident that flooding is not constrained to a
geographic location but occurs in both developed countries with active flood management
protocols and developing countries with sparse to no flood management. With the intensity
and duration of the rainfall events leading to these floods, it is arguably evident that climate
change is here.

As climate change and associated environmental impacts lead to intensifying rainfall
patterns globally, many human populations globally are in the midst of a rural diaspora [2,3].
In 2007, for the first time in human history, it was estimated that more of the global popula-
tion lived in urban areas than in rural areas. In 2020, the United Nations estimated that 55%
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of the global population lived in cities. By 2050, it is projected that two-thirds of the global
population will live in urban areas (https://datacatalog.worldbank.org/search/dataset/00
37712/World-Development-Indicators, accessed on 12 November 2022). The rapid increase
in urban populations will lead to a rapid expansion of urban areas, specifically in megacities
or cities with a population of over 10 million [4]. As the global urban population increases,
there is also an increase in urban development and expansion in land areas covered in
impervious surfaces in and around global megacities, drastically increasing the surface
runoff generated per unit of precipitation [5]. In most of these developed cities, rainfall
events that would normally not result in environmental problems, such as flooding, now
cause major catastrophes resulting in the loss of lives and properties [5–7], which is argued
to be now exacerbated by climate change. Climate change and risky urbanization patterns
have been investigated by researchers [1] as aggravating flood risk. Meanwhile, torrential
rain events within a catchment that met with a high percentage of paved surfaces result
in surface runoff that exceeds the capacity of storm drainage, resulting in flooding [8].
This type of flooding is called pluvial flooding [9], and is usually known to impact areas
independent of their proximity to water bodies.

Furthermore, land use and land-cover changes involving the conversion of wetlands
and/or floodplains to built-up land cover have been established to be a culprit for flood-
ing [10]. While exposure to flooding in most parts of the world is already increasing due to
climate change [1], land use and land-cover changes and expansion patterns that increase
flooding exposure and risk are now more important than ever in current flood risk manage-
ment and mitigation. In most flood risk modeling and vulnerability assessments, the focus
is often placed on the hydrologic and hydraulic parameters of a catchment, which is an
equally important approach. However, anthropogenic modifications and changes within
the catchment are also known to change the characteristics or behavior of the catchment
in the processing of hydrologic input. Unfortunately, these changes often increase human
properties and infrastructural exposure. Han et al. [11] studied how urban expansion
spatial patterns on built-up land in floodplains is a driver for flood risk and demonstrated
that the pattern of urban expansion (infilling, edge expansion, and leapfrogging) influences
flood vulnerability.

Several works have been undertaken on urban growth/expansion landscape patterns,
and this research primarily focuses on quantifying the distribution as well as the spatiotem-
poral patterns associated with land use and land-cover changes on a country or city scale.
Meanwhile, research establishing the type of growth mode(s) influencing environmental
vulnerabilities to floods has not been fully explored. However, some recent studies [11,12]
have demonstrated a link between urban expansion patterns in built-up land in floodplains
(BLF) and flood exposure and vulnerability by arguing that the former dynamics (types and
sizes) are key to effective understanding and management of flood risk. Meanwhile, with
climate change and associated intensities in hydrologic extremes, especially torrential rain-
fall, it is evident that BLFs are not the only areas to consider, but that it is also important to
consider built-up lands within a catchment with a sufficient number of impervious surfaces
and where the location favors pluvial and flash floods. Additionally, understanding which
growth modes (leapfrogging, infilling, and edge expansion) are associated with flooding
would provide insight into future urban planning and into resilient flood risk strategies that
would be sustainable and adaptive to current and future climate scenarios. Therefore, our
study focuses on (1) estimating the patterns of expansion for twelve megacities (Figure 1),
which were assumed to be urbanized because of their high population; (2) identifying
which pattern is common to the cities; and (3) identifying which urban expansion pattern or
growth mode is associated with increased flood hazard (Figure 2). To achieve our objectives,
we assumed that a megacity with over ten million inhabitants would have experienced
substantial urban developments, such that a huge amount of its landscape would have
been paved, and hence be impervious. These landscape changes could cause a decrease
in rainfall infiltration into the ground and favor increased runoff, which, depending on
the topography and the capacity of natural/engineered drainages within the city, could

https://datacatalog.worldbank.org/search/dataset/0037712/World-Development-Indicators
https://datacatalog.worldbank.org/search/dataset/0037712/World-Development-Indicators
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result in a flood situation. Based on these assumptions, we first proposed a question: Of
the twelve megacities being studied, how many have experienced flooding in the past and
when? Following this, hinging on the knowledge from answering our proposed question,
we finally proceeded to the main goals of this work.

Figure 1. Map showing the locations of megacities.

Figure 2. Impervious surfaces can influence flood risk in two ways: (1) changing flood exposure
because of its changes in quantity, and (2) changing flood vulnerability due to its spatial patterns.
However, the latter issue is still to be clarified. (Modified after [11]).
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2. Materials and Methods
2.1. Data
2.1.1. Landsat Imagery

The Landsat scenes used for our analysis were downloaded from the Google Earth En-
gine data Catalog (https://developers.google.com/earth-engine/datasets/catalog/landsat,
accessed on 27 January 2022). The Landsat satellite provides a 30 m spatial resolution of
the Earth’s surface about once every two weeks. A combination of the Landsat 5 Thematic
Mapper (TM), Landsat 7 Enhanced Thematic Mapper (ETM), and Landsat 8 Operational
Land Imager (OLI) for 2000 and 2020 was used in our study (Figure 3).

Figure 3. Work process for flood-hazard-category extraction.

2.1.2. World Settlement Footprint (WSF)

The WSF, which was produced by [13], represented the reference data (Figure 4a
used to assess our classification accuracy. Its 10 m spatial resolution binary class, which
represents the extent of human settlements globally, was used to test the accuracy of our
classified product (Figure 4b). The WSF was derived by taking the means of 2014–2015
multitemporal Landsat-8 and Sentinel-1 imagery (~217,000 and ~107,000 scenes were
processed, respectively).

2.1.3. Flood Inventory

In assessing the flood occurrence within the megacities, we compiled historical flood
information for the twelve megacities from Dartmouth Flood Observatory (DFO, [14]),
reputable online news sources, and the literature [10,15]. Flood events dating back to
the 1980s were identified for some megacities such as Mexico City, Guangzhou, Lagos,
and Jakarta. However, we only selected flood events that coincided with the start of our
temporal analysis, which is the year 2000. From the DFO record, we found flood reports
from multiple causes for some cities, but only floods from heavy rainfall were selected.

https://developers.google.com/earth-engine/datasets/catalog/landsat
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Figure 4. Sample classified images for Seoul, South Korea: (a) Landsat ETM 2015 classified using the
unsupervised image classification method and (b) reference image by the World Settlement Footprint
for 2015.

2.1.4. Global Facility for Disaster Reduction and Recovery (GFDRR) Flood Hazard

The GFDRR developed an analytical tool (ThinkHazard—https://thinkhazard.org/
en/, accessed on 17 June 2022) for the purpose of improving knowledge and understanding
of some natural hazards. It was adopted for core use in project planning by the World Bank.
Specifically, the analytical tool provides hazard information about ten phenomena triggered
by Earth’s hydrologic, meteorological, and geophysical processes. It was developed with
the intent of providing users with multi-hazard information about their project area to
enable a more detailed and focused risk assessment of the hazard’s influence on proposed
projects. Hydraulic hazards (e.g., urban floods), the hazard of interest to this work, were
characterized by the occurrence, movement, and distribution of surface and subsurface
fresh and saltwater connected to the hydrologic cycle and thus affected by anthropogenic
and meteoclimatic processes. Hazard levels (high, medium, low, and very low) were
estimated using a probabilistic approach, which produced the frequency and severity
data used in their analysis. These were estimated by three administrative units globally.
The hazard data are also available as index data, showing the susceptibility of an area to
a hazard.

2.2. Method
2.2.1. Image Classification and Change Detection

In order to analyze the different urban expansion patterns occurring within the megac-
ities, the spatial distribution of the built-up lands within the cities needs to be identified
through the image classification and change-detection processes. Prior to classifying the
imageries, we created a composite map of our study areas using five bands representing
the red, green, blue, near infrared, and shortwave infrared. We used this band combination
to improve the spectral intensities of features on the maps. The Landsat images were all
classified using the iso cluster unsupervised image classification method, which employs
an ISODATA algorithm to automatically segregate the pixels of the images into groups
of similar spectral reflectance. This image classification method uses several “clustering”
statistics, where classes of pixels were created based on their shared spectral signatures. We
used this method as opposed to supervised image classification because, despite using the
band combination specified previously, the composite images derived for some of the study
areas (e.g., Guangzhou, Cairo, and Lagos) had a low spatial and spectral resolution, which
made the identification of features having similar spectral signatures challenging. The

https://thinkhazard.org/en/
https://thinkhazard.org/en/
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Google Earth Engine platform was used in performing the image classification. The images
were classified into 13 clusters, which were further classified into developed and undevel-
oped land cover. The developed and undeveloped categories were adopted from [10,15].
Change detection between images from the two time periods was performed using the
compute change tool in the image analyst toolset in ArcGIS Pro 2.8.0.

2.2.2. Image Classification Validation through an Accuracy Assessment

In our image classification, built-up areas represent the developed land cover within
the study areas for 2000 and 2020. To assess the accuracy of the image classification
method, we compared the classified image (developed land cover) using the unsupervised
image classification (Iso Cluster—Figure 4b) method to the WSF product (reference image—
Figure 4a), which has a higher spatial resolution and was produced using classification
schemes based on support vector machines. First, we resampled both products to the same
spatial resolutions for consistency between our classified images and the reference image
(WSF). Next, we applied the error matrix statistical method, which quantitatively computes
and compares the accuracy of the classified image to the reference image. We created
1000 stratified random sampling points for this assessment, and two classes of land cover,
which were the classes of interest, were used. They were the built-up (developed) and
undeveloped (all other) landcover types. The kappa classification in Table 1 was adopted
for assessing the agreement between the classified and reference images.

Table 1. Cohen Kappa Classification.

Cohen’s Kappa Interpretation

0 No agreement
0.10–0.20 Slight agreement
0.21–0.40 Fair agreement
0.41–0.60 Moderate agreement
0.61–0.80 Substantial agreement
0.81–0.99 Near perfect agreement

1 Perfect agreement

2.2.3. Urban Expansion Pattern Analysis

The megacities’ three types of urban expansion patterns (edge expansion, leapfrogging,
and infilling) were estimated by adopting the methods of [12,16]. We employed Equation (1),
basically based on a geospatial buffer analysis showing the relationship between the old
and newly developed patches (built-up land) within a defined buffer distance of 30 m—a
distance corresponding to the spatial resolution of the Landsat images. In Equation (1), S,
Ao, and Av were defined as the expansion pattern for a newly grown patch, the intersection
between the buffer zone and the occupied category, and the intersection between the
buffer zone and the vacant category. The expansion pattern is infilling when S > 50, edge
expansion when 0 < S ≤ 50, and leapfrogging when S = 0.

S = 100 ×
(

A0

A0 + Av

)
(1)

The dominant urban expansion type (DET) was computed using Equation (2), where
APi is the area of individual patches corresponding to an S value.

DET(s) =
n

∑
i=1

APi (2)

In order to assess the proportion of each urban expansion pattern (that is, the quantity
of developed land between 2000 and 2020) within each megacity, Equation (3) was adopted,
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where P is the percentage of an urban expansion pattern and At is the total area of built-up
land for 2020.

P =
DET(s)

At
× 100 (3)

2.2.4. Flood-Hazard Classification

To estimate the association of the three urban expansion patterns to flooding, we
utilized the probabilistic data presented by ThinkHazard version 2, which can be assessed
in their GitHub repository (https://github.com/GFDRR/thinkhazard, accessed on 17
June 2022) and as maps of categorized flood-hazard levels (urban, river, and coastal)
globally. The unreferenced flood-hazard maps for the twelve megacities were acquired,
georeferenced, and classified using the workflow in Figure 3.

As a simple qualitative validation of the ThinkHazard (TH) flood-hazard map using
the Dartmouth Flood Observatory (DFO) flood reports, we applied a GIS query to compare
areas where the DFO reported floods to the areas which the TH delineated as having
medium to high flood-hazard levels. Furthermore, we compiled the general flood-hazard
levels for the twelve megacities delineated by TH (Table 2).

Table 2. ThinkHazard flood-hazard levels for the megacities.

Megacities Countries Urban Flood River Flood Coastal Flood

Guangzhou China High High High
Tokyo Japan High High High
Jakarta Indonesia High High High
Seoul South Korea Medium Low No Data

Mexico City Mexico High High No Data
São Paulo Brazil Low Medium No Data

Cairo Egypt High High No Data
Lagos Nigeria High High Medium

Los Angeles USA Very Low Very Low High
Moscow Russia Low High No Data

Buenos Aires Argentina High High High
London Great Britain Low Medium High

2.2.5. Statistical Test of the Metrics of Urban Expansion Patterns and the ThinkHazard
Flood-Hazard Zone

One of the objectives of this work is to gain insight into the association of the three
urban expansion patterns with flood conditions. In this scenario, for the ThinkHazard flood-
hazard zones, we applied Pearson’s Correlation Coefficient to measure the relationship
between the quantity of occurrence of each of the three urban expansion patterns within the
flood-hazard zones. The significance of this relationship was quantified first by specifying
a null hypothesis that there is no significant correlation between the quantity of each urban
expansion pattern within the flood-hazard zone. The alternative hypothesis is that there is
a significant correlation between the quantity of each urban expansion pattern within the
ThinkHazard flood-hazard zone. Next, using the t-test inferential statistics, we computed
the p-value after setting our significance level to 0.05.

3. Results
3.1. Image Classification Accuracy Assessment

To ascertain the accuracy of our image classification, we computed a confusion matrix.
Table 3 shows the result of the assessment between the reference (Figure 4a) and classified
image (Figure 4b). Overall, the kappa coefficient was 0.67, which explains the substantial
agreement (Table 3) between the built-up areas identified by our image classification
method and the World Settlement Footprint method.

https://github.com/GFDRR/thinkhazard
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Table 3. Error Matrix Computation Summary.

Reference Image (World Settlement Footprint (WSF))

Land Cover Class Built-Up
(Developed) Undeveloped Total User’s

Accuracy Kappa

Classified
Image

Built-up
(Developed) 554 45 599 0.92 0

Undeveloped 111 290 401 0.72 0
Total 665 335 1000 0 0

Producer’s Accuracy 0.83 0.87 0 0.84 0
Kappa 0 0 0 0 0.67

3.2. Spatiotemporal Urban Developments of the Megacities

Table 4 illustrates an estimated quantity of built-up land in 2000 and 2020 in the
megacities. Among the twelve cities, we found Guangzhou in China to have the highest
area, estimated to be 7100 km2, followed by Lagos in Nigeria and Cairo in Egypt, with
an estimated area of 3726 km2 and 3085 km2, respectively. Guangzhou’s built-up area in
2000 was 1652 km2; by 2020, it had grown by an additional 2166 km2. Lagos, in 2000 had a
built-up area of 596 km2 which experienced a growth of 1113 km2 in the built-up area by
2020. The growth rates in the development of Guangzhou and Lagos were estimated to be
76% and 54%, respectively. The percentages of urban growth experienced by the megacities
with respect to their total were calculated and shown in Table 4. In 2000, some cities such
as Guangzhou, Cairo, and Lagos had percentages of built areas within a range of 16% and
25%, making them the cities with the least built-up area. However, by 2020, compared to
the rest, some megacities had relatively substantial growth in built-up land by 2000, up to
an additional ~30% of their total area; examples are Guangzhou and Lagos.

Table 4. Megacities’ Built-up Land Percentages.

Megacities Built-Up Area
2000 (km2)

Built-Up Area
2020 (km2)

Total Area
(km2)

Percentage (%)
Built-Up 2000

Percentage (%)
Built-Up 2020

Percentage (%)
Built-Up Land

Guangzhou 1652 2166 7100 23.27 30.51 53.77
Tokyo 999 305 1823 54.80 16.73 71.53
Jakarta 417 84 664 62.80 12.65 75.45
Seoul 387 92 605 63.97 15.21 79.17

Mexico City 588 264 1484 39.62 17.79 57.41
Cairo 524 354 3085 16.99 11.47 28.46
Lagos 596 1113 3726 16.00 29.87 45.87

Buenos Aires 177 31 209 84.69 14.83 99.52
Los Angeles 757 162 1239 61.10 13.08 74.17

Moscow 735 953 2510 29.28 37.97 67.25
London 1532 373 2321 66.01 16.07 82.08

São Paulo 797 272 1523 52.33 17.86 70.19

Conversely, cities with more than 50% built-up area in 2000 experienced between ~12%
and 18% urban growth in 2020. We found the magnitude of the percentage of built-up area
(urban development) for the megacities to exhibit a pattern with the cities’ total area or
extent. This relationship, as assessed using Pearson’s Correlation Coefficient, was −0.61.

Figures 5 and 6 present the visualization of the change dynamics of development in
the cities for the years 2000 and 2020. For example, for Guangzhou (Figure 5) and Lagos
(Figure 6), the substantial amount of developed land between 2000 (blue) and 2020 (red)
could be perceived, which could imply rapid urbanization in the cities.
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Figure 5. Spatiotemporal Distribution of Built-up Areas in Guangzhou, Tokyo, Jakarta, Seoul, Mexico
City, and Cairo for the years 2000 and 2020.
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Figure 6. Spatiotemporal Distribution of Built-up Areas in Moscow, Los Angeles, Sao Paulo, London,
and Buenos Aires for the years 2000 and 2020.

3.3. Urban Expansion Pattern

Using Equation (1), we computed the S values for the twelve megacities. The most
dominant expansion pattern within the cities was also computed using Equation (2). Table 5
shows that the dominant expansion pattern in eight cities (Guangzhou, Tokyo, Jakarta,
Seoul, Mexico City, Sao Paulo, Lagos, and Moscow) is edge expansion, while the pattern in
four cities (Cairo, Los Angeles, Buenos Aires, and London) is infilling.
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Table 5. Megacities and associated dominant urban expansion patterns based on patch size and number.

ID Megacity
Dominant Urban Expansion Type

Based on Patch Size (Area)
(2000–2020)

Dominant Urban Expansion Type Based
on the Number of Patches (Area)

(2000–2020)

1 Guangzhou Edge Expansion Infilling
2 Tokyo Edge Expansion Infilling
3 Jakarta Edge Expansion Infilling
4 Seoul Edge Expansion Infilling
5 Ciudad de Mexico Edge Expansion Infilling
6 Sao Paulo Edge Expansion Infilling
7 Cairo Infilling Leapfrogging
8 Lagos Edge Expansion Infilling
9 Los Angeles Infilling Infilling
10 Moscow Edge Expansion Infilling
11 Buenos Aires Infilling Infilling
12 London Infilling Infilling

Figure 7 is a pictorial representation of an example of infilling, edge expansion, and
leapfrogging urban expansion patterns in Seoul, South Korea (and, by extension, the
megacities), which provides perspective on how the patterns of developments are spatially
distributed. The red, yellow, and green pixels represent leapfrogging, infilling, and edge
expansion, respectively.

Figure 7. Visual example of infilling, edge expansion, and leapfrogging urban expansion pattern in
Seoul, South Korea, between 2000 and 2020.

We found a robust negative correlation with statistical significance < 0.05 between the
areas of the expansion patterns and the number of patches of developed land (Figure 8) for
all the megacities. The percentage of their areas with respect to the total developed area
between 2000 and 2020 is shown in Figure 9. From Figure 9, the city of Guangzhou and
Lagos seems to display a similar percentage of the three expansion patterns. Generally, we
identified some similar percentages among the megacities, as shown in Figure 9. Other
examples are Tokyo and Jakarta; Buenos Aires and Los Angeles; London and Cairo; and
Sao Paulo, Mexico City, and Moscow.
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Figure 8. Graphical representation of the areas and the number of patches for infilling, edge expansion,
and leapfrogging for the megacities between 2000 and 2020.

Figure 9. Percentage of infilling, edge expansion, and leapfrogging urban expansion patterns in the
megacities between 2000 and 2020.

3.4. Heavy Rainfall Triggered Floods in Megacities

From the Dartmouth Flood Observatory flood report, several sources of flooding were
cited for some of the cities, but the prevalent source of flooding common to all the cities
was heavy rainfall. Our compilation of the flood inventory, including flood source, year(s),
and flood occurrence, shows heavy rainfall to be the most cited cause of flooding in these
cities. We also found that all these cities have all experienced devastating floods at least
twice, with Jakarta, Seoul, Sao Paulo, Lagos, and London having a flood event that occurred
during the compilation of this work (2022) and Los Angeles in 2023 (Table 6).
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Table 6. Flood inventory for the twelve megacities and flood sources [10,14,15].

Megacity Country Population Climate Flood (Yes/No) Year Flood_Source

Guăngzhōu China 15,300,000
Humid

subtropical to
tropical climate

Yes
2000, 2001, 2004,
2005, 2007, 2010,

2020.
Heavy Rainfall

Tōkyō Japan 31,900,000 Humid
subtropical Yes 2000, 2008, 2019. Heavy Rainfall

Jakarta Indonesia 26,500,000 Tropical humid Yes

2001–2004,
2006–2010,

2012–2014, 2016,
2020–2022.

Heavy Rainfall

Seoul Korea (South) 20,700,000 Temperate Yes
2001, 2003, 2004,
2006, 2010, 2011,

2022.
Heavy Rainfall

Ciudad de
México Mexico 21,505,000 Subtropical Yes 2008, 2009, 2010,

2011, 2021. Heavy Rainfall

São Paulo Brazil 22,495,000 Temperate Yes

2000, 2001,
2003–2005,

2007–2011, 2014,
2016, 2018, 2019,

2022.

Heavy Rainfall

Al-Qāhirah Egypt 19,787,000 Subtropical
desert Yes 2010, 2011,

2018–2021. Heavy Rainfall

Lagos Nigeria 15,487,000 Tropical Yes
2000, 2002, 2004,

2007, 2012,
2018–2022.

Heavy Rainfall

Los Angeles United States
of America 15,477,000 Subtropical Yes 2003, 2005, 2010,

2017, 2018, 2023. Heavy Rainfall

Moskva Russia 17,693,000 Continental Yes 2004, 2020, 2021. Heavy Rainfall

Buenos Aires Argentina 16,216,000 Temperate Yes 2001, 2013, 2016,
2017. Heavy Rainfall

London Great Britain 11,120,000 Temperate Yes
2000, 2003, 2008,
2009,2012, 2014,

2020–2022.
Heavy Rainfall

3.5. Urban Expansion Pattern and ThinkHazrd Flood-Hazard Zones

In our comparison of the Dartmouth Flood Observatory (DFO) to the ThinkHazard
(TH) flood-hazard classes, we found that cities such as Sao Paulo, Los Angeles, Moscow,
and London, were classified as having a low to very low urban flood hazard. These cities
were reported to have experienced recent floods (Table 6) in the DFO flood report. The
discrepancy in the DFO and TH datasets is because the DFO does not include the types
of floods but the sources of floods and actual occurrences. As a result, our analysis of
the association of the three urban expansion patterns with flooding was performed in
Guangzhou, Tokyo, Jakarta, Seoul, Mexico City, Cairo, Lagos, and Buenos Aires, where
the DFO reported flood and the TH flood hazard is medium to high urban flood. In
these eight cities, the DFO and TH flood-hazard maps demonstrated some agreement.
Figure 10 displays the spatial distribution of the three types of expansion patterns in
Jakarta and Mexico City within the areas classified as depicting a medium to high flood
hazard. Generally, the edge expansion urban expansion pattern seems to be predominantly
associated with the flood-hazard zones in Buenos Aires, Lagos, Mexico City, Seoul, Jakarta,
Tokyo, and Guangzhou, while the infilling pattern was dominant in Cairo (Figure 11).
Though the area of the infilling pattern in the flood-hazard zone dominant in Cairo, we
found that its total area was 19.5 km2 while the edge expansion was 17.3 km2. In the eight
cities, the area of the infilling expansion pattern associated with the flood-hazard zone was
relatively high in all the cities. Meanwhile, the area of the leapfrogging pattern, on the
other hand, displayed some association with flood hazard, though not as much as the edge
expansion but more than the infilling expansion pattern in Guangzhou and Mexico City.
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Figure 10. Example of urban expansion patterns for Jakarta and Mexico City overlay on the TH
flood-hazard map.

Figure 11. Areas of infilling, edge expansion, and leapfrogging urban expansion pattern for the
megacities on a logarithmic scale.
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3.6. Statistical Significance of Urban Expansion Pattern Association with Flood Hazard

From our statistical comparison of the areas of the three urban expansion patterns
associated with the ThinkHazard flood-hazard zones in the megacities tested, Table 7
shows that we can reject the null hypothesis that there is no significant correlation between
the quantity of each urban expansion pattern within the ThinkHazard flood-hazard zone.
Additionally, our statistical test showed that the edge expansion and leapfrogging pattern
displayed a very strong positive correlation coefficient of 0.96 and 0.85, respectively, while
the infilling pattern showed a weak positive correlation of 0.3. The significance of these
correlations displayed in Table 7 shows that the edge expansion and leapfrogging patterns
have a p-value lower than 0.05, while the infilling pattern has a p-value greater than 0.05.

Table 7. Inferential Summary Statistics for the Spatial Distribution of Urban Expansion Patterns
within the ThinkHazard Flood-hazard Zone. p-Value Threshold = 0.05.

Correlation Coefficient (r) p-Value

Leapfrogging 0.85 0.08
Edge Expansion 0.96 0.0002

Infilling 0.3 0.5

4. Discussion
4.1. Flooding in Megacities

Our rationale in assessing flood occurrence in megacities stemmed from our assump-
tion that urbanization is fueled by increased population and economic development, and
as such, global cities of the world with a population of over 10 million inhabitants [17,18]
would be at risk of environmental hazards such as flooding [19]. Consequently, these
cities would serve as study sites for exploring the different patterns of urban expansion
associated with flooding. Based on these assumptions, our compilation of flood inventory
from the DFO, online, and the literature revealed flooding in all the twelve megacities
resulting from heavy rainfall. Recurring flooding in these megacities, as documented
by various sources [10,14,20,21], could not have occurred randomly but rather buttresses
the arguments and accounts of various researchers on the effects of urbanization in the
form of urban sprawl accompanied by rapid population increase on flood risk [7,22–27].
Specifically, a coalescence of diverse drivers such as human–environmental interactions,
urbanization-hydrology alteration [28,29], and natural conditions such as the physical
location of these cities further exacerbates flood risk for megacities [30,31]. For example,
Jakarta, Lagos, Guangzhou, Tokyo, London, Los Angeles, and Buenos Aires are all coastal
cities in low-lying areas with high rates of urbanization. Naturally, the physical location
of these cities makes them vulnerable to flooding and unplanned urban development
activities, giving rise to more socioeconomic activities and infrastructural developments
and heightening the risk. With emerging changes in climate change and intensifying precip-
itation, these cities should be major targets for flood resilience measures in other to foster
urban sustainability.

4.2. Implications of Urban Expansion Patterns for Floods in Megacities

Our analysis of the area in square kilometers of the different urban expansion patterns
for all the megacities indicated the edge expansion pattern to be the most common to all
the cities, followed by the infilling pattern, and leapfrogging is the least. Analysis of the
spatial association of these expansion patterns in the flood-hazard zone shows the edge
expansion and leapfrogging pattern to have a significant association with the flood hazard.
In contrast, the infilling pattern, though having a weak positive correlation with flood
hazard, does not depict a significant association with it. The area of the edge expansion
pattern within the total area of development from 2000 to 2020 for the megacities was
consistently high for eight out of twelve cities, while the area of the infilling pattern was
high for four cities. Meanwhile, the area of the leapfrogging pattern was consistently low in
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all the megacities. These spatial variations of the areas of the three patterns are indications
of their inherent characteristics. For example, the leapfrogging pattern exhibits a scattered
spatial distribution characterized by small patches of land compared to edge expansion and
infilling patterns [12], which reveal more compact characteristics with large patch areas.
The infilling pattern, though having more areas within the flood-hazard zone, showed a
weak positive correlation with flood hazard and was statistically insignificant, which could
be interpreted to imply its unapparent effects over short periods [11,12].

Previous studies [11,12] that assessed the effects of edge expansion, infilling, and
leapfrogging on flood risk focused more on the vulnerability element of flood risk. However,
the result of our analysis also presented some potential insight into the hazard and exposure
element of flood risk. Our study showed that the edge expansion and the leapfrogging
pattern are significantly associated with flood hazards in megacities. This could be further
interpreted to extend to the elements of flood vulnerability and exposure. Considering
the relationship between the old patch and the new patch within the buffer zone, the
characteristics of the infilling expansion pattern is to develop within existing patches
while the edge expansion develops around the fringes of existing patches; together these
patterns create a compact appearance of a tightly knitted impervious surface and hence
affect hydrologic processes (rain runoff) operating within the cities [12,32]. The large
area exhibited by the edge expansion patterns within the megacities could imply more
exposure of urban land to flood risk, while on the other hand, the small area exhibited
by the leapfrogging pattern within the megacities could imply increasing vulnerability
to flooding risk due to the assumption that small locales possess few resources for flood
control measures [11,12]. With the characteristics of the three expansion patterns and their
influences on flooding, the situation is more heightened for developing countries with their
high population densities, limited resources, urban sprawl, a lack of flood management,
and urban planning policies [33].

4.3. Implication for Urban Resilience

From our findings, the edge expansion and infilling pattern were found to be dominant
in the megacities, which agrees with the findings from previous urban studies in China and
Brazil [11,12,34–37]. The dominance of these two patterns in the megacities provides insight
into the urban landform, which is compact [35]. It has been debated that in order to achieve
sustainable urban development in major cities, urban planning policies need to encourage
edge expansion and infilling patterns because of their compact characteristics, which could
decrease flood vulnerability by taking advantage of existing flood protection [11]. This is
logical when concerns are focused on the vulnerability element of flood risk, which relates to
flood-prevention measures [38]. However, from the socio-hydrology perspective [12,28], the
compact nature of these urban expansion patterns could be disadvantageous because they
lead to more imperviousness. When certain thresholds are exceeded, it could exacerbate
flood hazards by altering infiltration and increasing surface runoff [39,40]. This could be
attributed to megacities’ proneness to flooding.

Additionally, for planned cities such as those in developed countries, existing flood
control measures and natural and engineered drainage systems could have been designed
based on past climatic regimes and lost their designed capabilities in the presence of climatic
conditions which have arisen due to climate change. Improving urban resilience to flooding
for these cities would involve upgrading flood management plans, which is already being
implemented in the United States [41]. Developing countries are mostly lagging in terms of
flood management and would require more adaptation effort to increase flood resilience.

4.4. Comparison with Previous Studies

Our research attempted to correlate patterns of urban expansion in megacities to urban
flood hazard and highlight its implications for creating a holistic flood risk framework that
would cater to current climate scenarios and thus provide insight into building a resilient so-
ciety. Previous studies have addressed urban expansion patterns and flood occurrence from
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the perspective of historical flood reports in the Yangtze River Economic Belt and North
China Plain Area [11,12] and others from the standpoint of megacities and rapidly developing
cities’ predisposition to flooding vulnerability [42,43] and exposure [44–46]. To the knowl-
edge of the authors, this work would be the first to highlight and present the relationship
between urban expansion patterns and urban flood hazards in global megacities.

4.5. Research Limitations and Future Directions

Some limitations of this study encourage further exploration of the influence of the
three urban expansion patterns on flood risk. Our study presented evidence that urban ex-
pansion patterns and their spatial distribution could influence flood exposure, vulnerability,
and hazard and ultimately increase flood risk using third-party and freely available datasets
(e.g., ThinkHazard flood-hazard map). This information would sensitize flood managers
and urban planners to the influence of urban expansion patterns on flood risk and why
flood risk frameworks or models should be interdisciplinary. Exploring this would require
a more localized flood modeling using site-specific parameters to quantitatively assess
the extent of flood risk in these cities. As regards the infilling pattern impact threshold,
future research directions could focus on quantitatively investigating the threshold at which
the infilling pattern would significantly influence flood hazard. Though its contribution
to exposure was inferred, more studies could be undertaken to ascertain its impact on
flood risk.

5. Conclusions

This study investigated urban growth in twelve megacities, the pattern of growth,
the dominant and common growth pattern, and how this pattern could be contributing
to flooding in these cities. Our focus was to find the link between the urban expansion
patterns (infilling, edge expansion, and leapfrogging) and flooding in urbanized cities,
and appropriate examples were cities with the highest possible population, and hence
urbanization. We examined the flood history of these cities, and our findings showed
that all the megacities had experienced devastating flooding in the recent past and during
the analysis of this work, citing heavy rainfall as the source. Furthermore, we explored
the land changes in these cities between 2000 and 2020 and investigated the patterns of
change experienced by these cities. Our analysis showed that some of the megacities
have developed more than 60% of their entire land area, while cities such as Guangzhou
and Lagos, while having the highest land area, have developed more than 40% of their
entire land area, thereby suggesting rapid urbanization. This study also found these
megacities exhibit edge expansion and infilling urban expansion patterns. Eight out of
twelve megacities exhibit the edge expansion pattern, making it the most common in all
the cities. Exploring the association of the spatial distribution of the areas (km2) of the
patterns of expansion within the flood-hazard zone using the ThinkHazard flood-hazard
map showed the edge expansion pattern to have more spatial distribution within the
flood-hazard zone, followed by infilling and leapfrogging. Though the three patterns were
associated with flooding at varying spatial distributions within the flood-hazard zone, we
found that the edge expansion and leapfrogging pattern had more statistical significance,
while the infilling did not. Generally, our work presents a synopsis of flooding due to heavy
rainfall in megacities and how the three patterns of urban growth in highly populated and
urbanized cities could contribute to their flood disposition. This information is crucial to
building flood resilience for these cities, especially with climate change intensifying rainfall.
It also suggests that future urban planning should integrate flood management plans.
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BLF Built-up Land in Floodplain
DFO Dartmouth Flood Observatory
ETM Enhanced Thematic Mapper
GFDRR Global Facility for Disaster Reduction and Recovery
LULC Land Use and Land Cover
OLI Operational Land Imager
TH ThinkHazard
TM Thematic Mapper
WSF World Settlement Footprint
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